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Abstract—Object recognition has gained significance due to 

the rise in CCTV surveillance and the need for automated 

detection of objects or activities in images and videos. 

Lightweight process frameworks are in demand for sensor 

networks. While Convolutional Neural Networks (CNNs) are 

widely used in computer vision, many existing architectures are 

specialized. This paper introduces the Dimension-Based Generic 

Convolution Block (DBGC), enhancing CNNs with dimension-

wise selection of kernels for improved performance. The DBGC 

offers flexibility for height, width, and depth kernels and can be 

applied to different dimension combinations. A key feature is the 

dimension selector block. Unoptimized kernel dimensions reduce 

computational operations and accuracy, while semi-optimized 

ones maintain accuracy with fewer operations. Optimized 

dimensions provide 5-6% higher accuracy and reduced 

operations. This work addresses the challenge of generic 

architecture in object recognition research. 

Keywords—Convolutional Neural Network (CNN); depth-wise 

separable convolution; dimension-based generic convolution unit 

(DBGC); CNN architecture 

I. INTRODUCTION 

The Convolutional Neural Network (CNN) stands as a 
widely adopted architecture within the realm of computer 
vision, serving pivotal roles in tasks like object recognition 
and detection [1]. Researchers have delved into a myriad of 
modifications for CNNs in the past, encompassing areas such 
as activation functions, regularization techniques, parameter 
tuning, and architectural advancements. In the following 
section, we will delve into the latest developments in this ever 
evolving field. 

This paper introduces a groundbreaking innovation known 
as the Dimension-Based Generic Convolution Unit (DBGC), 
which operates as a dimension selector module. Remarkably 
versatile, the DBGC can be seamlessly integrated into various 
architectural frameworks, yielding reductions in Floating 
Point Operations Per Second (FLOPs) without compromising 
accuracy. The research makes a significant contribution by 
presenting both semi-optimized and fully optimized kernel 
methods, effectively curtailing FLOPs while either 
maintaining or improving model accuracy. 

The applications of computer vision and image processing 
extend across a multitude of domains, including but not 
limited to traffic surveillance, object detection, autonomous 

vehicles, agriculture, and healthcare [2], [3]. A crucial aspect 
of computer vision tasks is precise feature extraction. Fusion 
methods for feature extraction, as mentioned in b4 [4], 
enhance performance. The paper identifies inspiration from 
networks like ShuffleNetv2 [5], ESPNetv2 [6], DiCENet [7], 
and MobileNetv2 [8]. The subsequent sections elaborate on 
these networks’ core architectures, strengths, and weaknesses. 

A. ShuffleNetv2 

ShuffleNetv2, presented in the 2018 paper “ShuffleNetv2: 
Practical Guidelines for Efficient CNN Architecture Design” 
by Ma, Zhang, Zheng, and Sun, introduces a novel approach 
for evaluating computational complexity [5]. In addition to the 
conventional FLOPs metric, ShuffleNetv2 considers factors 
like speed, memory access costs, and platform-specific 
parallelism. Unlike FLOPs alone, which may not accurately 
reflect network speed due to variables such as memory access 
and target platform differences, this approach provides a more 
comprehensive assessment of efficiency. To address these 
limitations, ShuffleNetv2 introduces four key principles for 
network design: 

• Proportional Input and Output Channels: Maintaining a 
1:1 ratio between input and output channels minimizes 
memory access costs. 

• Optimal Group Convolution: Carefully selecting the 
number of groups in convolutions prevents excessive 
memory access costs. 

• Reduced Network Fragmentation: Minimizing network 
fragmentation enhances parallelism efficiency for 
better parallel computations. 

• Significance of Element-wise Operations: Despite low 
FLOPs, element-wise operations can significantly 
increase memory access time. 

The combined application of these principles enhances 
CNN architecture efficiency beyond FLOPs considerations. 
ShuffleNetv2 integrates these principles into its design to 
improve network efficiency, as illustrated in Fig. 1. 

