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Abstract—Cloud computing has emerged as a transformative 

technology, offering remote access to various computing 

resources. However, efficiently managing these resources while 

curbing escalating energy consumption remains a critical 

challenge. In response, this paper presents the Micro-Genetic 

Algorithm with Cuckoo Search (MG-CS), a novel approach for 

enhancing cloud computing efficiency. MG-CS optimizes load 

balancing and power reduction and significantly contributes to 

reducing operational costs, ensuring compliance with service 

level agreements, and enhancing overall service quality. Our 

experiments showcase MG-CS's versatility in achieving a well-

balanced distribution of workloads, resource optimization, and 

substantial energy savings. This multifaceted approach redefines 

cloud resource management, offering an environmentally 

sustainable and cost-effective solution. By introducing MG-CS, 

this research addresses the pressing challenges in cloud 

computing, aligning it with environmental responsibility and 

economic efficiency. 
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I. INTRODUCTION 

Cloud computing enables cloud users to access a wide 
range of configurable computing resources, such as networks, 
servers, storage, services, and applications, conveniently and 
on-demand [1]. It has become a transformative technology 
widely discussed and currently prevalent in numerous 
commercial sectors. The cloud environment is categorized into 
private, public, and hybrid/federated clouds [2]. A private 
cloud represents a dedicated computing environment 
exclusively utilized by a single organization. It offers benefits 
like isolation, customization, and heightened security. The 
hosting can either be on-premises or managed by a third-party 
provider [3]. 

On the other hand, a public cloud operates as a shared 
cloud computing environment accessible to the general public. 
It provides advantages such as convenience, cost-effectiveness, 
and scalability, with resources delivered by third-party service 
providers via the Internet [4]. A hybrid/federated cloud 
integrates elements of both private and public clouds. This 
approach enables organizations to distribute workloads across 
multiple cloud deployment models, offering flexibility, 
seamless integration, and redundancy. Multi-provider clouds 
are becoming increasingly popular in cloud infrastructure, 
where multiple providers are used to distribute workloads 
across the environment. Organizations can enhance flexibility, 

redundancy, and resource allocation by leveraging multiple 
providers. Moreover, there are specialized cloud environments 
designed to cater to specific services [5]. IoT cloud services are 
a prime example that caters to IoT devices' data analysis and 
management. These services are equipped with capabilities to 
process and derive insights from the massive volumes of IoT-
generated data efficiently. Mobile cloud services employ cloud 
computing to provide applications and services to mobile 
devices. This approach allows mobile users to access cloud 
applications and data, providing flexibility, scalability, and 
improved performance [6]. 

Cloud computing encompasses three primary cloud service 
models, each catering to specific needs: Software-as-a-Service 
(SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-
Service (IaaS) [7]. Software applications are provided to users 
over the Internet by SaaS, a cloud computing model that uses a 
subscription-based approach. SaaS enables users to access and 
utilize these applications via a web browser, eliminating the 
need for local installation and maintenance. The responsibility 
of hosting, maintaining, and updating the software lies with the 
SaaS provider. PaaS, however, provides developers with a 
platform and environment to build, deploy, and manage 
applications without the complexities of managing the 
underlying Infrastructure. PaaS includes essential tools, 
runtime environments, databases, and other services required 
for seamless application development and deployment. Finally, 
IaaS grants users’ access to virtualized computing resources 
via the Internet. Users can rent virtual machines, storage, and 
networking components pay-as-you-go. IaaS empowers 
organizations with the flexibility to create and manage their 
virtual data centers without the burden of owning physical 
hardware. 

Cloud computing is built upon service-oriented 
architecture, which enables it to offer various services such as 
Database-as-a-Service (DbaaS), Identity-as-a-Service (IDaaS), 
and the broader concept of Anything-as-a-Service (XaaS). This 
architecture has revolutionized resource management in 
industry and academia, providing an efficient and dynamic 
approach [8]. The cloud system's dynamic nature is a crucial 
characteristic, accommodating numerous users, devices, 
networks, organizations, and resources that frequently connect 
and disconnect from the system. This adaptability is essential 
for meeting the diverse needs of cloud users. Several factors 
come into play when deciding on the appropriate cloud service 
model to implement. These factors include flexibility, 
scalability, interoperability, and service control. Evaluating 
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these aspects is crucial in determining the best-fit cloud service 
model to address specific requirements and optimize 
performance. 

