
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

433 | P a g e

www.ijacsa.thesai.org

Modified Deep Neural Network for Object

Recognition

Dulari Bhatt
1
, Chirag Patel

2*
, Madhuri Chopade

3
, Madhvi Dave

4
, Chintan Patel

5

Research Scholar, Computer Science & Engineering, Parul University, Vadodara, Gujarat, India
1

Associate Professor, Computer Science, Charusat University, Gujarat, India
2

Assistant Professor, Information Technology, Gandhinagar University, Gujarat, India
3

Associate Professor, Computer Science, Adani Institute of Digital Technology Management, Gujarat, India
4

Academic Associate, IIM Ahmedabad, Gujarat, India
5

Abstract—Object recognition has gained significance due to

the rise in CCTV surveillance and the need for automated

detection of objects or activities in images and videos.

Lightweight process frameworks are in demand for sensor

networks. While Convolutional Neural Networks (CNNs) are

widely used in computer vision, many existing architectures are

specialized. This paper introduces the Dimension-Based Generic

Convolution Block (DBGC), enhancing CNNs with dimension-

wise selection of kernels for improved performance. The DBGC

offers flexibility for height, width, and depth kernels and can be

applied to different dimension combinations. A key feature is the

dimension selector block. Unoptimized kernel dimensions reduce

computational operations and accuracy, while semi-optimized

ones maintain accuracy with fewer operations. Optimized

dimensions provide 5-6% higher accuracy and reduced

operations. This work addresses the challenge of generic

architecture in object recognition research.

Keywords—Convolutional Neural Network (CNN); depth-wise

separable convolution; dimension-based generic convolution unit

(DBGC); CNN architecture

I. INTRODUCTION

The Convolutional Neural Network (CNN) stands as a
widely adopted architecture within the realm of computer
vision, serving pivotal roles in tasks like object recognition
and detection [1]. Researchers have delved into a myriad of
modifications for CNNs in the past, encompassing areas such
as activation functions, regularization techniques, parameter
tuning, and architectural advancements. In the following
section, we will delve into the latest developments in this ever
evolving field.

This paper introduces a groundbreaking innovation known
as the Dimension-Based Generic Convolution Unit (DBGC),
which operates as a dimension selector module. Remarkably
versatile, the DBGC can be seamlessly integrated into various
architectural frameworks, yielding reductions in Floating
Point Operations Per Second (FLOPs) without compromising
accuracy. The research makes a significant contribution by
presenting both semi-optimized and fully optimized kernel
methods, effectively curtailing FLOPs while either
maintaining or improving model accuracy.

The applications of computer vision and image processing
extend across a multitude of domains, including but not
limited to traffic surveillance, object detection, autonomous

vehicles, agriculture, and healthcare [2], [3]. A crucial aspect
of computer vision tasks is precise feature extraction. Fusion
methods for feature extraction, as mentioned in b4 [4],
enhance performance. The paper identifies inspiration from
networks like ShuffleNetv2 [5], ESPNetv2 [6], DiCENet [7],
and MobileNetv2 [8]. The subsequent sections elaborate on
these networks’ core architectures, strengths, and weaknesses.

A. ShuffleNetv2

ShuffleNetv2, presented in the 2018 paper “ShuffleNetv2:
Practical Guidelines for Efficient CNN Architecture Design”
by Ma, Zhang, Zheng, and Sun, introduces a novel approach
for evaluating computational complexity [5]. In addition to the
conventional FLOPs metric, ShuffleNetv2 considers factors
like speed, memory access costs, and platform-specific
parallelism. Unlike FLOPs alone, which may not accurately
reflect network speed due to variables such as memory access
and target platform differences, this approach provides a more
comprehensive assessment of efficiency. To address these
limitations, ShuffleNetv2 introduces four key principles for
network design:

• Proportional Input and Output Channels: Maintaining a
1:1 ratio between input and output channels minimizes
memory access costs.

• Optimal Group Convolution: Carefully selecting the
number of groups in convolutions prevents excessive
memory access costs.

• Reduced Network Fragmentation: Minimizing network
fragmentation enhances parallelism efficiency for
better parallel computations.

• Significance of Element-wise Operations: Despite low
FLOPs, element-wise operations can significantly
increase memory access time.

The combined application of these principles enhances
CNN architecture efficiency beyond FLOPs considerations.
ShuffleNetv2 integrates these principles into its design to
improve network efficiency, as illustrated in Fig. 1.

