
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

97 | P a g e

www.ijacsa.thesai.org

Adaptive Rectified Linear Unit (AReLU) for

Classification Problems to Solve Dying Problem in

Deep Learning

Ibrahim A. Atoum

Department of Computer Science and Information Systems

College of Applied Sciences, Al Maarefa University

Riyadh, Saudi Arabia

Abstract—A convolutional neural network (CNN) is a subset of

machine learning as well as one of the different types of artificial

neural networks that are used for different applications and data

types. Activation functions (AFs) are used in this type of network

to determine whether or not its neurons are activated. One non-

linear AF named as Rectified Linear Units (ReLU) which involves

a simple mathematical operations and it gives better performance.

It avoids rectifying vanishing gradient problem that inherents

older AFs like tanh and sigmoid. Additionally, it has less

computational cost. Despite these advantages, it suffers from a

problem called Dying problem. Several modifications have been

appeared to address this problem, for example; Leaky ReLU

(LReLU). The main concept of our algorithm is to improve the

current LReLU activation functions in mitigating the dying

problem on deep learning by using the readjustment of values

(changing and decreasing value) of the loss function or cost

function while number of epochs are increased. The model was

trained on the MNIST dataset with 20 epochs and achieved lowest

misclassification rate by 1.2%. While optimizing our proposed

methods, we received comparatively better results in terms of

simplicity, low computational cost, and with no hyperparameters.

Keywords—Rectified Linear Unit (ReLU); Convolutional Neural

Network; activation function; deep learning; MNIST dataset;

machine learning

I. INTRODUCTION

The concept of Artificial Intelligence (AI) revolves around
creating intelligent machines that are able to simulate human
thinking while Machine Learning (ML) is a branch of this
concept that allows these intelligent machines to learn the
hidden patterns from the input data [1]. Neural networks
(NNs) as a subset of ML simulate the human brain using a set
of algorithms. These networks consist of input, hidden, and
output layers. These layers consist of neurons that mimic the
structure of a biological neuron, where each neuron has inputs
that are processed to give outputs, which in turn will be input
to another neuron. When neural networks consist of more than
three layers then they can be called Deep Learning Networks
(DLNs) [2].

AFs play a critical role in DLNs to extract the results from
the input values and thus determine whether the underline
neuron is activated or not [3]. DLNs can be considered as just
a linear regression without AFs, so appropriate AFs must be
used to model a nonlinear DLNs. AFs classified as binary
step, linear activation and nonlinear activation functions.

Binary step function is a basic threshold classifier where some
threshold value is decided to choose which output neurons
should be activated or deactivated. Linear activation function
is a simple straight line activation function that converts linear
input signals into non-linear output signals. Nonlinear AFs are
what make it easier for the DLNs model to adapt to a variety
of data and to distinguish between outcomes; examples are:
ReLU, Leaky ReLU, Sigmoid, Tanh and Softmax [4]. Some
of these are suited to be used in hidden layers and others in
output layers.

There are two terms used in training the model, the first is
the term feedforward, which is used in NNs to refer to the
transition with specified weights from input to output, while
the term backpropagation, as the name suggests, moves from
output to input with readjustment of weights depending on
loss values and then propagation processes straight ahead.
This approach allows the use of gradient methods, such as
gradient descent or stochastic gradient descent, to train multi-
layer networks and update weights to reduce loss [5] [6].
ReLU as a nonlinear AF has gained a lot of interest in research

due to its simplicity, low computation cost and it avoids the
vanishing gradient problem that inherent to the earliest AFs
like tanh and sigmoid [7]. Despite all the previous advantages
of this function, it has a problem called the Dying ReLU
problem, which indicates that the neuron becomes inactive
and outputs zero only for any input. This problem has been
attributed to a high learning rate and a high negative bias [8].

ReLU was initially introduced by [9]; the researchers
designed an electronic circuit to simulate a hybrid slug in
which the latent cortex combines the digital selection of an
active cluster of neurons with an analog response, and this
behavior is achieved by dynamically changing the positive
feedback inherent in recurrent cortical connections, this
behavior, according to the researchers, created computational
capabilities creates the process of stimulus selection,
conferring the ability to modify and generate a spatio-temporal
pattern in this cortex.