In the context of cloud computing, users have the flexibility 
to request resources from both the cloud service provider and 
the cloud resource broker. When functioning as a cloud service 
provider, the cloud resource broker is responsible for selecting 
the most suitable resource, considering the user's stipulated 
time constraints and budget considerations. This dynamic 
approach ensures the seamless delivery of on-demand services 
to users. Nevertheless, the proliferation of users and 
applications within the cloud ecosystem can lead to an 
escalation in workload and web application traffic, particularly 
for those deployed on virtual machines (cloud resources). To 
manage this expanding landscape effectively, the cloud 
resource broker necessitates a proficient algorithm capable of 
distributing tasks equitably among the active virtual machines. 
Such an algorithm becomes instrumental in minimizing the 
proportion of tasks that are rejected due to resource constraints. 
The overarching goal of load distribution within the cloud 
milieu is to optimize several critical aspects, including 
scalability, response time, and resource utilization. 

Effective load-balancing not only leads to the attainment of 
minimum makespan times for tasks but also contributes to 
overall system performance enhancement. Furthermore, load-
balancing acts as a preventive measure against system 
bottlenecks stemming from disparities in load distribution. This 
realm presents substantial research challenges within the realm 
of cloud computing, focusing on the equitable distribution of 
workload among virtual machines. Load-balancing in the cloud 
encompasses two pivotal stages: task scheduling and virtual 
machine monitoring. Task scheduling, a well-recognized 
optimization problem (NP-Complete), becomes intricate due to 
the heterogeneous resource configuration within the cloud and 
the swift fluctuations in on-demand requests. The intricate 
nature of this landscape renders the prediction and computation 
of all conceivable task-resource mappings within the cloud 
environment arduous. 

Consequently, the development of an efficient task-
scheduling algorithm assumes paramount importance. Such an 
algorithm is instrumental in the judicious distribution of tasks, 
thereby mitigating scenarios where certain virtual machines 
endure overload or under-load conditions. These algorithms 
play a pivotal role in fostering balanced resource utilization 
and fostering optimal performance within cloud computing 
systems. As a result, they constitute an indispensable 
component in the pursuit of achieving equilibrium and 
excellence within the dynamic cloud computing landscape. 

Various techniques, including meta-heuristic algorithms, 
machine learning, and deep learning, have been integrated into 
cloud load balancing strategies to address the increasing 
demand for cloud services and ensure optimal resource 
utilization. Meta-heuristic algorithms, such as Ant Colony 
Optimization (ACO) [9], Particle Swarm Optimization (PSO) 
[10], sine cosine algorithm [11], and imperialist competitive 
algorithm [12], provide efficient methods for task scheduling 
and resource allocation, contributing to equitable workload 
distribution and enhanced system performance. Machine 

learning techniques enable cloud systems to learn from 
historical data, adapt to changing workloads, and make real-
time load-balancing decisions [13-15]. Deep learning, with its 
neural networks, enhances predictive accuracy and aids in 
proactive load management [16, 17]. Cloud load balancing 
ensures that the various components of these transportation 
systems, such as ticketing, scheduling, and real-time tracking, 
operate efficiently and respond to dynamic demands [18, 19]. 
By utilizing the power of cloud computing and the 
aforementioned advanced techniques, public transportation 
services can offer improved reliability, scalability, and cost-
effectiveness, ultimately benefiting commuters and the 
environment. 

The demand for cloud services has led to the rapid 
expansion of extensive data centers, resulting in a significant 
increase in electricity consumption. This heightened energy 
consumption has raised concerns about its environmental 
impact and economic sustainability. Researchers have explored 
innovative approaches to optimize cloud resource management 
to address these challenges while simultaneously upholding 
high-quality service levels. In this context, the integration of 
metaheuristic algorithms has shown great promise in tackling 
complex optimization problems frequently encountered in 
cloud computing. Our paper introduces a novel approach, the 
Micro-Genetic and Cuckoo Search (MG-CS) algorithm, which 
is tailored for power reduction and load-balancing in cloud 
computing. The primary contribution of this research is the 
development of an efficient and multifaceted approach that 
concurrently addresses various critical objectives: 

 Load balancing excellence: MG-CS aims to achieve a 
well-balanced distribution of workloads across cloud 
resources, ensuring optimal resource utilization and 
averting potential performance bottlenecks. 

 Dedicated power minimization: Our approach reduces 
energy consumption within cloud data centers, 
promotes environmental sustainability, and optimizes 
operational costs. 

 Strategic cost reduction: We target minimizing resource 
wastage and optimizing cloud service delivery to make 
cloud infrastructure more cost-effective. 

 Time optimization initiatives: MG-CS endeavors to 
improve response times and task completion rates, 
enhancing the overall user experience and operational 
efficiency of cloud services. 