B. ESPNetv2

ESPNetv2 is a progression from ESPNetv1, initially
designed for semantic segmentation [6]. It broadens the
application of ESPNetv1’s ideas to diverse computer vision
tasks, even encompassing language modeling. The central aim

*Corresponding Author

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

434 | P a g e

www.ijacsa.thesai.org

is refining the separation of dilated convolutions in a depth-
wise fashion. This is realized through the introduction of a
new module called EESP (Extremely Efficient Spatial
Pyramid), outlined in Fig. 2.

The EESP block in ESPNetv2 divides channels into two
groups, using one as an identity and maintaining channel
balance during convolutions. It avoids group-wise
convolutions and includes ReLU concatenations and depth-
wise convolutions [6]. The architecture begins with stride-2
convolutions and has three phases, each starting with a stride
EESP block, altering spatial dimensions and channels.
Afterward, there are convolution layers, global average
pooling, and a classifier. Strided EESP uses dilated
convolutions and concatenation for long-range connections,
supported by depth-wise convolutions for spatial information.
ESPNetv2 achieves about 74% Top1 accuracy with 5.9
million parameters.

Fig. 1. ShuffleNetv2 design.

Fig. 2. Building block of EESP.

C. DiCENet

DiCENet introduces the concept of dimension-wise
convolution and fusion to replace regular convolution. Depth
wise and group convolutions divide the input tensor along the
channel dimension, allowing each filter to operate on specific
channel subsets [7]. DiCENet suggests extending this slicing
approach to width and height dimensions. Depth-wise
convolution has a drawback of requiring multiple
convolutions to effectively mix channels, constituting a
substantial portion of operations in models like MobileNet.

ShuffleNet attempted to mitigate this with grouped
convolution for speed, but further improvement might be
possible. DiCENet proposes dimension-wise convolution
(DimConv) across all three possible axes (DHW): depth-wise
(HW), widthwise (DH), and height-wise (DW). Depth-wise
covers spatial dimensions, widthwise involves splitting along
channels while sliding over image width, and height-wise does
the same along the height axis. This approach aims to enhance
convolution efficiency and performance.

D. MobileNetv2

MobileNetv2 maintains the use of depth-wise convolution,
a characteristic shared with its predecessor, MobileNetv1 [8].
However, in MobileNetv2, the arrangement of blocks is
restructured, notably placing the depth-wise convolution block
at the center, as depicted in Fig. 3. Preceding the depth wise
layer is a 1x1 convolution referred to as the expansion layer,
which augments the channel count. Following the depth wise
layer, there is another 1x1 convolution, identified as the
projection layer or bottleneck layer. This final convolution
reduces the number of channels back to a more optimal
configuration. This architectural adjustment aims to enhance
the model’s performance and efficiency.

MobileNetv2 retains the depth-wise convolution approach
from its predecessor, MobileNetv1 [8]. However,
MobileNetv2 introduces a novel block arrangement. Notably,
it places the depth-wise convolution block at the center, as
shown in Fig. 3. Preceding the depth-wise layer is a 1x1
convolution known as the expansion layer, which increases
channel numbers. Subsequent to the depth-wise layer, another
1x1 convolution, called the projection or bottleneck layer, is
employed. This final convolution reduces channel counts to an
optimal level. This architectural shift is designed to boost both
the performance and efficiency of the model.

MobileNetv2 preserves ReLU6 as its activation function, as in

its predecessor. Yet, beyond the bottleneck layer, it opts not to

use any activation function [8], termed “linear bottlenecks.”

This choice is informed by the risk of losing vital information

due to non-linearity in this low-dimensional data context.

Together, these elements constitute the architecture of
MobileNetV2. Subsequently, the architecture involves a
conventional 1x1 convolution layer, global average pooling,
and a classification layer, as depicted in Fig. 3. Fig. 4
furnishes the Top1 and Top5 accuracy metrics for a range of
lightweight CNN architectures.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

435 | P a g e

www.ijacsa.thesai.org

Fig. 3. MobileNetv2.

Fig. 4. A comparison of different lightweight architectural designs.

In Section III of the manuscript, the authors present the
DBGC (Dimension-based Generic Convolution) block. A
comprehensive grasp of the concepts expounded upon in
Section II is essential for a complete comprehension of this
section. Section II is bifurcated into two key segments: the
initial part elucidates the separable convolution technique and
its diverse modifications, while the subsequent part delves into
an array of convolutional kernels. Moving forward, Section IV
provides a detailed examination of the results and analysis
pertaining to the recently introduced DBGC block.