B. ESPNetv2 

ESPNetv2 is a progression from ESPNetv1, initially 
designed for semantic segmentation [6]. It broadens the 
application of ESPNetv1’s ideas to diverse computer vision 
tasks, even encompassing language modeling. The central aim 
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is refining the separation of dilated convolutions in a depth-
wise fashion. This is realized through the introduction of a 
new module called EESP (Extremely Efficient Spatial 
Pyramid), outlined in Fig. 2. 

The EESP block in ESPNetv2 divides channels into two 
groups, using one as an identity and maintaining channel 
balance during convolutions. It avoids group-wise 
convolutions and includes ReLU concatenations and depth-
wise convolutions [6]. The architecture begins with stride-2 
convolutions and has three phases, each starting with a stride 
EESP block, altering spatial dimensions and channels. 
Afterward, there are convolution layers, global average 
pooling, and a classifier. Strided EESP uses dilated 
convolutions and concatenation for long-range connections, 
supported by depth-wise convolutions for spatial information. 
ESPNetv2 achieves about 74% Top1 accuracy with 5.9 
million parameters. 

 

Fig. 1. ShuffleNetv2 design. 

 

Fig. 2. Building block of EESP. 

C. DiCENet 

DiCENet introduces the concept of dimension-wise 
convolution and fusion to replace regular convolution. Depth 
wise and group convolutions divide the input tensor along the 
channel dimension, allowing each filter to operate on specific 
channel subsets [7]. DiCENet suggests extending this slicing 
approach to width and height dimensions. Depth-wise 
convolution has a drawback of requiring multiple 
convolutions to effectively mix channels, constituting a 
substantial portion of operations in models like MobileNet. 

ShuffleNet attempted to mitigate this with grouped 
convolution for speed, but further improvement might be 
possible. DiCENet proposes dimension-wise convolution 
(DimConv) across all three possible axes (DHW): depth-wise 
(HW), widthwise (DH), and height-wise (DW). Depth-wise 
covers spatial dimensions, widthwise involves splitting along 
channels while sliding over image width, and height-wise does 
the same along the height axis. This approach aims to enhance 
convolution efficiency and performance. 

D. MobileNetv2 

MobileNetv2 maintains the use of depth-wise convolution, 
a characteristic shared with its predecessor, MobileNetv1 [8]. 
However, in MobileNetv2, the arrangement of blocks is 
restructured, notably placing the depth-wise convolution block 
at the center, as depicted in Fig. 3. Preceding the depth wise 
layer is a 1x1 convolution referred to as the expansion layer, 
which augments the channel count. Following the depth wise 
layer, there is another 1x1 convolution, identified as the 
projection layer or bottleneck layer. This final convolution 
reduces the number of channels back to a more optimal 
configuration. This architectural adjustment aims to enhance 
the model’s performance and efficiency. 

MobileNetv2 retains the depth-wise convolution approach 
from its predecessor, MobileNetv1 [8]. However, 
MobileNetv2 introduces a novel block arrangement. Notably, 
it places the depth-wise convolution block at the center, as 
shown in Fig. 3. Preceding the depth-wise layer is a 1x1 
convolution known as the expansion layer, which increases 
channel numbers. Subsequent to the depth-wise layer, another 
1x1 convolution, called the projection or bottleneck layer, is 
employed. This final convolution reduces channel counts to an 
optimal level. This architectural shift is designed to boost both 
the performance and efficiency of the model. 

MobileNetv2 preserves ReLU6 as its activation function, as in 

its predecessor. Yet, beyond the bottleneck layer, it opts not to 

use any activation function [8], termed “linear bottlenecks.” 

This choice is informed by the risk of losing vital information 

due to non-linearity in this low-dimensional data context. 