 SLA compliance assurance: Our approach ensures that 
cloud services meet predefined service level agreements 
(SLAs), aligning with performance and availability 
requirements defined by consumers. 

 QoS elevation strategies: The research aims to elevate 
the quality of cloud services, covering aspects of 
reliability, scalability, and data security, thereby 
providing an enhanced user experience and meeting 
customer expectations. 

The paper is organized as follows: Section II provides an 
overview of related work, Section III details our proposed load 
balancing framework using the MG-CS algorithm, Section IV 
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presents the experimental results, and Section V concludes our 
research, summarizing the contributions and potential future 
directions. 

II. RELATED WORK 

Yakhchi, et al. [20] presented a method rooted in the CS 
algorithm to identify over-utilized hosts within a cloud 
environment. Subsequently, they employed the Minimum 
Migration Time (MMT) policy to systematically transfer VMs 
from over-utilized hosts to alternative hosts, ensuring that the 
migration process did not inadvertently lead to new instances 
of over-utilization. Following this, the researchers categorized 
all hosts except the over-utilized ones as underutilized, aiming 
to efficiently relocate VMs from these underutilized hosts to 
different hosts and transition the former to a sleep mode. This 
strategic maneuver effectively optimized both resource 
utilization and energy consumption. The research employed 
simulation using the CloudSim simulator, yielding compelling 
results. Specifically, their approach yielded the lowest energy 
consumption compared to several well-established algorithms, 
reaffirming the efficacy of their proposed method. 

Sharma, et al. [21] have employed the bat algorithm as an 
approach to cloud load balancing. The bat Algorithm draws 
inspiration from the echolocation behavior of bats and has been 
proposed for this purpose. Bats, in their pursuit of prey, exhibit 
erratic flight patterns by altering various parameters such as 
velocity, pulse emission rate, position, frequency, and 
loudness. These alterations are made based on the proximity 
between the bat and its prey. The adjustment of velocities and 
positions of bats is incorporated in a manner similar to the PSO 
algorithmic. The bat algorithm is structured to achieve optimal 
results by running the algorithm through multiple iterations. In 
the context of this study, the bat algorithm is utilized to 
determine the most suitable server from a pool of available 
servers for the execution of incoming tasks. When a new task 
is introduced into the task pool, the load balancer initiates the 
bat algorithm to identify the best-suited server that matches the 
requirements of the incoming task. The bat algorithm takes into 
account factors such as task type and required resources when 
selecting the optimal VM for task execution. Upon selecting 
the appropriate server, the load balancer allocates the task to 
that server. If the load on the chosen server surpasses that of all 
other servers, the task is then distributed across multiple 
servers. 

Devaraj, et al. [22] introduced an innovative load-balancing 
algorithm named FIMPSO, which represents a hybrid 
amalgamation of the Firefly (FF) algorithm and the Improved 
Multi-Objective Particle Swarm Optimization (IMPSO) 
technique. The FIMPSO algorithm synergizes the strengths of 
the FF algorithm to effectively narrow down the search space 
while harnessing the capabilities of the IMPSO technique to 
attain enhanced responsiveness. The IMPSO algorithm takes a 
unique approach to select the global best (gbest) particle. It 
does so by considering the proximity of a point to a line, 
enabling the identification of candidates for the gbest particle. 
This method significantly refines the search process, ultimately 
facilitating the pursuit of an optimal solution. The proposed 
FIMPSO algorithm is validated through its notable 
accomplishment in load balancing. This achievement translates 

to improved resource utilization and diminished task response 
times. The outcomes of simulations underscore the superiority 
of the FIMPSO model in comparison to alternative methods. 
Specifically, the FIMPSO algorithm exhibited exceptional 
performance metrics such as average response time (13.58ms), 
CPU utilization (98%), memory utilization (93%), reliability 
(67%), and throughput (72%). Additionally, the FIMPSO 
algorithm achieved an impressive makespan of 148, 
outperforming all other methodologies considered for 
comparison. 

Jena, et al. [23] introduced an inventive approach to 
dynamically balance the load across VMs utilizing a hybrid 
strategy named QMPSO, which amalgamates a modified 
Particle Swarm Optimization (MPSO) technique with an 
enhanced Q-learning algorithm. Within the QMPSO algorithm, 
this fusion mechanism fine-tunes the velocity of MPSO by 
incorporating insights from both the global best (gbest) and 
personal best (pbest) solutions. These solutions are derived 
from the optimal actions identified through the improved Q-
learning algorithm. The primary objectives driving this 
hybridization are to elevate the performance of virtual 
machines through load balancing, amplify the throughput of 
VMs, and uphold equilibrium between task priorities by 
optimizing their waiting times. To validate the robustness of 
the QMPSO algorithm, a comprehensive comparison was 
conducted. The algorithm's outcomes, gleaned from both 
simulation-based assessments and actual platform 
measurements, were juxtaposed with those generated by 
existing load-balancing and scheduling algorithms. The 
empirical evidence unequivocally demonstrated the superiority 
of the proposed QMPSO algorithm, underscoring its prowess 
in achieving load-balancing and fine-tuning the performance of 
virtual machines within a cloud environment. 