II. MATERIALS AND METHODS

This section provides a clear explanation of crucial
terminologies and their relevance in the context of the
proposed DBGC block. The section is structured into two
subsections: the first one covers separable convolution, while
the second one delves into depth-wise separable convolution.

A. Introduction to Separable Convolution

The inception of separable convolution dates back to the
Xception model of 2016 [9]. In response to the growing trend
of deep learning (DL) moving towards edge computing,
especially on smart phones and IoT devices, researchers
proposed various techniques to enhance inferential
computation efficiency. These techniques encompass network
pruning, parameter compression, and more. One particularly
effective approach is quantization, which streamlines DL
processes by enabling them to operate on fixed-point
pipelines. The renowned lightweight architecture,

MobileNetv1, has notably leveraged separable convolution to
substantially reduce parameter size and computation latency
[9].

Separable convolutions can be categorized into two main
types: (1) Spatial separable convolution and (2) Depth-wise
separable convolution.

1) Spatial separable convolution: Spatial separable

convolution simplifies convolution by breaking it into two

separate convolutions [18]. While conceptually

straightforward, its practical application in deep learning is

limited due to certain drawbacks. The term “spatial separable

convolution” reflects its focus on width and height dimensions

in images and kernels [10], with image channels representing

the “depth” dimension. This approach splits a kernel into

smaller parts; for example, a 3x3 kernel is divided into 3x1

and 1x3 kernels, as shown in Fig. 5.

Fig. 5. Dividing a 3x3 kernel into spatial.

Achieving the same outcome involves conducting two
convolutions, each with three multiplications, totaling six, as
opposed to a single convolution with nine multiplications.
This approach reduces computational complexity by
minimizing the number of multiplications, resulting in
enhanced network efficiency, as illustrated in Fig. 6.

A notable limitation of a spatial separable kernel is its
inability to effectively divide all kernels into two parts. This
limitation becomes particularly problematic during training, as
it utilizes only a small fraction of the entire network.

2) Depth-wise separable convolution: When working with

kernels that cannot be decomposed into smaller components,

the adoption of depth-wise separable.

Fig. 6. Basic and spatially separable convolution.

Convolution becomes increasingly popular. Facilitating its
implementation are tools such as
keras.layers.SeparableConv2D or tf.layers.separableconv2d.
The term “depth-wise separable convolution” reflects its
attention to both spatial dimensions and the depth dimension
(number of channels) [11]. In an input image with RGB
channels, each channel (R, G, B) provides a distinct
interpretation of the image. After multiple convolutions, the
image can comprise a variety of channels [12]. For instance,
the “red” channel focuses on redness, “blue” on blueness, and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

436 | P a g e

www.ijacsa.thesai.org

“green” on greenness. A 64-channel image can be understood
in 64 unique ways. In depth-wise separable convolution,
similarly to spatial separable convolution, a kernel is divided
into two separate kernels. One kernel handles depth-wise
convolution, while the other manages point-wise convolution.

a) Depth-Wise Convolution: Depth-wise convolution

applies convolutional kernels to an input image without

modifying its depth, as elucidated in [13]. This process,

illustrated in Fig. 7, is achieved through the utilization of three

distinct kernels. For example, when dealing with a 12x12x3

input image, three 5x5x1 kernels are employed. Each 5x5x1

kernel traverses a channel of the input image, computing

scalar products for every group of 25 pixels (5x5).

Consequently, this generates an output image of dimensions

8x8x1, as visually depicted in Fig. 7.

Fig. 7. Depth-wise convolution employs three kernels to transform a 12 × 12

× 1 image into an 8 × 8 × 1 image.

b) Point-Wise Convolution: Following depth-wise

convolution, the image transforms from 12x12x3 to 8x8x3,

necessitating a channel expansion. “Point-wise convolution”

uses a 1x1 kernel, processing individual points. The kernel’s

depth matches input image channels [14]. For an 8x8x1 result,

a 1x1x3 kernel moves through the 8x8x3 image, as shown in

Fig. 8.

Fig. 8. Point-wise convolution reduces a three-channel image to a single-

channel image.

