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Abstract—The brain is a vital organ, and the brain tumor is 

one of the most dangerous types of tumors in the world. 

Neuroimaging is an interesting and important discussion in 

diagnosing central nervous system tumors. Brain tumors have 

several types, namely meningioma, glioma, pituitary, 

schwannoma, and neurocytoma. A radiologist uses magnetic 

resonance imaging (MRI) to detect brain tumors because of its 

advantages over computed tomography. However, classifying 

multiclass MRI is difficult and takes a long time. This study 

proposes an automated classification of multiclass brain tumors 

using enhanced deep learning techniques. Various models are 

used in this research, namely VGG16, NasNet-Mobile, 

InceptionV3, ResNet50, and EfficientNet. For EfficientNet, we 

applied EfficientNet-B0–B7. From the experiments, EfficientNet-

B2 is the superior, with the highest level of training accuracy of 

99.90%, testing accuracy of 99.55%, precision of 99.50%, recall 

of 99.67%, and F1-Score of 99.58% with a training time of 15 

minutes. The development of this automatic classification can 

assist radiologists in classifying brain tumor types more 

efficiently. 

Keywords—Brain tumor; enhanced deep learning; MRI; 

multiclass; neuroimaging 

I. INTRODUCTION 

The central nervous system (CNS), composed of the brain 
and spinal cord, controls all major biological systems. It 
consists of supporting cells (glial cells) and nerve cells 
(neurons) that communicate with each other and the rest of the 
body by sending and receiving impulses through the nerves. 
Magnetic resonance imaging (MRI) is an imaging technique 
that shows accurate anatomical images of the human body and 
provides valuable data for biomedical research and clinical 
diagnosis. For example, MRI images help diagnose brain 
tumors, abnormal cell growths that form an odd segment 
compared with normal cells. As a vital organ in the human 
body for speaking, thinking, and receiving environmental 
responses [1], any disturbance in the brain will also affect 
other organs. Based on the growth speed, brain tumors are 
classified into benign and malignant. Benign brain tumors can 
be cured with surgery, but malignant brain tumors are the 
deadliest of the cancers and can cause instant death [2]–[4]. 
Meanwhile, brain tumors can either be primary and secondary 
(i.e., metastatic). Primary tumors originate from the brain or 
the nerves of the brain. Metastatic brain tumors, conversely, 

are caused by cancer cells that spread to the brain from other 
parts of the body. Clinical studies show that 30%–50% of all 
patients with brain metastases develop multiple lesions, 
depending on the type of primary cancer [5], [6]. 

There are three types of primary brain tumors: 
meningioma, glioma, and pituitary tumor. Meningiomas arise 
from arachnoid cells in the brain and account for 37.6% of all 
adult primary brain tumors. The disease accounts for 
approximately 35,000 new cases annually, making it the most 
common type of intracranial tumor in the United States [7], 
[8]. Gliomas are found in the cerebral pedicle and spinal cord, 
with symptoms such as vomiting, headache, and discomfort. 
Glioma tumors represent nearly 30% of primary brain tumors 
and 80% of all malignant ones. Based on their 
histopathological appearance, gliomas are traditionally 
classified by the World Health Organization as grades I and II 
(low-grade glioma), grade III (anaplastic), and grade IV 
(glioblastoma) [9], [10]. The pituitary is a complex organ 
consisting of neuroendocrine cells that secrete hormones from 
the adenohypophysis; posterior pituitary lobe, which is 
modified glia; axonal extensions of hypothalamic neurons, 
which secrete hormones into the bloodstream; and stromal 
cells, which include blood vessels, nerves, meninges, bones, 
and other connective tissue elements. Pituitary tumors, which 
arise from anterior pituitary cells and are called pituitary 
adenomas, are generally benign and rare (about 0.2%), 
showing craniospinal or systemic metastases [11]–[13]. 
Schwannoma (neurilemmoma) is benign neoplasms derived 
from tumorigenic schwann cells that protect nerve cells [14]. 
This condition is caused by a loss of function mutation of the 
neurofibromatosis type 2 (NF2) tumor gene [15]. Then, apart 
from that, there is also a type of brain tumor called 
neurocytoma. This tumor is a rare brain tumor according to 
the world health organization (WHO). Neurocytoma arising 
from the ventricle accounts for 0.1% - 0.5% of all primary 
brains. Moreover, these tumors rarely arise from the brain 
parenchyma [16]. 