Sefati, et al. [24] harnessed the Grey Wolf Optimization 
(GWO) algorithm as a means to attain effective load-balancing 
while considering the resource reliability capacity. In this 
endeavor, the GWO algorithm was employed to discern nodes 
that were either idle or occupied within the cloud environment. 
Once these nodes were identified, the algorithm proceeded to 
compute the threshold and fitness function for each node. The 
researchers conducted a simulation using CloudSim, wherein 
the proposed approach, leveraging the GWO algorithm, was 
assessed in comparison to other load-balancing methods. The 
results of this assessment highlighted significant advantages, 
including reduced costs and response times. Moreover, the 
solutions obtained were deemed optimal, serving as a testament 
to the efficacy of the load-balancing methodology founded on 
the GWO algorithm. 

Latchoumi and Parthiban [25] have introduced a 
groundbreaking approach, termed the Quasi-Oppositional 
Dragonfly Algorithm for Load-balancing (QODA-LB), with 
the primary aim of attaining optimal resource scheduling 
within a cloud computing framework. The QODA-LB 
algorithm strategically integrates three pivotal variables – 
execution time, execution cost, and charge – to formulate an 
objective function. This objective function serves as the 
foundation for task allocation to Virtual Machines (VMs), 
predicated on their inherent potential. A noteworthy aspect of 
the QODA-LB algorithm is the incorporation of the Quasi-
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Oppositional Based Learning principle. This principle confers 
a distinctive edge by elevating the standard convergence rate of 
the Dragonfly algorithm (DA). The integration of this principle 
enhances the efficacy of load-balancing and resource 
scheduling within the cloud environment. A comprehensive 
series of experiments was meticulously conducted to assess the 
QODA-LB algorithm's performance. The ensuing results were 
scrutinized from diverse angles to validate its heightened 
efficiency. The outcomes of simulations substantiated the 
algorithm's exceptional load-balancing efficiency, positioning 
it as a superior alternative to other foundational approaches for 
load-balancing and resource scheduling in the realm of cloud 
computing. 

Haris and Zubair [26] introduced a dynamic load-balancing 
algorithm named Mantaray modified multi-objective Harris 
hawk optimization (MMHHO) that draws inspiration from 
hybrid optimization algorithms. This innovative approach 
leverages the strengths of the Harris Hawk Optimization 
(HHO) algorithm, enhancing its search space through 
integration with the Manta Ray Foraging Optimization 
(MRFO) algorithm. The hybridization process strategically 
melds various factors, including cost, response time, and 
resource utilization, to streamline the load-balancing process. 
The MMHHO algorithm sets its sights on optimizing system 
performance by bolstering VM throughput, achieving 
equilibrium in load distribution among VMs, and harmonizing 
task priorities by adjusting their waiting times. The 
implementation of the MMHHO-based load-balancing 
algorithm is realized through the utilization of the CloudSim 
tool. This platform provides the means to assess the algorithm's 
effectiveness across various parameters and compare its 
performance against other established load-balancing 
algorithms. Upon meticulous analysis and simulation, the 
results unequivocally underscore the supremacy of the 
proposed MMHHO load-balancing scheme. In terms of system 
performance and efficiency, the MMHHO algorithm surpasses 
its counterparts, thereby validating its potential to elevate load-
balancing processes and enhance the overall effectiveness of 
the system. 

III. PROPOSED LOAD-BALANCING FRAMEWORK 

A. Problem Statement 

The importance of autonomic load-balancing in the cloud 
computing domain stems from its capacity to elevate 
throughput through the optimized utilization of resources. The 
load-balancing strategies and power management strategies put 
forth in this proposal are geared towards the automatic and 
efficient allocation of computational resources within the cloud 
infrastructure. This is achieved by evaluating the suitability of 
all tasks concerning resource availability. The effectiveness of 
the load-balancing approach is determined using intersection 
formulas, with the most common ones being represented by 
Eq. (1) and Eq. (2). These formulas play a crucial role in the 
assessment of task-resource mapping, enabling the system to 
achieve improved performance and better resource allocation 
in the cloud environment. 