In a normal convolution, considering 256 kernels of 5x5x3
over 8x8 movements requires 1,228,800 multiplications. In
separable convolution, using three 5x5x1 kernels for depth
wise convolution in 8x8 movements entails 4,800
multiplications, and point-wise convolution with 256 kernels
of 1x1x1x3 needs 49,152 multiplications. The total is 53,952.

Comparatively, 1,228,800 is significantly higher than
53,952. Fewer calculations enable efficient data processing.
Standard convolution alters the image 256 times, demanding
4,800 multiplications each. In contrast, separable convolution
modifies the image once and extends it to 256 channels,
conserving resources. Separable convolution’s limitation is
minimizing parameters, potentially affecting small networks.
Nonetheless, it boosts efficiency without compromising
effectiveness, making it a popular choice20.

B. Introduction to Convolution Kernels

Convolution utilizes a matrix-like “kernel” to extract
targeted “features” from an input image, enhancing the output
through multiplication, as shown in Fig. 9. For instance, a
kernel can sharpen the input image, yielding a desired output
representation [20].

Fig. 9. Example for convolutional use kernel.

Convolution involves using a “kernel,” a matrix of
weighted values, to extract important features from input data.
The term “convolution” is related to the dimensions of the
kernel, such as in 2D convolutions where the kernel matrix is
two dimensional. On the other hand, a “filter” is a collection
of multiple kernels, each applied to a specific input channel.
Filters have an extra dimension compared to kernels,
particularly in 2D convolutions, where filters become 3D
matrices. For a CNN layer with kernel dimensions of h*w and
input channels of k, filter dimensions become k*h*w.
Convolutions come in three types based on kernel nature: 1D,
2D and 3D convolutions.

1) 1D convolution: 1D convolutions are highly useful for

processing time series data, especially with one-dimensional

inputs, even when containing multiple channels [15]. These

convolutions operate in a single direction, resulting in one-

dimensional output, as demonstrated in Fig. 10.

Fig. 10. 1D convolution.

2) 2D Convolution: In 2D convolutions, as shown in

Fig. 11, the kernel size is 3x3. Multiple kernels, highlighted in

yellow, form a filter that corresponds to various input channels

indicated in blue. Each channel aligns with a distinct kernel.

The filter moves in two directions across the input, resulting in

a two-dimensional output. 2D convolutions are widely used,

particularly in computer vision.

Fig. 11. 2D convolution.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

437 | P a g e

www.ijacsa.thesai.org

3) 3D Convolution: Visualizing a 3D filter (4D matrix)

can be complex. However, we’ll focus on single-channel 3D

convolution for simplicity. As shown in Fig. 12, the kernel

moves in three directions, leading to a 3D output [16]. It’s

notable that most customization and modification research for

CNN layers has primarily concentrated on 2D convolutions.

Fig. 12. 3D convolution.

III. DBGC: DIMENSION-BASED GENERIC CONVOLUTION

Standard convolutions simultaneously handle spatial and
channel data but can be computationally demanding. To
improve efficiency, separable convolutions split spatial and
channel data via depth-wise and point-wise convolutions, yet
this can lead to computational bottlenecks in point-wise
convolutions. The DBGC unit addresses this by using a
dimension selector to efficiently encode spatial and dimension
information, reducing computational load. Fig. 13 shows
DBGC architecture. This involves two stages illustrated in
Fig. 9: dimension-based convolution Section III(A) and
dimension-wise fusion Section III(C). By replacing point-wise
convolutions with dimension-based ones, the DBGC unit
alleviates computational bottlenecks.

A. Convolution based on Dimension (ConvDim)

The ConvDim block processes information distinctly along
the height-wise, depth-wise, and width-wise dimensions. To
achieve this, it extends the concept of depth-wise separable
convolutions to encompass all dimensions of the input tensor
I, which is characterized by dimensions H × D × W
(representing height, depth, and width). As illustrated in
Figure 12, ConvDim employs three sets of kernels for each
dimension: KH for height-wise convolution, KD for depth
wise convolution, and KW for width-wise convolution. These
dimension-specific kernels generate outputs denoted as YH,
YD, and YW, each having dimensions H × D × W, effectively
capturing information from the input tensor. Subsequently,
these outputs are amalgamated within the dimension selector
block, merging spatial planes to yield the ultimate output,
YDim.

Fig. 13. DBGC architecture.