Together, these elements constitute the architecture of 
MobileNetV2. Subsequently, the architecture involves a 
conventional 1x1 convolution layer, global average pooling, 
and a classification layer, as depicted in Fig. 3. Fig. 4 
furnishes the Top1 and Top5 accuracy metrics for a range of 
lightweight CNN architectures. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 10, 2023 

435 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 3. MobileNetv2. 

 

Fig. 4. A comparison of different lightweight architectural designs. 

In Section III of the manuscript, the authors present the 
DBGC (Dimension-based Generic Convolution) block. A 
comprehensive grasp of the concepts expounded upon in 
Section II is essential for a complete comprehension of this 
section. Section II is bifurcated into two key segments: the 
initial part elucidates the separable convolution technique and 
its diverse modifications, while the subsequent part delves into 
an array of convolutional kernels. Moving forward, Section IV 
provides a detailed examination of the results and analysis 
pertaining to the recently introduced DBGC block. 

II. MATERIALS AND METHODS 

This section provides a clear explanation of crucial 
terminologies and their relevance in the context of the 
proposed DBGC block. The section is structured into two 
subsections: the first one covers separable convolution, while 
the second one delves into depth-wise separable convolution. 

A. Introduction to Separable Convolution 

The inception of separable convolution dates back to the 
Xception model of 2016 [9]. In response to the growing trend 
of deep learning (DL) moving towards edge computing, 
especially on smart phones and IoT devices, researchers 
proposed various techniques to enhance inferential 
computation efficiency. These techniques encompass network 
pruning, parameter compression, and more. One particularly 
effective approach is quantization, which streamlines DL 
processes by enabling them to operate on fixed-point 
pipelines. The renowned lightweight architecture, 

MobileNetv1, has notably leveraged separable convolution to 
substantially reduce parameter size and computation latency 
[9]. 

Separable convolutions can be categorized into two main 
types: (1) Spatial separable convolution and (2) Depth-wise 
separable convolution. 

1) Spatial separable convolution: Spatial separable 

convolution simplifies convolution by breaking it into two 

separate convolutions [18]. While conceptually 

straightforward, its practical application in deep learning is 

limited due to certain drawbacks. The term “spatial separable 

convolution” reflects its focus on width and height dimensions 

in images and kernels [10], with image channels representing 

the “depth” dimension. This approach splits a kernel into 

smaller parts; for example, a 3x3 kernel is divided into 3x1 

and 1x3 kernels, as shown in Fig. 5. 

 

Fig. 5. Dividing a 3x3 kernel into spatial. 

Achieving the same outcome involves conducting two 
convolutions, each with three multiplications, totaling six, as 
opposed to a single convolution with nine multiplications. 
This approach reduces computational complexity by 
minimizing the number of multiplications, resulting in 
enhanced network efficiency, as illustrated in Fig. 6. 

A notable limitation of a spatial separable kernel is its 
inability to effectively divide all kernels into two parts. This 
limitation becomes particularly problematic during training, as 
it utilizes only a small fraction of the entire network. 

2) Depth-wise separable convolution: When working with 

kernels that cannot be decomposed into smaller components, 

the adoption of depth-wise separable. 

 

Fig. 6. Basic and spatially separable convolution. 

Convolution becomes increasingly popular. Facilitating its 
implementation are tools such as 
keras.layers.SeparableConv2D or tf.layers.separableconv2d. 
The term “depth-wise separable convolution” reflects its 
attention to both spatial dimensions and the depth dimension 
(number of channels) [11]. In an input image with RGB 
channels, each channel (R, G, B) provides a distinct 
interpretation of the image. After multiple convolutions, the 
image can comprise a variety of channels [12]. For instance, 
the “red” channel focuses on redness, “blue” on blueness, and 
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“green” on greenness. A 64-channel image can be understood 
in 64 unique ways. In depth-wise separable convolution, 
similarly to spatial separable convolution, a kernel is divided 
into two separate kernels. One kernel handles depth-wise 
convolution, while the other manages point-wise convolution. 

a) Depth-Wise Convolution: Depth-wise convolution 

applies convolutional kernels to an input image without 

modifying its depth, as elucidated in [13]. This process, 

illustrated in Fig. 7, is achieved through the utilization of three 

distinct kernels. For example, when dealing with a 12x12x3 

input image, three 5x5x1 kernels are employed. Each 5x5x1 

kernel traverses a channel of the input image, computing 

scalar products for every group of 25 pixels (5x5). 

