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Abstract—A convolutional neural network (CNN) is a subset of 

machine learning as well as one of the different types of artificial 

neural networks that are used for different applications and data 

types. Activation functions (AFs) are used in this type of network 

to determine whether or not its neurons are activated. One non-

linear AF named as Rectified Linear Units (ReLU) which involves 

a simple mathematical operations and it gives better performance. 

It avoids rectifying vanishing gradient problem that inherents 

older AFs like tanh and sigmoid. Additionally, it has less 

computational cost. Despite these advantages, it suffers from a 

problem called Dying problem. Several modifications have been 

appeared to address this problem, for example; Leaky ReLU 

(LReLU).  The main concept of our algorithm is to improve the 

current LReLU activation functions in mitigating the dying 

problem on deep learning by using the readjustment of values 

(changing and decreasing value) of the loss function or cost 

function while number of epochs are increased. The model was 

trained on the MNIST dataset with 20 epochs and achieved lowest 

misclassification rate by 1.2%.  While optimizing our proposed 

methods, we received comparatively better results in terms of 

simplicity, low computational cost, and with no hyperparameters. 
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I. INTRODUCTION 

The concept of Artificial Intelligence (AI) revolves around 
creating intelligent machines that are able to simulate human 
thinking while Machine Learning (ML) is a branch of this 
concept that allows these intelligent machines to learn the 
hidden patterns from the input data [1]. Neural networks 
(NNs) as a subset of ML simulate the human brain using a set 
of algorithms. These networks consist of input, hidden, and 
output layers. These layers consist of neurons that mimic the 
structure of a biological neuron, where each neuron has inputs 
that are processed to give outputs, which in turn will be input 
to another neuron. When neural networks consist of more than 
three layers then they can be called Deep Learning Networks 
(DLNs) [2]. 

AFs play a critical role in DLNs to extract the results from 
the input values and thus determine whether the underline 
neuron is activated or not [3]. DLNs can be considered as just 
a linear regression without AFs, so appropriate AFs must be 
used to model a nonlinear DLNs. AFs classified as binary 
step, linear activation and nonlinear activation functions. 

Binary step function is a basic threshold classifier where some 
threshold value is decided to choose which output neurons 
should be activated or deactivated. Linear activation function 
is a simple straight line activation function that converts linear 
input signals into non-linear output signals. Nonlinear AFs are 
what make it easier for the DLNs model to adapt to a variety 
of data and to distinguish between outcomes; examples are: 
ReLU, Leaky ReLU, Sigmoid, Tanh and Softmax [4]. Some 
of these are suited to be used in hidden layers and others in 
output layers. 

There are two terms used in training the model, the first is 
the term feedforward, which is used in NNs to refer to the 
transition with specified weights from input to output, while 
the term backpropagation, as the name suggests, moves from 
output to input with readjustment of weights depending on 
loss values and then propagation processes straight ahead. 
This approach allows the use of gradient methods, such as 
gradient descent or stochastic gradient descent, to train multi-
layer networks and update weights to reduce loss [5] [6]. 
ReLU as a nonlinear AF has gained a lot of interest in research 

due to its simplicity, low computation cost and it avoids the 
vanishing gradient problem that inherent to the earliest AFs 
like tanh and sigmoid [7]. Despite all the previous advantages 
of this function, it has a problem called the Dying ReLU 
problem, which indicates that the neuron becomes inactive 
and outputs zero only for any input. This problem has been 
attributed to a high learning rate and a high negative bias [8]. 

ReLU was initially introduced by [9]; the researchers 
designed an electronic circuit to simulate a hybrid slug in 
which the latent cortex combines the digital selection of an 
active cluster of neurons with an analog response, and this 
behavior is achieved by dynamically changing the positive 
feedback inherent in recurrent cortical connections, this 
behavior, according to the researchers, created computational 
capabilities creates the process of stimulus selection, 
conferring the ability to modify and generate a spatio-temporal 
pattern in this cortex. 

ReLU was later used in object recognition by [10], and 
researchers summarized the three stages used to extract object 
features such as filter bank, nonlinear transformation and a 
kind of feature pooling layer emphasizing that most systems 
use one or two of these stages, assuming that the use of two 
stages gives more accurate results. The study demonstrated the 
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accuracy of this hypothesis by using nonlinear layers and 
pooling layers on different object data sets through either 
supervised optimization or unsupervised pre-training. 