B. Dimension Selector (Ds)

The dimension selector block, labeled as Ds, allows
dimension selection tailored to specific application needs.
Depending on requirements, users can opt to use only height,
width, or depth dimensions during training. Parameters in this
block specify chosen dimensions: Ds = KD, KW, KH.
Combinations of two kernels are also possible, such as Ds =
KD, KW, Ds = KH, KW, Ds = KD, KH, and Ds = KD, KW,
KH. Thus, the dimension selector presents seven possibilities:
height-only, width-only, depth-only, height and width, width
and depth, height and depth, and all three dimensions.
Selected kernels influence YDim integration, showcased in
various dimension combinations in Fig. 14.

C. Dimension-Wise Blends (DimBlend)

Dimension-wise convolutions capture local information
from input tensor dimensions, but not global information.
While point-wise convolutions in CNNs commonly combine
global insights, they can be time-consuming. To address this,
the dimension-wise blend module (DimBlend) divides
pointwise convolution into local and global fusion phases,
effectively merging dimension-wise representations from
YDim into output Y [6]. The dimension-wise blend module,
DimBlend, offers an alternative by splitting the point-wise
convolution into two phases, as shown in Fig. 14.

Fig. 14. ConvDim implementation progresses from individual kernel

application (a) to simultaneous application of two kernels (b) and finally to

concurrent application of all kernels (c), efficiently aggregating information
through height-wise, depth-wise, and width-wise convolution.

The DBGC unit efficiently encodes spatial and dimension
wise information using a multi-stage approach. The dimension
selector (Ds) module allows flexible dimension choice, and
the dimension-wise blend module (DimBlend) refines the
process. In local fusion, YDim consolidates outputs from Ds,
while DimBlend employs a group point-wise convolution
layer (Kg) for dimension-wise merging. Global fusion
follows, with DimBlend learning channel-wise and spatial
representations, compressing spatial dimensions into channel-
wise via fully connected layers. Integrating local and global
fusion, DimBlend produces the final output Y, effectively
capturing both spatial and dimension-wise information.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

438 | P a g e

www.ijacsa.thesai.org

IV. RESULT ANALYSIS

A. Implementation of DBGC

The integration of the DBGC unit within a CNN
architecture involves the utilization of conventional CNN
layers. The architecture’s depiction is presented in Fig. 15,
providing an overview of the overall arrangement.

Fig. 15. The DBGC unit in different architecture (ESPNetv2 and

ShuffleNetv2) designs.

B. Experimental Setup

This section provides implementation details of the DBGC
block and analyzes results. The DBGC unit was tested on
ESPNetv2 and ShuffleNetv2 architectures, evaluating its
impact on computational load and accuracy using the
PASCAL VOC dataset. The integration of the DBGC unit
with different architectures is discussed in Section V.

C. Dataset Details

To demonstrate the DBGC unit’s efficacy across diverse
models, a standardized dataset was selected to ensure
consistent comparison among architectures. The PASCAL
VOC (Visual Object Classes Challenge) dataset was employed
for this purpose. This dataset includes 20 object categories
such as vehicles, animals, and furniture, with pixel-level
segmentation annotations and bounding boxes. It is divided
into training, validation, and private testing subsets, serving as
a benchmark for object detection, semantic segmentation, and
classification tasks.

D. Results Analysis

This section presents the outcomes of integrating the
DBGC unit into ESPNetv2 and ShuffleNetv2 architectures,
focusing on the impact of reduced FLOPs on object detection
and semantic segmentation accuracy. ESPNetv2 was used for
object detection, while ShuffleNetv2 was employed for
semantic segmentation. The distinction between FLOPs and
FLOPS is explained: FLOPs represents the computational
complexity of a model, quantifying the floating-point
operations during inference [17]. On the other hand, FLOPS
measures hardware processing speed. Faster hardware with
higher FLOPS leads to quicker inference times. The equations
to calculate FLOPs in the model are detailed in Fig. 16.

Within this section, the analysis of the results is structured
into three distinct categories: (1) unoptimized kernel
dimensions, (2) semi-optimized kernel dimensions, and (3)
optimized kernel dimensions.

Fig. 16. Output shape of a convolutional layer: Output = (Input - Kernel) + 1.

1) Unoptimized kernel dimensions: In the context of

unoptimized kernel dimensions, employing a single kernel

dimension for the output channel can lead to decreased object

detection accuracy. This evaluation used ESPNetv2 and

ShuffleNetv2 architectures for object detection and semantic

segmentation tasks with the PASCAL VOC dataset. Initial

models were created following existing guidelines, and then

the same models were integrated with the proposed DBGC

block using the width parameter in the dimension selector

module from the DBGC architecture. The objective was to

observe FLOPs variations and assess Top1 and Top5

accuracies. Results are presented in Tables I, II, and III for

width-based, height-based, and depth-based kernels,

respectively.