MRI is essential in detecting brain tumors, early tumors, or 
CNS disorders, simultaneously seeing the response to 
treatment. MRI has become a part of routine clinical practice, 
capturing various anatomical and physiological processes [17], 
[18]. MRI data must be analyzed, considering that brain 
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tumors generally consist of distinct structural and functional 
areas [19]; however, analysis can take quite a long time for 
accurate results. Moreover, classifying brain images of the 
normal brain, meningioma, glioma, pituitary, schwannoma, 
and neurocytoma may take longer since identifying brain 
images is difficult. Therefore, an automated classification of 
brain tumors is required to ease and speed up the analysis. 

Several deep learning-based models, such as CNN, VGG 
(visual geometry group)-16, NasNet, and support vector 
machine, have been used to classify features and show reliable 
results [20]. Most improvements of the neural networks 
focused on optimizing network width, depth, and resolution. 
Meanwhile, the EfficientNet proposed by Tan & Le (2019) 
combined or collaborated those three factors. Balancing the 
three factors aims to obtain an optimal model at a certain 
complexity [21]. This study proposes an enhanced deep 
learning model, the EfficientNet model, to classify MRI 
images of brain tumors into six classes: normal brain, 
meningioma, glioma, pituitary, schwannoma, and 
neurocytoma. The EfficientNet model is expected to improve 
classification accuracy with less computation cost. For 
comparison study, four deep learning-based models namely 
VGG16, NasNet-Mobile, InceptionV3, and ResNet50 will 
also be implemented to classify MRI images. 

The structure for the rest of the paper is as follows. Section 
II provides previous works about brain tumor classifications 
using various models. Section III describes the data and 
methods used in this study.  The results of the proposed brain 
tumor classifications are presented in Section IV. Section V 
concludes the paper.. 

II. RELATED WORK 

D. Filatov and G. N. A. H. Yar (2022) classified brain 
tumors into four classes, with the highest accuracy in the 
EfficientNet-B0 model of 87.67%, while the ResNet50 model 
obtained an accuracy of 72.82%. Similarly, M. A. Gómez-
Guzmán et al. (2023) used the EfficientNet-B0 model and 
obtained a higher accuracy of 90.88%. R. Jha, V. 
Bhattacharjee, and A. Mustafi (2022) used TrFEMNet and 
obtained an accuracy of 99.39% for two classes and 78.05% 
for four classes of brain tumors. With the same number of 
classes, A. Kowshir et al. (2023) used the ResNet50 model 
and obtained an accuracy of 96.67%. 

Using the brain MRI dataset to classify Alzheimer’s, the 
accuracy level obtained in the Hazarika et al. study (2022) was 
86.75% and 86.25% for the NasNet-A and NasNet-C models, 
respectively. Research conducted by [22] classified 
Alzheimer’s using the 3D-Hog feature. Research conducted by 
S. R. Sowrirajan et al., (2023) using a three-class dataset, 
obtained accurate results for the VGG16-NADE model with 
an augmentation of 96.01%, and VGG16 without 
augmentation of 92.33%. This accuracy is the highest 
compared with other models in their study. The previous 
research summary can be seen in Table I, which shows that 
the highest accuracy rate is 99.39% for two classes of brain 
tumors. Even though the accuracy is already high, the 
classification is only implemented for two classes. Meanwhile, 
the classification of brain tumors with more than four classes 
has not been investigated in detail yet. 

TABLE I.  COMPARATIVE RESEARCH FOR BRAIN CLASSIFICATION 

Reference Model Result 

[23] D. Filatov and G. 

N. A. H. Yar, (2022) 

EfficientNet-B7 

EfficientNet-B0 
ResNet50 

84.19% 

87.67% 
72.82% 

[24] R. Jha et al., (2022) TrFEMNet 
2 classes: 99.39% 

4 classes: 78.05% 

[25] R. A. Hazarika et 
al., (2022) 

NasNet-A 
NasNet-C 

86.75% 
86.25% 

[26] M. A. Gómez-

Guzmán et al., (2023) 

InceptionV3 

EfficientNet-B0 
Generic CNN 

97.12% 

90.88% 
81.08% 

[20] A. Kowshir et al., 
(2023) 

InceptionV3 

ResNet50 

Xception 

94.71% 

96.67% 

91.18% 

[27] S. R. Sowrirajan et 

al., (2023) 
VGG16 96.01% 

In this study, the classification of brain tumors into six 
classes, normal brain, meningioma, glioma, pituitary, 
schwannoma, and neurocytoma will be proposed using five 
types of models, VGG16, NasNet-Mobile, InceptionV3, 
ResNet50, and EfficientNet. Classification of six classes will 
provide a better level of training and validation accuracy with 
shorter training time using enhanced deep learning techniques. 