ReLU was also popularized by [11] in the context of 
Restricted Boltzmann Machines. The study demonstrated how 
to create a more powerful type of hidden units for Restricted 
Boltzmann Machines (RBM) in object recognition and face 
comparison by combining weights and biases for an infinite 
set of binary units with approximating these stepped sigmoid 
units with noisy corrected linear units. 

Leaky ReLU [12] has added a slight slop in the negative 
range; this modification on ReLU ends the presence of dead 
neurons in the negative region by using a hyperparameter. 
Thereafter many leaky ReLU variants have been appeared like 
Parametric Rectified Linear Unit (PReLU) [13] which 
introduces a new learnable parameter as a slope for the 
negative part and Exponential linear unit (ELU) has used an 
exponential function to transition from the positive to small 
negative values [14]. 

The value of the loss function is related to the results of the 
model. If the value of the loss function is low, this means that 
the model will give good results [16]. Loss functions are 
divided into two types, classification and regression. 
Classification functions also divided into binary entropy 
loss/log loss and hinge loss. During the execution of AReLU 
the first function was used [15].  AReLU is applied on MNIST 
dataset that contains 70000 images of black and white 
handwritten digits divided into 60000 images for training and 
10000 images for Testing [17]. 

In this study, the decreasing value of the used loss function 
was exploited as an adaptive parameter to keep the network 
active. The study is presented into four sections: section two 
introduces the idea of ReLU, section three identifies the ReLU 
dying problem, and section four introduces the AReLU. 
Section five presents the results and finally section six is the 
conclusion. 

II. RECTIFIED LINEAR UNIT (RELU) ACTIVATION 

FUNCTION 

Artificial neurons are mathematical model that mimic 
human biological neurons and they are the basic building 
blocks of neural networks as shown in Fig. 1. 

 
Fig. 1. Artificial neurons representation 

Where                              
        states the linear function, accordingly the activation 
function       .          represents the inputs,          
illustrates the weights that connect inputs with perceptions and 
they measure the significance level of each input. The bias 
value (b) is added to the weighted sum of the inputs to prevent 
the activation function from getting a zero value. This linear 
results in linear modeling come from the linear mapping of the 
input function to output in hidden layers. The role of 
activation function is to convert these linear outputs into non-
linear outputs for further computation as in 

                                
        ; where α is the activation function. The literature 
has introduced many activation functions such as Sigmoid, 
binary step, Tanh, ReLU, Leaky ReLU, identity and Softmax. 

ReLU activation function can be described mathematically 
as in Eq. (1) and graphically as in Fig. 2, where x is the input 
to the neuron. The function f(x) equal zero for all negative 
input values and equal original input value for all positive 
input values as in Eq. (1). 

     max   x  (1) 

 
Fig. 2. ReLU representation 

ReLU avoids vanishing gradient problem occurred with 
other activation functions by preserving the gradient [18]. This 
problem is formed when the gradients of deep neurons vanish 
or becomes zero, this means that the deep layers of the 
network may not learn or learn very slowly [19]. Derivative 
Activation function is fundamental to optimizing neural 
network, the ReLU (x) can be expressed as: 

              

It can be simplified as follows: 
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The first order derivative of this function is: 
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And can be illustrated as: 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.165.6419&rep=rep1&type=pdf
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The final derivative is: 
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III. RELU DYING PROBLEM 

Dying ReLU problem is one limitation for ReLU where its 
neurons output is zero as illustrated by the red outline in Fig. 
3. 

 

Fig. 3. Red outline where ReLU outputs 0 

The normal situation for ReLU neurons is to stay active, 
update weights, and keep learning. Although this feature 
provides the power to ReLU through the sparsity of the 
network, it poses a problem when most of the inputs of these 
ReLU neurons are in the negative range, and the issue 
becomes more complicated when the output of most Neurons 
is zero, making their task so abnormal that they become 
inactive and unlearning. This inevitably causes gradients to 
fail to flow during backpropagation. 

The cause of this problem is due to two main factors: High 
Learning Rate and a Large Negative Bias. The former one 
allows faster learning with the possibility of a numerical 
overflow, while its very small value may never converge or 
stumble on a suboptimal solution. So choosing an average rate 
that is neither too large nor too small ensures an optimal 
approximation of the mapping problem as represented by the 
training data set. The best way to discover the value of the 
learning rate is through trial and error, not analytically for a 
particular model on a particular data set. This can be 
illustrated by the update process in backpropagation as shown 
in Eq. (2). 