ReLU was later used in object recognition by [10], and
researchers summarized the three stages used to extract object
features such as filter bank, nonlinear transformation and a
kind of feature pooling layer emphasizing that most systems
use one or two of these stages, assuming that the use of two
stages gives more accurate results. The study demonstrated the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

98 | P a g e

www.ijacsa.thesai.org

accuracy of this hypothesis by using nonlinear layers and
pooling layers on different object data sets through either
supervised optimization or unsupervised pre-training.

ReLU was also popularized by [11] in the context of
Restricted Boltzmann Machines. The study demonstrated how
to create a more powerful type of hidden units for Restricted
Boltzmann Machines (RBM) in object recognition and face
comparison by combining weights and biases for an infinite
set of binary units with approximating these stepped sigmoid
units with noisy corrected linear units.

Leaky ReLU [12] has added a slight slop in the negative
range; this modification on ReLU ends the presence of dead
neurons in the negative region by using a hyperparameter.
Thereafter many leaky ReLU variants have been appeared like
Parametric Rectified Linear Unit (PReLU) [13] which
introduces a new learnable parameter as a slope for the
negative part and Exponential linear unit (ELU) has used an
exponential function to transition from the positive to small
negative values [14].

The value of the loss function is related to the results of the
model. If the value of the loss function is low, this means that
the model will give good results [16]. Loss functions are
divided into two types, classification and regression.
Classification functions also divided into binary entropy
loss/log loss and hinge loss. During the execution of AReLU
the first function was used [15]. AReLU is applied on MNIST
dataset that contains 70000 images of black and white
handwritten digits divided into 60000 images for training and
10000 images for Testing [17].

In this study, the decreasing value of the used loss function
was exploited as an adaptive parameter to keep the network
active. The study is presented into four sections: section two
introduces the idea of ReLU, section three identifies the ReLU
dying problem, and section four introduces the AReLU.
Section five presents the results and finally section six is the
conclusion.

II. RECTIFIED LINEAR UNIT (RELU) ACTIVATION

FUNCTION

Artificial neurons are mathematical model that mimic
human biological neurons and they are the basic building
blocks of neural networks as shown in Fig. 1.

Fig. 1. Artificial neurons representation

Where
 states the linear function, accordingly the activation
function . represents the inputs,
illustrates the weights that connect inputs with perceptions and
they measure the significance level of each input. The bias
value (b) is added to the weighted sum of the inputs to prevent
the activation function from getting a zero value. This linear
results in linear modeling come from the linear mapping of the
input function to output in hidden layers. The role of
activation function is to convert these linear outputs into non-
linear outputs for further computation as in

 ; where α is the activation function. The literature
has introduced many activation functions such as Sigmoid,
binary step, Tanh, ReLU, Leaky ReLU, identity and Softmax.

ReLU activation function can be described mathematically
as in Eq. (1) and graphically as in Fig. 2, where x is the input
to the neuron. The function f(x) equal zero for all negative
input values and equal original input value for all positive
input values as in Eq. (1).

 max x (1)

Fig. 2. ReLU representation

ReLU avoids vanishing gradient problem occurred with
other activation functions by preserving the gradient [18]. This
problem is formed when the gradients of deep neurons vanish
or becomes zero, this means that the deep layers of the
network may not learn or learn very slowly [19]. Derivative
Activation function is fundamental to optimizing neural
network, the ReLU (x) can be expressed as:

It can be simplified as follows:

 {

The first order derivative of this function is:

 {

And can be illustrated as:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.165.6419&rep=rep1&type=pdf

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

99 | P a g e

www.ijacsa.thesai.org

{

The final derivative is:

{

III. RELU DYING PROBLEM

Dying ReLU problem is one limitation for ReLU where its
neurons output is zero as illustrated by the red outline in Fig.
3.

Fig. 3. Red outline where ReLU outputs 0

The normal situation for ReLU neurons is to stay active,
update weights, and keep learning. Although this feature
provides the power to ReLU through the sparsity of the
network, it poses a problem when most of the inputs of these
ReLU neurons are in the negative range, and the issue
becomes more complicated when the output of most Neurons
is zero, making their task so abnormal that they become
inactive and unlearning. This inevitably causes gradients to
fail to flow during backpropagation.