III. RESEARCH METHOD 

A. Dataset 

Fig. 1 shows the samples of the MRI images dataset, 
consisting of the normal brain, meningioma, glioma, pituitary, 
schwannoma, and neurocytoma tumor. Meningioma is the 
most common CNS or primary tumor. Meningioma tumors 
grow from the meninges, the tissues surrounding and 
protecting the brain just below the skull [28]. 

Glioma-type tumors arise from glial cells and are 
intraparenchymal tumors [29], [30]. An example of glioma 
tumor MRI results can be seen in Fig. 1 (c). The pituitary 
gland is a complex organ composed of the hormone-secreting 
neuroendocrine cells of the pituitary gland. The MRI results 
for this type of tumor can be seen in Fig. 1 (d). In Fig. 1 (e) is 
an image of a schwannoma-type tumor and the MRI result of a 
neurocytoma-type tumor shown in Fig. 1 (f). 

 
Fig. 1. MRI result (a) normal brain, (b) meningioma, (c) glioma, (d) 

pituitary, (e) schwannoma, (f) neurocytoma. 

(a) (c) 

(d) 

(b) 

(f)  (e) 
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The dataset used in this study is retrieved from [31] and 
[32], and there are six types of images with a total of 7519 
images. The number of details of the dataset can be seen in 
Table II. 

TABLE II.  DATASET DISTRIBUTION 

Phase Train Test Total 

Normal 1595 205 1800 

Glioma 1321 167 1488 

Meningioma 1339 159 1498 

Pituitary 1457 163 1620 

Schwannoma 463 88 551 

Neurocytoma 457 105 562 

Total 
6632 887 7519 

88.2% 11.8% 
 

B. VGG16 Architecture 

VGG is one of the CNN architectures. VGG16 has five 
convolution blocks with 13 convolution layers and 3 fully 
connected. VGG is more capable of processing small datasets 
and has better recognition efficiency [33], [34]. During the 
training process, a loss function is used to measure the error 
between predicted and actual values. The following formula 
was applied for the cross-entropy loss function for 
experiments with VGG16: 

     ∑       

 

   

                     (1) 

Where    is truth label and    denotes the softmax loss 

functions for     class. The VGG16 architecture can be seen in 
Fig. 2. 

 
Fig. 2. VGG16 architecture [35]. 

C. NasNet-Mobile 

NasNet is one of the CNN architectures consisting of basic 
building blocks optimized using reinforcement learning [36]–
[38]. There are two blocks that must be considered, namely 
the child block and the parental block. The child block serves 
to adjust the network based on changes in effectiveness, while 
the parental block serves to evaluate the effectiveness of the 
child block. 

NasNet development defines a high-performance building 
block in image set categorization (CIFAR-10). The block is 
generalized to a wider dataset so that it can achieve a higher 
classification capacity [39]. The illustration for this model can 
be seen in Fig. 3. 

 
Fig. 3. NasNet architecture [55]. 

D. InceptionV3 

InceptionV3 is the latest version of the InceptionV1 model. 
The InceptionV3 model has a wider network than InceptionV1 
and V2. Training takes longer and is very difficult to complete. 
This problem is solved using transfer learning techniques [40], 
[41]. 

The structure of InceptionV3 can be seen in Fig. 4. In 
InceptionV3, the probability of each label   *       + can 
be determined by 

 (   )  
   (  )

∑    (  )
 
 

 (2) 

where, y denotes the nonnormalized log probability. The 
ground truth distribution on labels  (   )  is normalized by 
∑  (   )    . 

 
Fig. 4. InceptionV3 structure [54]. 

E. ResNet50 

The ResNet50 model is a CNN model with a 50-layer 
residual network partitioned into five parts. The first part 
contains a convolutional layer for input preprocessing. Part 2–
5 contain the bottleneck components. This model was first 
introduced by Microsoft in 2015 [42]. Residual building 
blocks can be shown in the following formula: 

   ( )    (3) 

where,  ( ) is the residual function, x is the input, and y is 
the output parameter of the residual function. ResNet50 
architecture can be seen in Table III [43]. 