                  (
      

        
) (2) 

where 
      

        
 is the derivative of error with respect to 

weight. We can see from Eq. (2) that giving a high value of 
the learning rate (LR) will cause a high value for the last part 

of Eq. (2)       (
      

        
), so subtracting large number from 

       will end up with highly negative       . These 

negative results cause negative inputs for ReLU, therefore 
generating the dying ReLU problem. 

Biases are extra inputs that ensure neurons are activated 
regardless of the input. Changing the value of the weights in 
the neuron changes the steepness of the curve without the 
ability to change it to the right or left, to change the curve to 
the left or right the value is changed. Giving a high negative 
bias value makes the ReLU activation input negative. To 
mitigate Dying ReLU problem, several techniques have 
emerged, all trying to keep the network active when the input 
is negative or zero. 

Leaky ReLU [12] demolished dead neurons in the negative 
part by adding a slight slop in the negative range using a 
hyperparameter (α= .1 or more) as shown in Eq. (3) and 
illustrated in Fig. 4. 

                         (3) 

 

Fig. 4. Red outline where leaky ReLU outputs less than zero 

Parametric Rectified Linear Unit (PReLU) [13] thereafter 
presented a new learnable parameter as a slope for the 
negative part as in Eq. (4): 

f                                               
 (4) 

And Exponential linear unit (ELU) used an exponential 
function         to transition from the positive to small 
negative values [14] as shown in Eq. (5). 

     {
      

           
 (5) 

IV. ADAPTIVE RECTIFIER LINEAR UNIT (ARELU) ON 

MNIST DATASET 

The study used the MNIST dataset of handwritten 
greyscale images, these images were size-normalized and 
centered in a fixed-size image available from NIST [20] as 
shown in Fig. 5 which shows the first 25 images of MNIST. 
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Fig. 5. Subset of MNIST dataset 

This dataset composed of approximately 70,000 
handwritten monochrome images of 0 to 9 (10 digits), each of 
which is 784 pixels in size, so that the input data is in pairs 
(70,000,784) and output (70,000, 10) as shown in Fig. 6. 

To form the network, the AReLU activation function were 
used in the hidden layer and softmax in the output layer. The 
used loss function is categorical_crossentropy and the 
optimizer is Adamax. The batch size is adopted to 128 and the 
number of epochs to 20. 

Once the output is generated from the final neural net 
layer, loss function (input vs output) is calculated and 
backpropagation process is performed where the weights are 
adjusted to get the minimum loss. Neural Networks are trained 
using the gradient descent process. This process consists of the 
backward propagation step which is basically chain rule to get 
the change in weights in order to reduce the loss after every 
epoch. 

 
Fig. 6. MNIST neural network 

The primary goal of AReLU is to mitigate Dying ReLU 
problem by improving the previous methods by using the 
adaptive Loss Function (Ɩ) parameter instead of 
hyperparameter one. Ɩ is multiplied by the input value as 
shown in Eq. (6) to transit from the positive to small negative 
values. 

     {
      

       
 (6) 

The AReLU has implemented by using Python 
programming language according to the algorithm shown in 
Fig. 7 and more illustrated in Fig. 8. It is noticed from the 
equation that there is no change in the case of the positive 
values, but only the change in the negative inputs, as we 
notice this in Fig. 9(a). 

 

Fig. 7. AReLU algorithm 

 

Fig. 8. AReLU flowchart 

The used structure of the deep neural network is shown in 
Fig. 9 that composed of four layers, one input layer represents 
the input shape as 784 image pixels, two hidden layers each 
composed of 512 neurons and the final 10 neurons layer that 
characterize the output layer. 

Binary Cross-Entropy Loss/Log Loss has been used as loss 
function in the model compilation process; where in this phase 
the loss function, the optimizer and the metrics are defined. 
This function is defined in Eq. (7); where N is the number of 
rows and M the number of classes.     are the corrected 

probabilities, a negative average is used to compensate for 
negative values resulted from calculating log value of 
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corrected probabilities because their values range between 0 
and 1. It is one of the most common loss functions used in 
multiclass classification problems. The value of this function 
decreases as the predicted probability converges to the actual 
label. 