The cause of this problem is due to two main factors: High
Learning Rate and a Large Negative Bias. The former one
allows faster learning with the possibility of a numerical
overflow, while its very small value may never converge or
stumble on a suboptimal solution. So choosing an average rate
that is neither too large nor too small ensures an optimal
approximation of the mapping problem as represented by the
training data set. The best way to discover the value of the
learning rate is through trial and error, not analytically for a
particular model on a particular data set. This can be
illustrated by the update process in backpropagation as shown
in Eq. (2).

 (

) (2)

where

 is the derivative of error with respect to

weight. We can see from Eq. (2) that giving a high value of
the learning rate (LR) will cause a high value for the last part

of Eq. (2) (

), so subtracting large number from

 will end up with highly negative . These

negative results cause negative inputs for ReLU, therefore
generating the dying ReLU problem.

Biases are extra inputs that ensure neurons are activated
regardless of the input. Changing the value of the weights in
the neuron changes the steepness of the curve without the
ability to change it to the right or left, to change the curve to
the left or right the value is changed. Giving a high negative
bias value makes the ReLU activation input negative. To
mitigate Dying ReLU problem, several techniques have
emerged, all trying to keep the network active when the input
is negative or zero.

Leaky ReLU [12] demolished dead neurons in the negative
part by adding a slight slop in the negative range using a
hyperparameter (α= .1 or more) as shown in Eq. (3) and
illustrated in Fig. 4.

 (3)

Fig. 4. Red outline where leaky ReLU outputs less than zero

Parametric Rectified Linear Unit (PReLU) [13] thereafter
presented a new learnable parameter as a slope for the
negative part as in Eq. (4):

f
 (4)

And Exponential linear unit (ELU) used an exponential
function to transition from the positive to small
negative values [14] as shown in Eq. (5).

 {

 (5)

IV. ADAPTIVE RECTIFIER LINEAR UNIT (ARELU) ON

MNIST DATASET

The study used the MNIST dataset of handwritten
greyscale images, these images were size-normalized and
centered in a fixed-size image available from NIST [20] as
shown in Fig. 5 which shows the first 25 images of MNIST.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

100 | P a g e

www.ijacsa.thesai.org

Fig. 5. Subset of MNIST dataset

This dataset composed of approximately 70,000
handwritten monochrome images of 0 to 9 (10 digits), each of
which is 784 pixels in size, so that the input data is in pairs
(70,000,784) and output (70,000, 10) as shown in Fig. 6.

To form the network, the AReLU activation function were
used in the hidden layer and softmax in the output layer. The
used loss function is categorical_crossentropy and the
optimizer is Adamax. The batch size is adopted to 128 and the
number of epochs to 20.

Once the output is generated from the final neural net
layer, loss function (input vs output) is calculated and
backpropagation process is performed where the weights are
adjusted to get the minimum loss. Neural Networks are trained
using the gradient descent process. This process consists of the
backward propagation step which is basically chain rule to get
the change in weights in order to reduce the loss after every
epoch.

Fig. 6. MNIST neural network

The primary goal of AReLU is to mitigate Dying ReLU
problem by improving the previous methods by using the
adaptive Loss Function (Ɩ) parameter instead of
hyperparameter one. Ɩ is multiplied by the input value as
shown in Eq. (6) to transit from the positive to small negative
values.

 {

 (6)

The AReLU has implemented by using Python
programming language according to the algorithm shown in
Fig. 7 and more illustrated in Fig. 8. It is noticed from the
equation that there is no change in the case of the positive
values, but only the change in the negative inputs, as we
notice this in Fig. 9(a).

Fig. 7. AReLU algorithm

Fig. 8. AReLU flowchart

The used structure of the deep neural network is shown in
Fig. 9 that composed of four layers, one input layer represents
the input shape as 784 image pixels, two hidden layers each
composed of 512 neurons and the final 10 neurons layer that
characterize the output layer.