F. EfficientNet 

EfficientNet has eight different architectures, namely 
EfficientNet-B0–B7 with the basic model being B0 obtained 
from neural architecture search (NAS) and B1–B7, which is 
an additional model with an extension of the basic model [44]. 
In NAS [45] to get the optimal architecture, a controller is 
needed to maximize the expected results represented by  (  )  

 (  )    (       ), - (4) 
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TABLE III.  RESNET50 ARCHITECTURE 

Layer Name Output Size Layer 

Conv1 112 x 112 7 x 7, 64, stride 2 

Conv2_x 56 x 56 

3 x 3 max pool, stride 2 

[
        
        
         

]     

Conv3_x 28 x 28 [
         
         
         

]     

Conv4_x 14 x 14 [
         
         
          

]     

Conv5_x 7 x 7 [
         
         
          

]     

 1 x 1 Average pool, 1000-d fc, softmax 

List of action      is used to design the child network 
architecture. This child network will achieve accuracy   at the 
time of dataset convergence. By taking advantage of the   
accuracy, it can be used as a reward signal for training 
controllers or as reinforcement learning. The reward signal   
is not differentiable, so a gradient method is required to 
iteratively update    by using the reinforce rule [46]: 

    (  )  ∑  (       )[       (  | (   )     ) ]

 

   

 (5) 

The empirical approximation of the quantity (4) is: 

 

 
∑∑       (  | (   )     )  

 

   

 

   

 (6) 

where,   is the number of different architectures 
containing example controllers in the stack. On the other hand, 
  is the number of hyperparameters expected by the controller 
to design the neural network architecture. 

The validation accuracy obtained by the k
th

 neural network 
architecture after being trained on the training dataset is   . 
To reduce variance, the baseline function is used: 

 

 
∑∑       (  | (   )     )(    )

 

   

 

   

 (7) 

EfficientNet is based on NAS technology as a simple, 
scalable, and generalizable benchmark network. In increasing 
the resolution and complexity of the network structure, the 
architecture of the EfficientNet model can be seen in Table IV 
[47]. 

By combining the three factors in the architecture, the 
coefficient calculation formula is as follows [48], [49]: 

{

          

          

               
 (8) 

TABLE IV.  ARCHITECTURE OF EFFICIENT NET 

Description Layer Input Resolution Channel 

EfficientNet-B0 240 224x224 1280 

EfficientNet-B1 342 240x240 1280 

EfficientNet-B2 342 260x260 1408 

EfficientNet-B3 387 300x300 1536 

EfficientNet-B4 477 380x380 1792 

EfficientNet-B5 579 456x456 2048 

EfficientNet-B6 669 528x528 2304 

EfficientNet-B7 816 600x600 2560 

where,                           with 
          can be used to scale network width, depth, and 
resolution coefficients. While value   can be used to 
determine the number of effective resource extension models. 
The constants           are used to allocate these resources 
into three-dimensional network depth, width, and resolutions. 

In the proposed model, the preprocessing stage will carry 
out a cropping process with an image size of        . This 
aims to eliminate noise or delete unnecessary image 
information. The results of the cropping process can be seen in 
Fig. 5. After the cropping process is carried out, the new data 
will be saved in a new directory. Then the data will be 
augmented. This data augmentation functions to suppress 
overfitting when data is run through artificial data 
augmentation techniques [50]. 

 

Fig. 5. Original and cropped image. 

 
Fig. 6. Proposed model for brain tumor classification. 

The complete model proposed in this study is shown in Fig. 
6. The input model is the MRI image, which results in the 
image’s class; it is detected as a normal brain or one of the 
brain tumors: meningioma, glioma, pituitary, schwannoma, or 
neurocytoma. Furthermore, the structure of the EfficientNet 
model is illustrated in Fig. 7. 

Model 

Input Last layer of 
pretrained model 

Global average 

pooling 

Brain 

tumor 
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on 
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Preprocessin

g 

Normal Brain 

Meningioma 
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Pituitary 

Neurocytoma 

Schwannoma 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 11, 2023 

1185 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 7. The structure of the efficientnet model. 