      √       (1) 

  [
    
    

] 
 

 
  (2) 

Fig. 1 depicts the architecture of the load-balancing 
framework, encompassing three fundamental stages: 

 Optimal resource utilization: This phase focuses on 
achieving efficient resource utilization by effectively 
managing cloud resources and handling the workload 
coming from cloud users. Clustering and VM 
deployment support are employed to ensure optimal 
resource provisioning. 

 Workload submission and demand-based processing: 
During this phase, cloud users submit their requests and 
workloads based on their specific demands. The system 
takes into account energy consumption while 
processing and managing the workload. 

 Minimizing power consumption: The framework 
emphasizes minimizing power consumption to reduce 
the environmental impact and operational costs within 
the cloud. 

 

Fig. 1. Proposed load-balancing framework 

Key terminologies and components within the load balance 
framework are as follows: 

 Cloud users: Entities, whether individuals or businesses, 
who make use of cloud storage services to conveniently 
manage, store, and access their computing resources 
from any location. 

 SLA administration: Service-level agreements (SLAs) 
provide assurance to customers and enable cloud 
providers to prioritize the fulfillment of their particular 
needs and expectations. Active management of SLAs is 
crucial, as they represent more than just guidelines and 
function as contracts. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 11, 2023 

1153 | P a g e  

www.ijacsa.thesai.org 

 Workload scheduling and clustering: This method 
clusters and schedules similar workloads to the 
corresponding virtual machines based on Quality of 
Service (QoS) and SLA considerations. 

 QoS management: This component is responsible for 
managing any Quality of Service (QoS) specifications 
linked to workload access, ensuring that the workload is 
effectively handled in accordance with its specific QoS 
requirements. 

Algorithm 1 outlines the process of grouping workloads 
based on their center points by optimizing an objective 
function to achieve the minimal value. The algorithm aims to 
create clusters by utilizing the designated center points as 
group representatives. Each workload in a cluster is highly 
likely to belong to the cluster represented by its nearest center 
point. However, workloads can only belong to a single cluster, 
except for the center point, which may be part of multiple 
clusters. 

Algorithm 1. Workload clustering 

No of Clusters commit to complete which will be decided by C. 

STEP-1: START  

STEP-2: The non-empty subclasses of object C will be divided at 
random.  

STEP-3: Cluster centroids are currently the separating seed points of 
clusters.  

STEP-4: An object will be paired with another object whose seed 
points are closer.  

STEP-5: END 

B. Micro-genetic Algorithm 

Genetic Algorithms (GAs) belong to the family of 
Evolutionary Algorithms (EAs) and are widely recognized as 
one of this family's earliest and most well-known members. In 
GAs, elitism, which involves preserving the best individuals 
(solutions) in the population, is promoted through two 
fundamental mechanisms: 

 Environmental selection: Environmental selection aims 
to remove the worst-fitted individuals from the current 
population, ensuring they do not contribute to the next 
generations. This allows the fittest individuals to have a 
higher chance of survival and progression. 

 Parent selection: In the parent selection process, the 
algorithm promotes generating offspring solutions from 
the population's best individuals (the elite solutions). 
Non-elite solutions are excluded from this process, 
further reinforcing the elitism aspect of the algorithm.  

Micro-GAs (MGs) are a specific type of GA with minimal 
populations. Due to the use of such small populations, MGs 
exhibit a high level of elitism. In MGs, the environmental 
selection has lower survivor rates than canonical GAs, as the 
focus is on preserving only the best solutions. Additionally, the 
parent selection process only allows elite solutions to generate 
offspring, further enhancing the elitism effect. The genetic 
algorithm demonstrates the capability to quickly generate high-
quality local optimal solutions while maintaining 

competitiveness in the long term. This makes it an effective 
approach for solving problems with computationally intensive 
fitness functions. 

Nevertheless, when dealing with problems that encompass 
high-dimensional parameter spaces, attaining the convergence 
of all model parameters within a specified margin of error can 
present difficulties and consume a substantial amount of time. 
As the count of model parameters expands, the genetic 
algorithm necessitates a larger population size, resulting in an 
increased volume of cost-function analyses. This can be 
computationally expensive, especially when dealing with high-
dimensional problems. In such scenarios, micro-genetic 
algorithms offer a viable alternative. These algorithms operate 
with very small populations, which help reduce the 
computational burden while maintaining a high level of elitism. 
The smaller population size allows for a more focused search, 
and the algorithm can swiftly converge to promising solutions 
without the need for a large number of cost-function 
evaluations. 