        
 

 
 ∑ ∑             

 
 

 
  (7) 

Backpropagation in a network aims to make a change in 
the error value with respect to weights and this process is 
called derivative because its goal is to make a change in one 
value with respect to another. The first derivative of this 
function is: 
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The function starts with any initial    value; say 0.1 and 
then it is automatically adapted according to the initial loss 
function value. Fig. 9(b) shows the Graphical Representation 
of AReLU Derivative. It is evident that the values of the 
derivative are close to zero but are not zero in the case of 
negative values. 

The most effected activation function used in the output 
layer in the case of multi-layer classification problems is 
Softmax, which converts the raw outputs of a neural network 
into a vector of probability scores between 0 and 1. Its 
equations is defined in: 

             
   

∑     
   

⁄  

Where o is the input vector,      is the standard 
exponential function for   , N is the number of classes in the 
multiclass classifier and      is the standard exponential 
function for output vector and e is the exponential which is 
equal nearly 2.718. 

  
(a)AReLU   (b)AReLU and its Derivative 

Fig. 9. AReLU graphical representation and its derivative 

V. RESULTS 

Fig. 10 illustrates the relationship between the training and 
validation accuracy over 20 epochs, the accuracy escalations 
are noticed in the first three epochs, indicating that the 
network is learning fast, thereafter the curve flattens, 
indicating that there is no need for more epochs to further 
training the model. The model accuracy was 98.8% (meaning 

9880 of the 10000 images were predicted correctly!) and 120 
images were wrongly tagged (1.2%). 

 
Fig. 10. AReLU model accuracy 

AReLU gives better results based on the Misclassification 
Rate (MR) which is a measure of the percentage of 
observations that were incorrectly predicted by some 
classification model [21] and it’s calculated as in 

                        
                 ⁄  

The MR for our model was 1.2% where for PReLU is 1.62 
according to [22] as shown in Table I. This study measured 
the MR for different adaptive ReLUs including Sigmoid, tanh, 
MSAF, MSAf_Symmetrical, ReLU, LReLU, ELU and 
adaptive tanh. 

TABLE I.  MR MEASUREMENTS FOR ACTIVATION FUNCTIONS ON MNIST 

DATASET 

AF MR 

Sigmoid 7.01 

Hyperbolic Tangent 1.86 

MSAF 12.59 

MSAF_Symmetrical 11.28 

ReLU 2.08 

LReLU 1.68 

PReLU 1.6 

ELU 1.88 

Adaptive tanh 2.93 

Reading Fig. 11 which illustrates the relationship between 
training and validation loss, we can see the rapid loss in the 
training set at the first two epochs while validation loss 
remained almost constant for several epochs, in contrast to the 
loss level of the training set, which means that the model can 
be generalized to unseen data. 
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Fig. 11. AReLU model loss 

VI. CONCLUSION 

This article produced automatic and adaptive activation 
function in which it retained inherent characteristics of ReLU 
with simplicity, high accuracy, speed and low loss ratio. 
Expected diminishing characteristic of Loss function value has 
exploited in implementing the AReLU, this function is used to 
measure the difference between the current output and the 
expected output. Cross-entropy type is used in developing the 
ReLU as one of the most widely used loss functions in 
machine learning due to its role in better generalization and 
faster model training. This function is used in binary and 
multi-class classification cases. AReLU is implemented by 
using Python programming language on MNIST dataset of 
handwritten digits to get 1.2% classification Rate. The model 
maintained the gains that the previous methods indicated, such 
as simplicity, low computational cost, no fixed coefficients, 
and adaptation in nature. In the future, AReLU will be applied 
to different data sets and work to reduce the rate of 
misclassification while maintaining the characteristics of 
simplicity, low computational cost, and no hyperparameters. 

ACKNOWLEDGMENT 

The Author would like to express his gratitude to 
AlMaarefa University, Riyadh, Saudi Arabia, for providing 
funding to do this research. 

FUNDING 

This research was funded by AlMaarefa University, 
Riyadh, Saudi Arabia 

REFERENCES 

[1]  Nichols, James A., Hsien W. Herbert Chan, and Matthew AB Baker. 
"Machine learning: applications of artificial intelligence to imaging and 
diagnosis." Biophysical reviews 11.1 (2019): 111-118. 