G. Model Implementation 

A depth wise separable convolution (DSC) layer is used to 
build the base of the MobileNet block. Therefore, this 
hierarchical structure is also called mobile convolution (MB 
Conv) [51]. DSC consists of two parts: depth convolution 
(DWC) and point convolution (PWC). The combined 
convolution process between DWC and PWC is shown in Fig. 
8. The goal of revealing model parameters while preserving 
output quality was achieved. 

H. Model Evaluation 

Confusion matrix provides a combination of class and 
actual predictions. This makes it possible to define various 
multiclass performance metrics as shown in Fig. 6 [52], [53]. 
The multiclass confusion matrix presented in Fig. 9 has 
dimensions of      , where   is the number of different 
class labels             . From the confusion matrix, we can 
compute the classification metrics: accuracy, recall, precision, 
and the F1-score by formulas presented in Table V. 

TABLE V.  PERFORMANCE METRICS FOR MULTICLASS CLASSIFICATION 

Metric Formula 

Accuracy 
∑   (  )
 
   

∑ ∑     
 
   

 
   

 

Recall of class    (   (  )) 
  (  )

  (  )    (  )
 

Precision of class    (   (  )) 
  (  )

  (  )    (  )
 

                       
   (  )     (  )

   (  )     (  )
 

 

 

Fig. 8. Depthwise and pointwise convolution illustration. 
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Fig. 9. Multiclass classification. 

IV. RESULT 

This research conducted all experiments in the Google 
Colab application, with the graphic processing unit backend 

Google Compute Engine Python 3 A100. The RAM was 83.5 
GB, disk 166.8 GB, model name Intel(R) Xeon(R) 
CPU@2.20GHz. The detailed parameters that have been 
optimized of the model experiments are shown in Table VI. 
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Except for the number of epochs, all models used the same 
parameters and loss function. 

TABLE VI.  PARAMETERS USED IN THE PROPOSED BRAIN TUMOR 

CLASSIFICATION FRAMEWORK 

Hyper-

parameter 
VGG16 

NasNet-

Mobile 
InceptionV3 ResNet50 EfficientNet 

Optimizer Adam Adam Adam Adam Adam 

Batch Size 32 32 32 32 32 

Epoch 80 40 20 20 20 

Learning 
Rate 

0.0001 0.0001 0.0001 0.0001 0.0001 

Verbose 1 1 1 1 1 

Loss 

Function 
Flatten Cross-Entropy 

First, we will show the results of four models’ experiments: 
VGG16, NasNet-Mobile, InceptionV3 and ResNet50. Initially, 
the performance of the training and validation of four models 
are presented through the loss and accuracy functions in Fig. 
10. Meanwhile, Fig. 11 shows the corresponding confusion 
matrix that we can see that InceptionV3 only gives few false 
results. 

Except in the VGG16 model, there is a jump in both loss 
and accuracy graphs of the models (see Fig. 10) (b-d). 
Nevertheless, as the epoch is larger the accuracy tends to 
improve, and the loss progressively reduces. In the accuracy 
graph, the initial validation accuracy is very low, 0.2 in 
VGG16 and NasNet-Mobile, and 0.4 in ResNet50. However, 
it increases to approximately 95% after the epoch is larger 
than 20 in the model of VGG16 and NasNet-Mobile. In 
InceptionV3 and ResNet50, the accuracy is already 
consistently more than 95% after 10 epochs. The highest 
accuracy of each model as shown in Table VII is achieved 
with epoch 24, 40, 13, and 7 for VGG16, NasNet-Mobile, 
InceptionV3 and ResNet50, respectively. Based on the 
performance results of the four models presented in Table VII, 
InceptionV3 achieves the best with only 13 epochs. Further, 
we will investigate how EfficientNet performs compared to 
InceptionV3, in particular. 

Like the four other models, the experiments using eight 
varieties of EfficientNet (B0-B7) will also be compared 
through the loss and accuracy trend functions, confusion 
matrix, and the model performance metrics. Fig. 12 depicts the 
loss and accuracy graph of all EfficientNet models over 20 
epochs. As expected, the performance of the loss and accuracy 
of the training are slightly better than the validation. All 
EfficientNet models tend to increase their performance as the 
epoch grows. Of the eight EfficientNet models, their 
performances do not differ significantly. All accuracies are 
mostly perfect, approximately 99%.  

 
Fig. 10. The loss function and accuracy of the experiment using (a) VGG16, 

(b) NasNet-Mobile, (c) InceptionV3, and (d) ResNet50. 