C. Cuckoo Search Algorithm 

The CS algorithm is inspired by the egg-laying strategy of 
cuckoo birds, where they lay their eggs in the nests of other 
bird species. This nature-inspired optimization technique 
simulates this behavior to explore complex search spaces and 
discover optimal solutions. Cuckoos employ a Levy flight 
strategy to select nests, frequently opting for nests where the 
host bird has recently deposited its own eggs. This behavior 
enhances the likelihood of their eggs successfully hatching. 
Notably, certain female cuckoos mimic the colors and patterns 
of host eggs to decrease the chances of their eggs being 
rejected, thereby amplifying their reproductive success. The 
foraging behavior of animals, including insects, follows a 
quasi-random pattern, effectively resembling a random walk. 
This behavior has been observed in many animals and has been 
mathematically modeled as Lévy flights. Lévy flights involve 
making successive movements with step lengths drawn from a 
Lévy distribution, which allows for long jumps that facilitate 
efficient exploration of large search spaces. Based on this 
concept, researchers have applied Lévy flights to optimization 
and search problems, resulting in the development of the CS 
algorithm. Preliminary results have shown promising 
capabilities of this algorithm in finding optimal solutions for a 
wide range of optimization problems. By imitating the natural 
behavior of cuckoos and incorporating Lévy flights, the 
Cuckoo Search Algorithm offers a powerful and efficient 
approach for tackling complex optimization challenges. The 
CS algorithm models the natural behavior of cuckoos and can 
be described using the following idealized rules:  

 Each cuckoo lays a single egg at a time, selecting a nest 
at random for deposit. Nests with superior egg quality 
(improved solutions) are more likely to persist across 
subsequent generations. 

 The count of available host nests is constant, 
represented as 'n,' and the host bird has a probability of 
detecting an alien egg within the range of [0, 1]. 
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 When an alien egg is detected, the host bird has the 
choice to either discard it or desert the nest to construct 
a new one at a distinct location. 

To simplify, this final assumption can be approximated 
using a probability of pa for each of the n nests. With these 
rules in mind, the fundamental steps of the CS algorithm can 
be succinctly summarized in pseudocode as follows: 

1) Initialize the population of cuckoos (solution 

candidates). 

2) Evaluate the quality (fitness) of each cuckoo. 

3) Identify the best cuckoos and their nests for further 

reproduction 

4) Repeat until stopping criteria are met: 

5) Generate new cuckoo solutions by performing Levy 

flights 

6) Evaluate the fitness of newly generated cuckoos 

7) Replace the old cuckoos with the new cuckoos in the 

nests based on their fitness 

8) Abandon and rebuild nests (cuckoos) with a probability 

of pa 

9) If a host bird discovers an alien egg with probability pa: 

10) Throw away the alien egg or abandon the nest and 

build a new one 

11) Identify the best solution found and return it as the 

final result 

In the CS algorithm, the movement of each cuckoo from 
generation t to t+1 is represented by a vector x with entries 
Xi(t+1) and is calculated by Eq. (3). 

Xi(t+1) = Xi(t) + α ⊕ Lévy(u)  (3) 

Where Xi(t) is the current position of the i
th
 cuckoo at 

generation t, α > 0 is the step size, which depends on the scale 
of the given problem, ⊕ represents entry-wise multiplication, 
and Lévy(u) is determined using the Lévy flight, a random step-
length process. The expression for Lévy(u) is given by: 

Lévy(u) = t^(-λ)   (4) 

Where λ is a parameter, typically within the range 1 < λ ≤ 
3, t is the current generation. The Lévy flight results in a 
power-law step-length distribution with a heavy tail, making 
cuckoos more exploratory. In the real world, if a cuckoo's egg 
closely resembles the host's eggs, it is less likely to be 
discovered by the host bird. To mimic this behavior, the CS 
algorithm performs a random walk in a biased way with some 
random step sizes. This biased random walk, guided by the 
Lévy flight, allows the algorithm to explore the search space 
more effectively, discovering better solutions in complex 
optimization problems. 

D. MG-CS Algorithm 

Consider a cloud environment with multiple VMs where 
diverse workloads are dynamically generated based on user 
demands. The goal is to efficiently distribute these workloads 
across the available VMs to ensure optimal resource utilization, 
prevent overloads or under-utilization, and ultimately enhance 
the overall performance of the cloud system. The algorithm 
follows the steps described below. 

 Initialization: The algorithm begins by randomly 
entering tasks into a task memory divided into 
replaceable and non-replaceable tasks. Various 
parameters such as states, positions, steps, and visual 
parameters are set up during this phase. 