TABLE I. EXCLUSIVELY WIDTH-BASED KERNEL

Model Dataset
Image

Size

FLOP

(In

Millions)

Top1 Top5

ESPNet v2

PASCAL
224 ×

224

86 66.1 70.02

ShuffleNetv2 71 63.9 62.30

ESPNetv2(DBGC-

KH)
24 35.64 43.86

ShuffleNetv2
(DBGC-KH)

21 34.5 39.54

TABLE II. SOLELY HEIGHT-BASED KERNEL

Model Dataset
Image

Size

FLOP

(In

Millions)

Top1 Top5

ESPNet v2

PASCAL
224 ×

224

86 66.1 70.02

ShuffleNetv2 71 63.9 62.30

ESPNetv2(DBGC-

KH)
24 33.4 37.66

ShuffleNetv2
(DBGC-KH)

21 32.15 36.84

TABLE III. ONLY DEPTH-BASED KERNEL

Model Dataset
Image

Size

FLOP

(In

Millions)

Top1 Top5

ESPNet v2

PASCAL
224 ×
224

86 66.1 70.02

ShuffleNetv2 71 63.9 62.30

ESPNetv2(DBGC-

KD)
24 33.34 36.66

ShuffleNetv2
(DBGC-KD)

21 31.95 35.84

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

439 | P a g e

www.ijacsa.thesai.org

The results show that unoptimized kernel dimensions
reduce FLOPs by about one third compared to the original
ESPNetv2 and ShuffleNetv2 architectures. However, using
only a single dimension for kernel selection notably decreases
accuracy by around 30%, as demonstrated in Fig. 17 to
Fig. 19, highlighting the trade-off between computational
efficiency and model performance.

Fig. 17. Only height-based kernel.

Fig. 18. Only height-based kernel.

Fig. 19. Only depth-based kernel.

2) Semi-optimized kernel dimensions: In the semi-

optimized kernel dimensions analysis, two kernel dimension

combinations were employed for the output channel, resulting

in reduced FLOPs with minimal accuracy loss. ESPNetv2 and

ShuffleNetv2 were utilized for object detection and semantic

segmentation on the PASCAL VOC dataset. The DBGC block

was integrated with various kernel combinations (DBGC-

Kwh, DBGC-Kdh, DBGC-Kwd) in dimension selector

modules. Results in Tables IV to VI demonstrate lowered

FLOPs and slight accuracy effects.

TABLE IV. DEPTH & WIDTH-BASED KERNEL

Model Dataset
Image

Size

FLOP

(In

Millions)

Top1 Top5

ESPNet v2

PASCAL

224 x

224

86 70.02 66.1

Shuffle Netv2 71 62.30 63.9

ESPNetv2(DBGC-

KDW)
48 71.59 66.41

Shuffle Netv2

(DBGC-KDW)
42 64.83 69.75

TABLE V. DEPTH & HEIGHT-BASED KERNEL

Model Dataset
Image

Size

FLOP

(In

Millions)

Top1 Top5

ESPNet v2

PASCAL

224 x

224

86 70.02 66.1

Shuffle Netv2 71 62.30 63.9

ESPNetv2(DBGC-

KDH)
48 65.57 68.42

Shuffle Netv2
(DBGC-KDH)

42 65.82 67.73

TABLE VI. HEIGHT & WIDTH-BASED KERNEL

Model Dataset
Image

Size

FLOP

(In

Millions)

Top1 Top5

ESPNet v2

PASCAL

224 x

224

86 70.02 66.1

Shuffle Netv2 71 62.30 63.9

ESPNetv2(DBGC-

KHW)
48 65.52 71.47

Shuffle Netv2

(DBGC-KHW)
42 64.87 68.77

Semi-optimized kernel dimensions in DBGC halve FLOPs
while maintaining good accuracy; object detection sustains
accuracy and semantic segmentation gains 1-2%, as shown in
Fig. 20 to Fig. 22.

Fig. 20. Combining depth-based and width-based kernels.

Fig. 21. Combining depth-based and height-based kernel.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

440 | P a g e

www.ijacsa.thesai.org

Fig. 22. Combining height-based and width-based kernel.