Consequently, this generates an output image of dimensions 

8x8x1, as visually depicted in Fig. 7. 

 

Fig. 7. Depth-wise convolution employs three kernels to transform a 12 × 12 

× 1 image into an 8 × 8 × 1 image. 

b) Point-Wise Convolution: Following depth-wise 

convolution, the image transforms from 12x12x3 to 8x8x3, 

necessitating a channel expansion. “Point-wise convolution” 

uses a 1x1 kernel, processing individual points. The kernel’s 

depth matches input image channels [14]. For an 8x8x1 result, 

a 1x1x3 kernel moves through the 8x8x3 image, as shown in 

Fig. 8. 

 

Fig. 8. Point-wise convolution reduces a three-channel image to a single-

channel image. 

In a normal convolution, considering 256 kernels of 5x5x3 
over 8x8 movements requires 1,228,800 multiplications. In 
separable convolution, using three 5x5x1 kernels for depth 
wise convolution in 8x8 movements entails 4,800 
multiplications, and point-wise convolution with 256 kernels 
of 1x1x1x3 needs 49,152 multiplications. The total is 53,952. 

Comparatively, 1,228,800 is significantly higher than 
53,952. Fewer calculations enable efficient data processing. 
Standard convolution alters the image 256 times, demanding 
4,800 multiplications each. In contrast, separable convolution 
modifies the image once and extends it to 256 channels, 
conserving resources. Separable convolution’s limitation is 
minimizing parameters, potentially affecting small networks. 
Nonetheless, it boosts efficiency without compromising 
effectiveness, making it a popular choice20. 

B. Introduction to Convolution Kernels 

Convolution utilizes a matrix-like “kernel” to extract 
targeted “features” from an input image, enhancing the output 
through multiplication, as shown in Fig. 9. For instance, a 
kernel can sharpen the input image, yielding a desired output 
representation [20]. 

 

Fig. 9. Example for convolutional use kernel. 

Convolution involves using a “kernel,” a matrix of 
weighted values, to extract important features from input data. 
The term “convolution” is related to the dimensions of the 
kernel, such as in 2D convolutions where the kernel matrix is 
two dimensional. On the other hand, a “filter” is a collection 
of multiple kernels, each applied to a specific input channel. 
Filters have an extra dimension compared to kernels, 
particularly in 2D convolutions, where filters become 3D 
matrices. For a CNN layer with kernel dimensions of h*w and 
input channels of k, filter dimensions become k*h*w. 
Convolutions come in three types based on kernel nature: 1D, 
2D and 3D convolutions. 

1) 1D convolution: 1D convolutions are highly useful for 

processing time series data, especially with one-dimensional 

inputs, even when containing multiple channels [15]. These 

convolutions operate in a single direction, resulting in one-

dimensional output, as demonstrated in Fig. 10. 

 

Fig. 10. 1D convolution. 

2) 2D Convolution: In 2D convolutions, as shown in 

Fig. 11, the kernel size is 3x3. Multiple kernels, highlighted in 

yellow, form a filter that corresponds to various input channels 

indicated in blue. Each channel aligns with a distinct kernel. 

The filter moves in two directions across the input, resulting in 

a two-dimensional output. 2D convolutions are widely used, 

particularly in computer vision. 

 

Fig. 11. 2D convolution. 
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3) 3D Convolution: Visualizing a 3D filter (4D matrix) 

can be complex. However, we’ll focus on single-channel 3D 

convolution for simplicity. As shown in Fig. 12, the kernel 

moves in three directions, leading to a 3D output [16]. It’s 

notable that most customization and modification research for 

CNN layers has primarily concentrated on 2D convolutions. 