 Task selection: The algorithm selects tasks from the 
task memory for further processing. 

 Crossover and mutation: The selected tasks undergo 
crossover and mutation operations to generate new 
potential solutions. 

 Patronize: The algorithm evaluates the fitness level of 
each potential solution. 

 New tasks and convergence: The algorithm tracks the 
best MG values and investigates their behaviors. If the 
fitness of MG exceeds the predefined threshold 
(bulletin value), the MG's fitness is updated in the 
bulletin. 

 Filter and external memory: The algorithm uses a filter 
to refine the solutions and stores valuable information 
in the external memory, facilitating feedback with both 
sides of the task memory. 

 Final solution: The CS step performs the optimal 
solution chosen from the population and decodes it to 
determine the most appropriate resource assignment to 
tasks based on their availability and throughput. 

IV. EXPERIMENTAL RESULTS 

The experiment was conducted in CloudSim, a simulation 
tool devised by cloud laboratories situated in Melbourne. 
Within this experiment, a total of 50 tasks were examined 
within a simulation framework encompassing 25 VMs. Each 
VM was equipped with 2048 MB of RAM. Fig. 2 to 7 present 
various performance metrics and comparisons of the proposed 
MG-CS method with existing approaches in a cloud simulation 
environment. The experiments were conducted with different 
numbers of workloads and servers. Fig. 2 depicts the 
availability rate in relation to various workloads. MG-CS 
exhibited a diverse spectrum of results, with an availability rate 
of up to 55% with 500 workloads. As the workload increased, 
the availability rate decreased, reaching 90% with 3000 
workloads. Fig. 3 provides an illustration of the reliability rate 
as it correlates with different workloads. The MG-CS again 
demonstrated a diverse range of results. It achieved a reliability 
rate of up to 48% with 1000 workloads, which decreased as the 
workload increased. Ultimately, it achieved a reliability rate of 
72% with 3000 workloads, outperforming the existing system's 
performance. 

In Fig. 4, the resource utilization pattern is displayed 
alongside varying workloads. The MG-CS approach 
demonstrated notable efficacy, achieving a peak resource 
utilization of 80% when subjected to 2500 workloads. Fig. 5 
provides a visual representation of the SLA violation rates in 
relation to varying workloads. Notably, the MG-CS system 
presented a remarkably low violation rate compared to its 
counterparts. Specifically, it exhibited a mere 4% violation rate 
when confronted with 500 workloads and a slightly higher 
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10.5% violation rate when handling 3000 workloads. Fig. 6 
presents the energy consumption during workload processing. 
The introduced MG-CS approach effectively minimized energy 
consumption in comparison to comparative ones. To illustrate, 
when subjected to 2000 workloads, the energy consumption 
was notably reduced to 400 kW. Fig. 7 provides a visual 
contrast of execution times across diverse methodologies and 
workloads. Impressively, the MG-CS system consistently 
accomplished the processing of 500 to 3,000 workloads within 
a time span of 5000 to 6,000 seconds. This remarkable 
efficiency in execution time sets the MG-CS approach apart 
from existing techniques, highlighting its superior 
performance. 

 

Fig. 2. Availability comparison 

 
Fig. 3. Reliability comparison 

 
Fig. 4. Resource utilization comparison 

 
Fig. 5. SLA violation comparison 

 
Fig. 6. Energy consumption comparison 
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Fig. 7. Execution time comparison 

The experimental results, as presented in Fig. 2 to 7, reveal 
the significant impact of the proposed MG-CS approach on 
various performance metrics in a cloud simulation 
environment. Notably, the results illustrate the adaptability and 
efficacy of MG-CS across a range of workloads and server 
configurations. In terms of availability, Fig. 2 demonstrates 
that MG-CS exhibited a diverse spectrum of results, achieving 
an availability rate of up to 55% with 500 workloads. As the 
workload increased, availability decreased but remained 
robust, reaching 90% with 3000 workloads. Similarly, in 
Fig. 3, the reliability rate showcased a wide range of outcomes. 
MG-CS achieved a reliability rate of up to 48% with 1000 
workloads, surpassing existing systems. Fig. 4 showcases the 
resource utilization pattern, with MG-CS achieving a 
remarkable peak utilization of 80% when subjected to 2500 
workloads, signifying its efficiency. In terms of SLA violation 
rates (Fig. 5), MG-CS demonstrated an impressively low 
violation rate, with just 4% for 500 workloads and a slightly 
higher 10.5% for 3000 workloads, highlighting its ability to 
meet service level agreements. Furthermore, Fig. 6 illustrates 
the energy consumption during workload processing, with 
MG-CS effectively minimizing energy consumption, reducing 
it to 400 kW when subjected to 2000 workloads. Lastly, Fig. 7 
provides a visual contrast of execution times, underscoring 
MG-CS's remarkable efficiency in processing 500 to 3,000 
workloads within a period of 5,000 to 6,000 seconds. These 
findings emphasize the significance of the MG-CS approach in 
enhancing cloud resource management, achieving load 
balance, and optimizing operational efficiency while meeting 
service level agreements and reducing energy consumption. 