 
Fig. 11. The confusion matrix of experiment (a) VGG16, (b) NasNet-Mobile, 

(c) InceptionV3, and (d) ResNet50. 

(c) 

(d) 

(a) 

(b) 

(b) (a) 

(c) (d) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 11, 2023 

1187 | P a g e  

www.ijacsa.thesai.org 

TABLE VII.  PERFORMANCE MODEL 

Model Class 
Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

VGG16 

Glioma 97.00 84.00 90.03 

Meningioma 82.00 91.00 86.27 

Pituitary 94.00 96.00 94.99 

Normal 97.00 97.00 97.00 

Schwannoma 95.00 99.00 96.96 

Neurocytoma 99.00 97.00 97.99 

Average 94.00 94.00 94.00 

NasNet-
Mobile 

Glioma 100.00 96.00 97.96 

Meningioma 95.00 99.00 96.96 

Pituitary 98.00 99.00 98.50 

Normal 100.00 100.00 100.00 

Schwannoma 99.00 100.00 99.50 

Neurocytoma 100.00 99.00 99.50 

Average 98.67 98.83 98.75 

InceptionV3 

Glioma 100.00 100.00 100.00 

Meningioma 99.00 99.00 99.00 

Pituitary 99.00 98.00 98.50 

Normal 100.00 100.00 100.00 

Schwannoma 99.00 100.00 99.50 

Neurocytoma 100.00 100.00 100.00 

Average 99.50 99.50 99.50 

ResNet50 

Glioma 100.00 97.00 98.48 

Meningioma 98.00 99.00 98.50 

Pituitary 98.00 99.00 98.50 

Normal 100.00 100.00 100.00 

Schwannoma 99.00 100.00 99.50 

Neurocytoma 100.00 100.00 100.00 

Average 99.17 99.17 99.16 

  
B0   B4 

  
B1   B5 

  
B2   B6 

Fig. 12. The loss function and accuracy of the experiment using EfficientNet-

B0-B7. 

From the confusion matrix described in Fig. 13, we 
observe that all models only deliver a few faulty 
classifications. The false positives seem to be a little more 
than the false negatives results. There is no false negative 
result in EfficientNet-B1 and there is only one false negative 
in EfficientNet-B2, B3, and B5 while there are two false 
negative results in InceptionV3. 

Further detail of the model performance of EfficientNet 
can be seen from the performance metrics of precision, recall, 
F1-score in Table VIII. The metrics of all EfficientNet are 
shown to be more than 99%. 

 
B0 

 
B4 

 
B1 

 
B5 

 
B2 

 
B6 

 
B3 

 
B7 

Fig. 13. The confusion matrix of the experiment using EfficientNet-B0-B7. 

TABLE VIII.  PERFORMANCE OF THE EFFICIENTNET MODEL 

Model Class 
Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

EfficientNet-
B0 

Glioma 100.00 99.00 99.50 

Meningioma 98.00 99.00 98.50 

Pituitary 99.00 99.00 99.00 

Normal 100.00 100.00 100.00 

Schwannoma 100.00 100.00 100.00 

Neurocytoma 100.00 100.00 100.00 
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Model Class 
Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Average 99.50 99.50 99.50 