 

Fig. 12. 3D convolution. 

III. DBGC: DIMENSION-BASED GENERIC CONVOLUTION 

Standard convolutions simultaneously handle spatial and 
channel data but can be computationally demanding. To 
improve efficiency, separable convolutions split spatial and 
channel data via depth-wise and point-wise convolutions, yet 
this can lead to computational bottlenecks in point-wise 
convolutions. The DBGC unit addresses this by using a 
dimension selector to efficiently encode spatial and dimension 
information, reducing computational load. Fig. 13 shows 
DBGC architecture. This involves two stages illustrated in 
Fig. 9: dimension-based convolution Section III(A) and 
dimension-wise fusion Section III(C). By replacing point-wise 
convolutions with dimension-based ones, the DBGC unit 
alleviates computational bottlenecks. 

A. Convolution based on Dimension (ConvDim) 

The ConvDim block processes information distinctly along 
the height-wise, depth-wise, and width-wise dimensions. To 
achieve this, it extends the concept of depth-wise separable 
convolutions to encompass all dimensions of the input tensor 
I, which is characterized by dimensions H × D × W 
(representing height, depth, and width). As illustrated in 
Figure 12, ConvDim employs three sets of kernels for each 
dimension: KH for height-wise convolution, KD for depth 
wise convolution, and KW for width-wise convolution. These 
dimension-specific kernels generate outputs denoted as YH, 
YD, and YW, each having dimensions H × D × W, effectively 
capturing information from the input tensor. Subsequently, 
these outputs are amalgamated within the dimension selector 
block, merging spatial planes to yield the ultimate output, 
YDim. 

 

Fig. 13. DBGC architecture. 

B. Dimension Selector (Ds) 

The dimension selector block, labeled as Ds, allows 
dimension selection tailored to specific application needs. 
Depending on requirements, users can opt to use only height, 
width, or depth dimensions during training. Parameters in this 
block specify chosen dimensions: Ds = KD, KW, KH. 
Combinations of two kernels are also possible, such as Ds = 
KD, KW, Ds = KH, KW, Ds = KD, KH, and Ds = KD, KW, 
KH. Thus, the dimension selector presents seven possibilities: 
height-only, width-only, depth-only, height and width, width 
and depth, height and depth, and all three dimensions. 
Selected kernels influence YDim integration, showcased in 
various dimension combinations in Fig. 14. 

C. Dimension-Wise Blends (DimBlend) 

Dimension-wise convolutions capture local information 
from input tensor dimensions, but not global information. 
While point-wise convolutions in CNNs commonly combine 
global insights, they can be time-consuming. To address this, 
the dimension-wise blend module (DimBlend) divides 
pointwise convolution into local and global fusion phases, 
effectively merging dimension-wise representations from 
YDim into output Y [6]. The dimension-wise blend module, 
DimBlend, offers an alternative by splitting the point-wise 
convolution into two phases, as shown in Fig. 14. 

 

Fig. 14. ConvDim implementation progresses from individual kernel 

application (a) to simultaneous application of two kernels (b) and finally to 

concurrent application of all kernels (c), efficiently aggregating information 
through height-wise, depth-wise, and width-wise convolution. 

The DBGC unit efficiently encodes spatial and dimension 
wise information using a multi-stage approach. The dimension 
selector (Ds) module allows flexible dimension choice, and 
the dimension-wise blend module (DimBlend) refines the 
process. In local fusion, YDim consolidates outputs from Ds, 
while DimBlend employs a group point-wise convolution 
layer (Kg) for dimension-wise merging. Global fusion 
follows, with DimBlend learning channel-wise and spatial 
representations, compressing spatial dimensions into channel-
wise via fully connected layers. Integrating local and global 
fusion, DimBlend produces the final output Y, effectively 
capturing both spatial and dimension-wise information. 
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IV. RESULT ANALYSIS 

A. Implementation of DBGC 

The integration of the DBGC unit within a CNN 
architecture involves the utilization of conventional CNN 
layers. The architecture’s depiction is presented in Fig. 15, 
providing an overview of the overall arrangement. 