[2]  Sarker, Iqbal H. "Deep learning: a comprehensive overview on 
techniques, taxonomy, applications and research directions." SN 
Computer Science 2.6 (2021): 1-20. 

[3]  Dubey, Shiv Ram, Satish Kumar Singh, and Bidyut Baran Chaudhuri. 
"Activation functions in deep learning: a comprehensive survey and 
benchmark." Neurocomputing (2022). 

[4]  Fan, Jianqing, Cong Ma, and Yiqiao Zhong. "A selective overview of 
deep learning." Statistical science: a review journal of the Institute of 
Mathematical Statistics 36.2 (2021): 264.  

[5]  Shaik, Nagoor Basha, et al. "A feed-forward back propagation neural 
network approach to predict the life condition of crude oil 
pipeline." Processes 8.6 (2020): 661.  

[6]  Xie, Jingyi, and Sirui Li. "Training Neural Networks by Time-Fractional 
Gradient Descent." Axioms 11.10 (2022): 507. 

[7]  Li, Yanyi, Jian Shi, and Yuping Li. "Real-Time Semantic Understanding 
and Segmentation of Urban Scenes for Vehicle Visual Sensors by 
Optimized DCNN Algorithm." Applied Sciences 12.15 (2022): 7811. 

[8]  Chai, Enhui, et al. "An Efficient Asymmetric Nonlinear Activation 
Function for Deep Neural Networks." Symmetry 14.5 (2022): 1027.  

[9]  Hahnloser, Richard HR, et al. "Digital selection and analogue 
amplification coexist in a cortex-inspired silicon 
circuit." nature 405.6789 (2000): 947-951. 

[10]  Jarrett, Kevin, et al. "What is the best multi-stage architecture for object 
recognition?." 2009 IEEE 12th international conference on computer 
vision. IEEE, 2009. 

[11]  Nair, Vinod, and Geoffrey E. Hinton. "Rectified linear units improve 
restricted boltzmann machines." Icml. 2010. 

[12]  Maas, Andrew L., Awni Y. Hannun, and Andrew Y. Ng. "Rectifier 
nonlinearities improve neural network acoustic models." Proc. icml. 
Vol. 30. No. 1. 2013. 

[13]  He, Kaiming, et al. "." Proceedings of the IEEE international conference 
on computer vision. 2015. 

[14]  Clevert, Djork-Arné, Thomas Unterthiner, and Sepp Hochreiter. "Fast 
and accurate deep network learning by exponential linear units 
(elus)." arXiv preprint arXiv:1511.07289 (2015). 

[15]  Hajiabadi, Moein, et al. "Deep learning with loss ensembles for solar 
power prediction in smart cities." Smart Cities 3.3 (2020): 842-852. 

[16]  Chadha, Ankita, Azween Abdullah, and Lorita Angeline. "A 
Comparative Performance of Optimizers and Tuning of Neural 
Networks for Spoof Detection Framework." International Journal of 
Advanced Computer Science and Applications 13.4 (2022). 

[17]  Deng, Li. "The mnist database of handwritten digit images for machine 
learning research [best of the web]." IEEE signal processing 
magazine 29.6 (2012): 141-142.  

[18]  Razak, H. A., et al. "Detection of Criminal Behavior at the Residential 
Unit based on Deep Convolutional Neural Network." International 
Journal of Advanced Computer Science and Applications 13.2 (2022). 

[19]  Tan, Hong Hui, and King Hann Lim. "Vanishing gradient mitigation 
with deep learning neural network optimization." 2019 7th international 
conference on smart computing & communications (ICSCC). IEEE, 
2019. 

[20]  Cohen, Gregory, et al. "EMNIST: Extending MNIST to handwritten 
letters." 2017 international joint conference on neural networks 
(IJCNN). IEEE, 2017. 

[21]  Maach, Anas, et al. "An Intelligent Decision Support Ensemble Voting 
Model for Coronary Artery Disease Prediction in Smart Healthcare 
Monitoring Environments." arXiv preprint arXiv:2210.14906 (2022). 

[22]  M. M. Lau and K. Hann Lim, "Review of Adaptive Activation Function 
in Deep Neural Network," 2018 IEEE-EMBS Conference on Biomedical 
Engineering and Sciences (IECBES), 2018, pp. 686-690, doi: 
10.1109/IECBES.2018.8626714. 