EfficientNet-

B1 

Glioma 100.00 99.00 99.50 

Meningioma 99.00 99.00 99.00 

Pituitary 99.00 100.00 99.50 

Normal 100.00 100.00 100.00 

Schwannoma 100.00 100.00 100.00 

Neurocytoma 100.00 100.00 100.00 

Average 99.67 99.67 99.67 

EfficientNet-
B2 

Glioma 100.00 99.00 99.50 

Meningioma 99.00 100.00 99.50 

Pituitary 99.00 99.00 99.00 

Normal 100.00 100.00 100.00 

Schwannoma 99.00 100.00 99.50 

Neurocytoma 100.00 100.00 100.00 

Average 99.50 99.67 99.58 

EfficientNet-

B3 

Glioma 100.00 99.00 99.50 

Meningioma 99.00 98.00 98.50 

Pituitary 99.00 99.00 99.00 

Normal 99.00 100.00 99.50 

Schwannoma 99.00 100.00 99.50 

Neurocytoma 100.00 99.00 99.50 

Average 99.33 99.17 99.25 

EfficientNet-
B4 

Glioma 100.00 99.00 99.50 

Meningioma 99.00 99.00 99.00 

Pituitary 99.00 100.00 99.50 

Normal 100.00 100.00 100.00 

Schwannoma 100.00 100.00 100.00 

Neurocytoma 100.00 99.00 99.50 

Average 99.67 99.50 99.58 

EfficientNet-

B5 

Glioma 100.00 98.00 98.99 

Meningioma 98.00 99.00 98.50 

Pituitary 99.00 100.00 99.50 

Normal 100.00 100.00 100.00 

Schwannoma 100.00 100.00 100.00 

Neurocytoma 100.00 100.00 100.00 

Average 99.50 99.50 99.50 

EfficientNet-

B6 

Glioma 100.00 99.00 99.50 

Meningioma 98.00 99.00 98.50 

Pituitary 98.00 99.00 98.50 

Normal 100.00 100.00 100.00 

Schwannoma 100.00 100.00 100.00 

Neurocytoma 100.00 100.00 100.00 

Average 99.33 99.50 99.42 

EfficientNet- Glioma 100.00 98.00 98.99 

Model Class 
Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

B7 Meningioma 97.00 98.00 97.50 

Pituitary 98.00 99.00 98.50 

Normal 100.00 100.00 100.00 

Schwannoma 99.00 100.00 99.50 

Neurocytoma 100.00 100.00 100.00 

Average 99.00 99.17 99.08 

Next, we compare the EfficientNet model with four 
previous models. The models’ performances are evaluated by 
considering the model accuracy and the computational time, 
the time consuming for training. The model comparisons are 
presented in Table IX. Based on the model accuracy in both 
the training and the validation data, the EfficientNet can 
outperform NasNet-Mobile, VGG16, InceptionV3, and 
ResNet50. EfficientNet-B2 achieves the highest accuracy of 
99.9% in training and 99.55% in validation. The model with 
the least accuracy is VGG16, with a training accuracy of 97.2% 
and validation accuracy of 93.35%. This model also had the 
longest training time of 84 minutes with 80 epochs. The 
selection of more epochs is due to the stability of the chart. 
Compared with other proposed models, VGG16 requires a 
long epoch to be stable. In terms of the computation time, the 
proposed EfficientNet model requires vary time, from 10 
minute in EfficientNet-B0 up to 60 minutes in EfficientNet-B7. 
Meanwhile, the best model, EfficientNet-B2 requires 15 
minutes for the training. It is almost double the time of 
InceptionV3 model which only takes eight minutes.  

TABLE IX.  ACCURACY AND COMPUTATIONAL TIME OF MODEL 

Model Train (%) Validation (%) Time (m) 

EfficientNet-B0 99.89 99.44 10 

EfficientNet-B1 99.84 99.55 14 

EfficientNet-B2 99.90 99.55 15 

EfficientNet-B3 99.80 99.21 19 

EfficientNet-B4 99.86 99.44 25 

EfficientNet-B5 99.86 99.32 35 

EfficientNet-B6 99.86 99.32 46 

EfficientNet-B7 99.85 98.99 60 

VGG16 97.20 93.35 84 

NasNet-Mobile 99.82 98.53 26 

ResNet50 99.77 98.99 14 

InceptionV3 99.86 99.44 8 

V. CONCLUSION 

This study applies eight enhanced EfficientNet models, 
namely EfficientNet-B0-B7, which is based on the concept of 
CNN. According to existing literature, EfficientNet is a deep 
learning model that modifies the model so that computational 
efficiency produces the best results. With its efficiency 
advantage, we use the model to build an automated 
classification of brain MRI images into six classes: normal, 
meningioma, glioma, pituitary, schwannoma, and 
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neurocytoma. In this study, the EfficientNet models are also 
compared to the previous models, namely VGG16, NasNet-
Mobile, InceptionV3, and ResNet50. All varieties of 
EfficientNet perform high accuracy and the EfficientNet-B2 
model is superior. The EfficientNet-B2 model achieves the 
highest training accuracy of 99.9% and validation accuracy of 
99.55%. However, it takes a slightly longer time to do the 
training. It requires 15 minutes, while InceptionV3 only needs 
eight minutes to achieve a training accuracy of 99.86%. Both 
EfficientNet-B2 and InceptionV3 models are best options in 
classifying brain MRI images efficiently and accurately. 
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