 

Fig. 15. The DBGC unit in different architecture (ESPNetv2 and 

ShuffleNetv2) designs. 

B. Experimental Setup 

This section provides implementation details of the DBGC 
block and analyzes results. The DBGC unit was tested on 
ESPNetv2 and ShuffleNetv2 architectures, evaluating its 
impact on computational load and accuracy using the 
PASCAL VOC dataset. The integration of the DBGC unit 
with different architectures is discussed in Section V. 

C. Dataset Details 

To demonstrate the DBGC unit’s efficacy across diverse 
models, a standardized dataset was selected to ensure 
consistent comparison among architectures. The PASCAL 
VOC (Visual Object Classes Challenge) dataset was employed 
for this purpose. This dataset includes 20 object categories 
such as vehicles, animals, and furniture, with pixel-level 
segmentation annotations and bounding boxes. It is divided 
into training, validation, and private testing subsets, serving as 
a benchmark for object detection, semantic segmentation, and 
classification tasks. 

D. Results Analysis 

This section presents the outcomes of integrating the 
DBGC unit into ESPNetv2 and ShuffleNetv2 architectures, 
focusing on the impact of reduced FLOPs on object detection 
and semantic segmentation accuracy. ESPNetv2 was used for 
object detection, while ShuffleNetv2 was employed for 
semantic segmentation. The distinction between FLOPs and 
FLOPS is explained: FLOPs represents the computational 
complexity of a model, quantifying the floating-point 
operations during inference [17]. On the other hand, FLOPS 
measures hardware processing speed. Faster hardware with 
higher FLOPS leads to quicker inference times. The equations 
to calculate FLOPs in the model are detailed in Fig. 16. 

Within this section, the analysis of the results is structured 
into three distinct categories: (1) unoptimized kernel 
dimensions, (2) semi-optimized kernel dimensions, and (3) 
optimized kernel dimensions. 

 

Fig. 16. Output shape of a convolutional layer: Output = (Input - Kernel) + 1. 

1) Unoptimized kernel dimensions: In the context of 

unoptimized kernel dimensions, employing a single kernel 

dimension for the output channel can lead to decreased object 

detection accuracy. This evaluation used ESPNetv2 and 

ShuffleNetv2 architectures for object detection and semantic 

segmentation tasks with the PASCAL VOC dataset. Initial 

models were created following existing guidelines, and then 

the same models were integrated with the proposed DBGC 

block using the width parameter in the dimension selector 

module from the DBGC architecture. The objective was to 

observe FLOPs variations and assess Top1 and Top5 

accuracies. Results are presented in Tables I, II, and III for 

width-based, height-based, and depth-based kernels, 

respectively. 

TABLE I. EXCLUSIVELY WIDTH-BASED KERNEL 

Model Dataset 
Image 

Size 

FLOP 

(In 

Millions) 

Top1 Top5 

ESPNet v2 

PASCAL 
224 × 

224 

86 66.1 70.02 

ShuffleNetv2 71 63.9 62.30 

ESPNetv2(DBGC-

KH) 
24 35.64 43.86 

ShuffleNetv2 
(DBGC-KH) 

21 34.5 39.54 

TABLE II. SOLELY HEIGHT-BASED KERNEL 

Model Dataset 
Image 

Size 

FLOP 

(In 

Millions) 

Top1 Top5 

ESPNet v2 

PASCAL 
224 × 

224 

86 66.1 70.02 

ShuffleNetv2 71 63.9 62.30 

ESPNetv2(DBGC-

KH) 
24 33.4 37.66 

ShuffleNetv2 
(DBGC-KH) 