Binary Cross-Entropy Loss/Log Loss has been used as loss
function in the model compilation process; where in this phase
the loss function, the optimizer and the metrics are defined.
This function is defined in Eq. (7); where N is the number of
rows and M the number of classes. are the corrected

probabilities, a negative average is used to compensate for
negative values resulted from calculating log value of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

101 | P a g e

www.ijacsa.thesai.org

corrected probabilities because their values range between 0
and 1. It is one of the most common loss functions used in
multiclass classification problems. The value of this function
decreases as the predicted probability converges to the actual
label.

 ∑ ∑

 (7)

Backpropagation in a network aims to make a change in
the error value with respect to weights and this process is
called derivative because its goal is to make a change in one
value with respect to another. The first derivative of this
function is:

{

{

The function starts with any initial value; say 0.1 and
then it is automatically adapted according to the initial loss
function value. Fig. 9(b) shows the Graphical Representation
of AReLU Derivative. It is evident that the values of the
derivative are close to zero but are not zero in the case of
negative values.

The most effected activation function used in the output
layer in the case of multi-layer classification problems is
Softmax, which converts the raw outputs of a neural network
into a vector of probability scores between 0 and 1. Its
equations is defined in:

∑

⁄

Where o is the input vector, is the standard
exponential function for , N is the number of classes in the
multiclass classifier and is the standard exponential
function for output vector and e is the exponential which is
equal nearly 2.718.

(a)AReLU (b)AReLU and its Derivative

Fig. 9. AReLU graphical representation and its derivative

V. RESULTS

Fig. 10 illustrates the relationship between the training and
validation accuracy over 20 epochs, the accuracy escalations
are noticed in the first three epochs, indicating that the
network is learning fast, thereafter the curve flattens,
indicating that there is no need for more epochs to further
training the model. The model accuracy was 98.8% (meaning

9880 of the 10000 images were predicted correctly!) and 120
images were wrongly tagged (1.2%).

Fig. 10. AReLU model accuracy

AReLU gives better results based on the Misclassification
Rate (MR) which is a measure of the percentage of
observations that were incorrectly predicted by some
classification model [21] and it’s calculated as in

 ⁄

The MR for our model was 1.2% where for PReLU is 1.62
according to [22] as shown in Table I. This study measured
the MR for different adaptive ReLUs including Sigmoid, tanh,
MSAF, MSAf_Symmetrical, ReLU, LReLU, ELU and
adaptive tanh.

TABLE I. MR MEASUREMENTS FOR ACTIVATION FUNCTIONS ON MNIST

DATASET

AF MR

Sigmoid 7.01

Hyperbolic Tangent 1.86

MSAF 12.59

MSAF_Symmetrical 11.28

ReLU 2.08

LReLU 1.68

PReLU 1.6

ELU 1.88

Adaptive tanh 2.93

Reading Fig. 11 which illustrates the relationship between
training and validation loss, we can see the rapid loss in the
training set at the first two epochs while validation loss
remained almost constant for several epochs, in contrast to the
loss level of the training set, which means that the model can
be generalized to unseen data.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

102 | P a g e

www.ijacsa.thesai.org

Fig. 11. AReLU model loss

VI. CONCLUSION

This article produced automatic and adaptive activation
function in which it retained inherent characteristics of ReLU
with simplicity, high accuracy, speed and low loss ratio.
Expected diminishing characteristic of Loss function value has
exploited in implementing the AReLU, this function is used to
measure the difference between the current output and the
expected output. Cross-entropy type is used in developing the
ReLU as one of the most widely used loss functions in
machine learning due to its role in better generalization and
faster model training. This function is used in binary and
multi-class classification cases. AReLU is implemented by
using Python programming language on MNIST dataset of
handwritten digits to get 1.2% classification Rate. The model
maintained the gains that the previous methods indicated, such
as simplicity, low computational cost, no fixed coefficients,
and adaptation in nature. In the future, AReLU will be applied
to different data sets and work to reduce the rate of
misclassification while maintaining the characteristics of
simplicity, low computational cost, and no hyperparameters.

ACKNOWLEDGMENT

The Author would like to express his gratitude to
AlMaarefa University, Riyadh, Saudi Arabia, for providing
funding to do this research.

FUNDING

This research was funded by AlMaarefa University,
Riyadh, Saudi Arabia

REFERENCES

[1] Nichols, James A., Hsien W. Herbert Chan, and Matthew AB Baker.
"Machine learning: applications of artificial intelligence to imaging and
diagnosis." Biophysical reviews 11.1 (2019): 111-118.