Table I presents the dimensions of diverse synthetic 
datasets along with the associated task quantities. The "extra-
large" dataset encompasses 800-1000 tasks, and each task's 
magnitude falls within the range of 100,000-200,000MI. 
Similarly, the "large" dataset comprises 600-700 tasks, with 
task sizes ranging from 70,000-100,000MI. Correspondingly, 
the "medium-sized" dataset entails 400-500 tasks, and the tasks 
vary in size between 50,000-70,000MI. Likewise, the "small-
sized" dataset encompasses 100-200 tasks, with task sizes 
spanning from 30,000-50,000MI. It is noteworthy to mention 
that task sizes were generated randomly during runtime, and 
their size is denoted in Millions of Instructions (MI). 

Moreover, the research utilized a total of 80 servers, each 
characterized by distinct resource capacities and loads. Each 
server hosted different types of VM instances, featuring 
varying CPU and memory capacities, as outlined in Table II. 
Fig. 8 illustrates the outcomes obtained through the proposed 
method concerning CPU utilization. The graph clearly 
demonstrates that, in comparison to FIMPSO, MG-CS 
consistently achieved the highest CPU utilization across all 
task categories. 

TABLE I.  DATASETS DESCRIPTION 

Type of tasks Size of tasks (MI) Number of tasks 

Small 100-200 30000-50000 

Medium 400-500 50000-70000 

Large 600-700 70000-100000 

Extra-large 800-1000 100000-200000 

TABLE II.  TYPES OF VM INSTANCES 

Type of tasks Memory capacity (GB) CPU capacity (MIPS) 

Small 5 10000 

Medium 10 20000 

Large 15 25000 

Extra-large 20 35000 

 
Fig. 8. CPU utilization comparison. 

V. CONCLUSION 

This paper presented MG-CS, a load-balancing resource 
allocation approach aimed at improving the utilization of cloud 
resources. The proposed method's experimental results 
demonstrate its effectiveness in addressing various QoS 
factors, including availability, reliability, resource utilization, 
SLA violation, energy Consumption, and execution time. The 
proposed method is compared with existing algorithms for QoS 
parameter efficiency, and the experimental results show that 
the MG-CS technique outperforms existing GA and BAT 
algorithms in terms of cost, timing, and energy. The 
experimental findings prove that MG-CS is the effectiveness of 
MG-CS in accomplishing both optimal scheduling and load-
balancing objectives. Furthermore, the approach ensures the 
preservation of superior QoS standards while steadfastly 
adhering to SLA requirements during cloud services. In the 
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future, the researchers plan to incorporate artificial intelligence 
self-learning methods to facilitate large-scale data sources. The 
method can enhance its performance and adaptability by 
integrating AI capabilities in handling complex and dynamic 
cloud environments. These advancements are expected to 
contribute to more efficient and robust cloud resource 
allocation, making cloud services more reliable and cost-
effective for users. 

MG-CS offers several notable benefits in the context of 
cloud load balancing and power minimization. It excels in 
achieving superior load distribution across cloud resources, 
ensuring optimal resource utilization, and averting performance 
bottlenecks. Moreover, the MG-CS algorithm effectively 
reduces energy consumption within cloud data centers, 
promoting environmental sustainability and cost efficiency. 
The method optimizes cloud service delivery, enhancing 
resource utilization and minimizing operational expenses. 
Furthermore, the approach enhances response times, task 
completion rates, and overall QoS, improving the user 
experience. However, like any approach, there are limitations 
to consider. The computational complexity of MG-CS may 
pose challenges in large-scale cloud environments. 
Additionally, the algorithm's performance could be influenced 
by the specific workload characteristics, and it may require 
fine-tuning for optimal results. Moreover, while MG-CS 
demonstrates robust performance in our experiments, its 
generalizability to diverse cloud infrastructures and real-world 
scenarios may need further investigation. These limitations 
underscore the need for ongoing research to fine-tune and 
adapt MG-CS for various cloud computing contexts and 
scenarios. 
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