21 32.15 36.84 

TABLE III. ONLY DEPTH-BASED KERNEL 

Model Dataset 
Image 

Size 

FLOP 

(In 

Millions) 

Top1 Top5 

ESPNet v2 

PASCAL 
224 × 
224 

86 66.1 70.02 

ShuffleNetv2 71 63.9 62.30 

ESPNetv2(DBGC-

KD) 
24 33.34 36.66 

ShuffleNetv2 
(DBGC-KD) 

21 31.95 35.84 
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The results show that unoptimized kernel dimensions 
reduce FLOPs by about one third compared to the original 
ESPNetv2 and ShuffleNetv2 architectures. However, using 
only a single dimension for kernel selection notably decreases 
accuracy by around 30%, as demonstrated in Fig. 17 to 
Fig. 19, highlighting the trade-off between computational 
efficiency and model performance. 

 

Fig. 17. Only height-based kernel. 

 

Fig. 18. Only height-based kernel.

 

Fig. 19. Only depth-based kernel. 

2) Semi-optimized kernel dimensions: In the semi-

optimized kernel dimensions analysis, two kernel dimension 

combinations were employed for the output channel, resulting 

in reduced FLOPs with minimal accuracy loss. ESPNetv2 and 

ShuffleNetv2 were utilized for object detection and semantic 

segmentation on the PASCAL VOC dataset. The DBGC block 

was integrated with various kernel combinations (DBGC-

Kwh, DBGC-Kdh, DBGC-Kwd) in dimension selector 

modules. Results in Tables IV to VI demonstrate lowered 

FLOPs and slight accuracy effects. 

TABLE IV. DEPTH & WIDTH-BASED KERNEL 

Model Dataset 
Image 

Size 

FLOP 

(In 

Millions) 

Top1 Top5 

ESPNet v2 

PASCAL 

 

224 x 

224 
 

86 70.02 66.1 

Shuffle Netv2 71 62.30 63.9 

ESPNetv2(DBGC-

KDW) 
48 71.59 66.41 

Shuffle Netv2 

(DBGC-KDW) 
42 64.83 69.75 

TABLE V. DEPTH & HEIGHT-BASED KERNEL 

Model Dataset 
Image 

Size 

FLOP 

(In 

Millions) 

Top1 Top5 

ESPNet v2 

PASCAL 

 

224 x 

224 
 

86 70.02 66.1 

Shuffle Netv2 71 62.30 63.9 

ESPNetv2(DBGC-

KDH) 
48 65.57 68.42 

Shuffle Netv2 
(DBGC-KDH) 

42 65.82 67.73 

TABLE VI. HEIGHT & WIDTH-BASED KERNEL 

Model Dataset 
Image 

Size 

FLOP 

(In 

Millions) 

Top1 Top5 

ESPNet v2 

PASCAL 
 

224 x 

224 

 

86 70.02 66.1 

Shuffle Netv2 71 62.30 63.9 

ESPNetv2(DBGC-

KHW) 
48 65.52 71.47 

Shuffle Netv2 

(DBGC-KHW) 
42 64.87 68.77 

Semi-optimized kernel dimensions in DBGC halve FLOPs 
while maintaining good accuracy; object detection sustains 
accuracy and semantic segmentation gains 1-2%, as shown in 
Fig. 20 to Fig. 22. 

 

Fig. 20. Combining depth-based and width-based kernels. 

 

Fig. 21. Combining depth-based and height-based kernel. 
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Fig. 22. Combining height-based and width-based kernel. 

Fig. 23 illustrates the analysis of results, showing that 
using two dimensions reduces FLOPs while maintaining 
accuracy close to the original architecture. 

 

Fig. 23. Semi-optimized kernel dimension. 