[2] Sarker, Iqbal H. "Deep learning: a comprehensive overview on
techniques, taxonomy, applications and research directions." SN
Computer Science 2.6 (2021): 1-20.

[3] Dubey, Shiv Ram, Satish Kumar Singh, and Bidyut Baran Chaudhuri.
"Activation functions in deep learning: a comprehensive survey and
benchmark." Neurocomputing (2022).

[4] Fan, Jianqing, Cong Ma, and Yiqiao Zhong. "A selective overview of
deep learning." Statistical science: a review journal of the Institute of
Mathematical Statistics 36.2 (2021): 264.

[5] Shaik, Nagoor Basha, et al. "A feed-forward back propagation neural
network approach to predict the life condition of crude oil
pipeline." Processes 8.6 (2020): 661.

[6] Xie, Jingyi, and Sirui Li. "Training Neural Networks by Time-Fractional
Gradient Descent." Axioms 11.10 (2022): 507.

[7] Li, Yanyi, Jian Shi, and Yuping Li. "Real-Time Semantic Understanding
and Segmentation of Urban Scenes for Vehicle Visual Sensors by
Optimized DCNN Algorithm." Applied Sciences 12.15 (2022): 7811.

[8] Chai, Enhui, et al. "An Efficient Asymmetric Nonlinear Activation
Function for Deep Neural Networks." Symmetry 14.5 (2022): 1027.

[9] Hahnloser, Richard HR, et al. "Digital selection and analogue
amplification coexist in a cortex-inspired silicon
circuit." nature 405.6789 (2000): 947-951.

[10] Jarrett, Kevin, et al. "What is the best multi-stage architecture for object
recognition?." 2009 IEEE 12th international conference on computer
vision. IEEE, 2009.

[11] Nair, Vinod, and Geoffrey E. Hinton. "Rectified linear units improve
restricted boltzmann machines." Icml. 2010.

[12] Maas, Andrew L., Awni Y. Hannun, and Andrew Y. Ng. "Rectifier
nonlinearities improve neural network acoustic models." Proc. icml.
Vol. 30. No. 1. 2013.

[13] He, Kaiming, et al. "." Proceedings of the IEEE international conference
on computer vision. 2015.

[14] Clevert, Djork-Arné, Thomas Unterthiner, and Sepp Hochreiter. "Fast
and accurate deep network learning by exponential linear units
(elus)." arXiv preprint arXiv:1511.07289 (2015).

[15] Hajiabadi, Moein, et al. "Deep learning with loss ensembles for solar
power prediction in smart cities." Smart Cities 3.3 (2020): 842-852.

[16] Chadha, Ankita, Azween Abdullah, and Lorita Angeline. "A
Comparative Performance of Optimizers and Tuning of Neural
Networks for Spoof Detection Framework." International Journal of
Advanced Computer Science and Applications 13.4 (2022).

[17] Deng, Li. "The mnist database of handwritten digit images for machine
learning research [best of the web]." IEEE signal processing
magazine 29.6 (2012): 141-142.

[18] Razak, H. A., et al. "Detection of Criminal Behavior at the Residential
Unit based on Deep Convolutional Neural Network." International
Journal of Advanced Computer Science and Applications 13.2 (2022).

[19] Tan, Hong Hui, and King Hann Lim. "Vanishing gradient mitigation
with deep learning neural network optimization." 2019 7th international
conference on smart computing & communications (ICSCC). IEEE,
2019.

[20] Cohen, Gregory, et al. "EMNIST: Extending MNIST to handwritten
letters." 2017 international joint conference on neural networks
(IJCNN). IEEE, 2017.

[21] Maach, Anas, et al. "An Intelligent Decision Support Ensemble Voting
Model for Coronary Artery Disease Prediction in Smart Healthcare
Monitoring Environments." arXiv preprint arXiv:2210.14906 (2022).

[22] M. M. Lau and K. Hann Lim, "Review of Adaptive Activation Function
in Deep Neural Network," 2018 IEEE-EMBS Conference on Biomedical
Engineering and Sciences (IECBES), 2018, pp. 686-690, doi:
10.1109/IECBES.2018.8626714.