Fig. 23 illustrates the analysis of results, showing that
using two dimensions reduces FLOPs while maintaining
accuracy close to the original architecture.

Fig. 23. Semi-optimized kernel dimension.

E. Optimized Kernel Dimension

To improve accuracy while considering computational
efficiency, a combination of all three kernel dimensions
(width, height, and depth) was employed for the output
channel. This approach increased FLOPs but enhanced
accuracy. After implementing ESPNetv2 and ShuffleNetv2
models following the methodology in [7], these models were
further enhanced with the incorporation of the proposed
DBGC-Khwd block. The DBGC block’s parameters for width,
height, and depth, as described in Section 3 of the DBGC
architecture, were chosen. The goal was to compare FLOPs
and evaluate Top1 and Top5 accuracies. The outcomes are
presented in Table VII and Fig. 24 for kernels based on depth,
width, and height.

TABLE VII. HEIGHT & WIDTH & DEPTH-BASED KERNEL

Model Dataset
Image

Size

FLOP

(In

Millions)

Top1 Top5

ESPNet v2

PASCAL

224 x

224

86 70.02 66.1

Shuffle Netv2 71 62.30 63.9

ESPNetv2(DBGC-

KHW)
48 70.52 74.48

Shuffle Netv2
(DBGC-KHW)

42 69.97 74.77

Fig. 24. Optimized kernel dimension.

Fig. 25 highlights that selecting all three dimensions led to
a 4 to 5% accuracy increase while reducing FLOPs.
showcasing the superiority of optimized kernels. For a
comprehensive comparison, Fig. 25 and Fig. 26 display the
performance of unoptimized, semi-optimized, and optimized
kernel dimensions in ESPNetv2 and ShuffleNetv2
architectures, respectively.

Fig. 25. ESPNetv2 versus ESPNetv2 (DBGC).

Fig. 26. ShuffleNetv2 versus ShuffleNetv2 (DBGC).

Fig. 27 presents a box plot summarizing the various
methods employed on the PASCAL VOC dataset. “Ev2”
represents ESPNetv2, and “Sv2” stands for ShuffleNetv2 in
the chart.

A box plot visualizes the performance of unoptimized,
semi-optimized, and optimized kernels for ESPNetv2 versus
ESPNetV2 (DBGC) and ShuffleNetv2 versus ShuffleNetV2
(DBGC). The effectiveness of DBGC is evaluated using the
MS COCO dataset [19], showcasing the performance
differences in Fig. 28.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

441 | P a g e

www.ijacsa.thesai.org

Fig. 27. Box Plot for kernel types.

Fig. 28. Compare the performance of ESPNetv2 and ShuffleNetv2 with their

DBGC-enhanced versions on PASCAL and COCO datasets.

V. CONCLUSION

In conclusion, the proposed DBGC unit demonstrates its
versatility by being applicable to various CNN-based network
models. By integrating DBGC into ESPNetv2 and
ShuffleNetv2 architectures, extensive evaluations based on
FLOPs, Top1, and Top5 accuracies were conducted using the
PASCAL VOC dataset. The findings indicate that
unoptimized kernel based DBGC substantially reduces FLOPs
by about one third, leading to significantly improved speed.
However, this reduction in FLOPs comes at the cost of a
notable decrease in accuracy. On the other hand, semi-
optimized dimension-based kernels offer a balance between
reduced FLOPs (around half) and maintained or slightly
improved accuracy in ShuffleNetV2 with DBGC. Lastly,
optimized dimension-based kernels achieve the highest
accuracy while still reducing FLOPs by approximately five
million. These results emphasize the potential of DBGC for
enhancing the efficiency and accuracy of various CNN
architectures.

FUTURE WORK

For future research, the proposed architecture could be
extended to evaluate its performance across different datasets,
enabling a broader understanding of its capabilities.
Additionally, investigating whether unoptimized dimension-
based kernels can yield improved accuracy when applied to
single dimensional data could be a valuable exploration.
Further enhancements could involve automating the
dimension selection process in the dimension selector modules
to dynamically choose dimensions based on the characteristics
of the datasets provided, potentially optimizing the efficiency
and effectiveness of the DBGC approach.