E. Optimized Kernel Dimension 

To improve accuracy while considering computational 
efficiency, a combination of all three kernel dimensions 
(width, height, and depth) was employed for the output 
channel. This approach increased FLOPs but enhanced 
accuracy. After implementing ESPNetv2 and ShuffleNetv2 
models following the methodology in [7], these models were 
further enhanced with the incorporation of the proposed 
DBGC-Khwd block. The DBGC block’s parameters for width, 
height, and depth, as described in Section 3 of the DBGC 
architecture, were chosen. The goal was to compare FLOPs 
and evaluate Top1 and Top5 accuracies. The outcomes are 
presented in Table VII and Fig. 24 for kernels based on depth, 
width, and height. 

TABLE VII. HEIGHT & WIDTH & DEPTH-BASED KERNEL 

Model Dataset 
Image 

Size 

FLOP 

(In 

Millions) 

Top1 Top5 

ESPNet v2 

PASCAL 

 

224 x 

224 
 

86 70.02 66.1 

Shuffle Netv2 71 62.30 63.9 

ESPNetv2(DBGC-

KHW) 
48 70.52 74.48 

Shuffle Netv2 
(DBGC-KHW) 

42 69.97 74.77 

 

Fig. 24. Optimized kernel dimension. 

Fig. 25 highlights that selecting all three dimensions led to 
a 4 to 5% accuracy increase while reducing FLOPs. 
showcasing the superiority of optimized kernels. For a 
comprehensive comparison, Fig. 25 and Fig. 26 display the 
performance of unoptimized, semi-optimized, and optimized 
kernel dimensions in ESPNetv2 and ShuffleNetv2 
architectures, respectively. 

  

Fig. 25. ESPNetv2 versus ESPNetv2 (DBGC). 

 

Fig. 26. ShuffleNetv2 versus ShuffleNetv2 (DBGC). 

Fig. 27 presents a box plot summarizing the various 
methods employed on the PASCAL VOC dataset. “Ev2” 
represents ESPNetv2, and “Sv2” stands for ShuffleNetv2 in 
the chart. 

A box plot visualizes the performance of unoptimized, 
semi-optimized, and optimized kernels for ESPNetv2 versus 
ESPNetV2 (DBGC) and ShuffleNetv2 versus ShuffleNetV2 
(DBGC). The effectiveness of DBGC is evaluated using the 
MS COCO dataset [19], showcasing the performance 
differences in Fig. 28. 
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Fig. 27. Box Plot for kernel types. 

 

Fig. 28. Compare the performance of ESPNetv2 and ShuffleNetv2 with their 

DBGC-enhanced versions on PASCAL and COCO datasets. 

V. CONCLUSION 

In conclusion, the proposed DBGC unit demonstrates its 
versatility by being applicable to various CNN-based network 
models. By integrating DBGC into ESPNetv2 and 
ShuffleNetv2 architectures, extensive evaluations based on 
FLOPs, Top1, and Top5 accuracies were conducted using the 
PASCAL VOC dataset. The findings indicate that 
unoptimized kernel based DBGC substantially reduces FLOPs 
by about one third, leading to significantly improved speed. 
However, this reduction in FLOPs comes at the cost of a 
notable decrease in accuracy. On the other hand, semi-
optimized dimension-based kernels offer a balance between 
reduced FLOPs (around half) and maintained or slightly 
improved accuracy in ShuffleNetV2 with DBGC. Lastly, 
optimized dimension-based kernels achieve the highest 
accuracy while still reducing FLOPs by approximately five 
million. These results emphasize the potential of DBGC for 
enhancing the efficiency and accuracy of various CNN 
architectures. 

FUTURE WORK 

For future research, the proposed architecture could be 
extended to evaluate its performance across different datasets, 
enabling a broader understanding of its capabilities. 
Additionally, investigating whether unoptimized dimension-
based kernels can yield improved accuracy when applied to 
single dimensional data could be a valuable exploration. 
Further enhancements could involve automating the 
dimension selection process in the dimension selector modules 
to dynamically choose dimensions based on the characteristics 
of the datasets provided, potentially optimizing the efficiency 
and effectiveness of the DBGC approach. 
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