REFERENCES

[1] Bhatt, D.; Patel, C.; Talsania, H.; Patel, J.; Vaghela, R.; Pandya, S.;
Modi, K.; Ghayvat, H. CNN Variants for Computer Vision: History,

[2] Architecture, Application, Challenges and Future Scope. Electronics
2021, 10, 2470. [CrossRef]

[3] Bhatt, D.; Bhensadadiya, N.P. Survey On Various Intelligent Traffic
Management Schemes For Emergency Vehicles. Int. J. Recent Innov.
2013, 1, 11–16.

[4] Garg, S.; Patel, C.; Tank, H.; Ukani, V. Efficient Vehicle Detection and
Classification for Traffic Surveillance System. In Proceedings of the
International Conference on Advances in Computing and Data Sciences,
Ghaziabad, India, 11–12 November 2016; pp. 495–503.

[5] Garg, S.; Zaveri, T.; Banerjee, J.; Patel, R.; Patel, C.I. Human action
recognition using fusion of features for unconstrained video sequences.
Comput. Electric. Eng. 2018, 70, 284–301.

[6] Zhang, X.; Zheng, H.-T.; Sun, J.; Ma, N. ShuffleNet V2: Practical
Guidelines for Efficient CNN Architecture Design. In Proceedings of the
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–22 June 2018; Available online: https://arxiv.org/abs/1807.11164v1
(accessed on 20 January 2022).

[7] Rastegari, M.; Shapiro, L.; Hajishirzi, H.; Mehta, S. ESPNetv2: A
LightWeight, Power Efficient, and General Purpose Convolutional
Neural Network. arXiv 2019, arXiv:1811.11431.

[8] Mehta, S.; Hajishirzi, H.; Rastegari, M. DiCENet: Dimension-wise
Convolutions for Efficient Networks. IEEE Trans. Pattern Anal. Mach.
Intell. 2020. [CrossRef]

[9] Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C.; Sandler, M.
MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp.
4510–4520.

[10] Feng, C.; Zhuo, S.; Zhang, X.; Shen, L.; Aleksic, M.; Sheng, T. A
Quantization-Friendly Separable Convolution for MobileNets. In
Proceedings of the 1stWorkshop on Energy Efficient Machine Learning
and Cognitive Computing for Embedded Applications
(EMC2),Williamsburg, VA, USA, 25 March 2018; pp. 14–18.

[11] Zhu, F.; Liu, J.; Liu, G.; Zhang, R. Depth-Wise Separable Convolutions
and Multi-Level Pooling for an Efficient Spatial CNN-Based
Steganalysis. IEEE Trans. Inf. Forensics Secur. 2020, 15, 1138–1150.

[12] Yin, Z.; Wu, M.; Wu, Z.; Kamal, K.C. Depthwise separable convolution
architectures for plant disease classification. Comput.Electron. Agric.
2019, 165, 104948.

[13] Choi, Y.; Choi, H.; Yoo, B. Fast Depthwise Separable Convolution for
Embedded Systems. In Proceedings of the International Conference on
Neural Information Processing (ICONIP), Siem Reap, Cambodia, 13–16
December 2018.

[14] Kaiser, L.; Gomez, A.N.; Chollet, F. Depthwise Separable Convolutions
for Neural Machine Translation. arXiv 2017, arXiv:1706.03059.

[15] Tran, M.-K.; Yeung, S.-K.; Hua, B.-S. Pointwise Convolutional Neural
Networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June
2018; pp. 984–993.

[16] Bracewell, R. Two-Dimensional Convolution. In Fourier Analysis and
Imaging; Springer: Boston, MA, USA, 2003.

[17] Wang, H.; Zhang, Q.; Yoon, S.W.; Won, D.; Lu, H. A 3D Convolutional
Neural Network for Volumetric Image Semantic Segmentation. Procedia
Manuf. 2019, 39, 422–428.

[18] Gosling, J.B. Floating Point Operation. In Design of Arithmetic Units
for Digital Computers; Springer: New York, NY, USA, 1980.

[19] Zhu, M.; Chen, B.; Kalenichenko, D.;Wang,W.; Howard, A.G.
Mobilenets:Efficient convolutional neural networks for mobile vision
applications. arXiv 2017, arXiv:1704.04861.

[20] MS COCO Dataset. Available online: https://cocodataset.org/#download
(accessed on 20 January 2022).

[21] Bosamiya, D.; Kamariya, N.; Miyatra, A. A Survey on Disease and
Nutrient Deficiency Detection in Cotton Plant. Int. J. Recent Innov.
Trends Comput. Commun. 2013, 1, 812–815.

