
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

172 | P a g e
www.ijacsa.thesai.org

Software Effort Estimation through Ensembling of
Base Models in Machine Learning using a Voting

Estimator
Beesetti Kiran Kumar1, Saurabh Bilgaiyan2, Bhabani Shankar Prasad Mishra3

PhD Scholar, KIITs Deemed to be University, Bhubaneswar, Odisha, India1
Assistant Professor, Department of Information Technology, ANITs, Vishakhapatnam, India1

Assistant Professor, School of Computer Engineering, KIITs Deemed to be University, Bhubaneswar, Odisha, India2
Professor, School of Computer Engineering, KIITs Deemed to be University, Bhubaneswar, Odisha, India3

Abstract—For a long time, researchers have been working to
predict the effort of software development with the help of
various machine learning algorithms. These algorithms are
known for better understanding the underlying facts inside the
data and improving the prediction rate than conventional
approaches such as line of code and functional point approaches.
According to no free lunch theory, there is no single algorithm
which gives better predictions on all the datasets. To remove this
bias our work aims to provide a better model for software effort
estimation and thereby reduce the distance between the actual
and predicted effort for future projects. The authors proposed an
ensembling of regressor models using voting estimator for better
predictions to reduce the error rate to over the biasness provide
by single machine learning algorithm. The results obtained show
that the ensemble models were better than those from the single
models used on different datasets.

Keywords—Machine learning; software effort estimation;
voting; regression; evolutionary algorithms

I. INTRODUCTION
For a given project, the effort estimation of software is

always a burdensome task. For an extended period, team and
finance managers strive to precisely calculate the effort, cost,
and time while helping evaluate the project's schedule and
budget parameters [1]. It is very tough to predict those
specifications during the early stages of the project, where the
scope of every module has yet to be marked, and when we still
have no conclusive evidence for the ultimate functional
requirements of the product [2]. Most frequently, insufficient
knowledge of the affecting factors and the possible risks that
can happen, or the work deadline fears, and conventional
effort estimation methods [3], which are widely accepted by
the opinions of various software domain experts, may
sometimes lead to erroneous estimates . Because of these, the
software product may not be delivered in time with the
expected non-functional requirements. Though there are
frequent improvements in the up-gradation of software
development standards, surveys [4] show that only a quarter of
the total number of beginnings is successful. These issues,
which result in going beyond the budget or schedule, may lead
to its termination [5]. Though the usage of agile methodology
[6] reduced some concerns, project omissions are still
occurring because of not having access to all the country's
projects. For a country that just has a limit to its country's

projects, obtaining success in the projects is still a problem.
All the managers of the project are claiming otherwise. The
causes are the poor skillsets of the teams on the project and
less bonding with stakeholders. There are high chances of
more project success if the effort is well predicted from the
beginning. But once the project's parameters are set, it's not a
good idea to increase either the budget or the schedule because
that could lead to risks that are hard to predict.

The client's approval for that scenario must be independent
of the chosen process model for project development, time,
and cost determination. For this case, some simple and easy
conventional techniques that experts accept, such as PERT,
CPM, etc., are primarily deployed [7]. Researchers started
working on methods depending on software lines of code, and
functional points as the previously mentioned techniques are
vulnerable [8]. In various ways, the software parameters try to
be up to date with the improved technologies. However, those
techniques struggle to keep pace in the fastest-growing world,
specifically with the reusability components and software
dependencies that have already gone so far in their
enhancement.

After considering all these drawbacks, researchers dug
deep for efficient predictive techniques for effort, especially in
data science areas [9]. This area is highly trusted, proving its
potential with uncertain and unstructured data. Hence, it is
believed that they can find the effort and duration way better
than existing models. In other methods, they consider patterns
in the previous data and do not rely on human influences,
making them unique in their work. The factors behind this are
systematic research that builds the best model for prediction to
reduce the error rate for data. Biased models have been
generated for some time. Their work is limited to a particular
dataset, repeatedly underfitting or overfitting using varied
ensemble techniques. The critical role is preparing data that
has a crucial impact on the model, but divergent methods are
to be used. Even the individual algorithms may not give an
improved score, which is evident from various journals. The
same can be repeated with effort and cost prediction when
working with data and building models with those algorithms
[10].

Though using all project parameters produced better
results in the literature, some works included proper feature

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

173 | P a g e
www.ijacsa.thesai.org

selection strategies, eliminating irrelevant features for less
computation usage and creating a unique effect with fewer
features than the others. Some of them are the Genetic
Algorithm [11], PSO [12], and WCO [13].

This work aims to improvise the existing models on
reliable machine learning algorithms for the best effort
prediction. An averaging ensemble of various regressors
proposes a hybrid model for this aim. Also, the proposed work
conducted experiments on various datasets such as cocomo81,
china, Desharnais, Maxwell, Kemerer, and Albrecht etc. to
evaluate the behavior of the model with varying datasets.

II. RELATED WORK
Amini et al. [14], in their paper combined two techniques,

namely embedded and wrapper methods. The main motto of
their writing is to integrate GA into regularized learning to
improve prediction accuracy in regression problems. The
outcome of their study reduced the dimension feature space by
over 80% without affecting the accuracy. De Carvalho et al.
[15] proposed an Extreme learning machine for forecasting
software efforts. For selecting the best features, the Pearson
correlation coefficient is used for feature selection. Extreme
Learning Machines (ELM) are used with different numbers of
hidden layers in their work. The ELM model values are
compared with the models mentioned in the literature, namely
LR, SVM, KNN, and MLP. The metric evaluated for
comparison is MAE.

Ghosh et al. [16] proposed the binary variant of SFO for
selecting features. This work compared ten state-of-the-art
techniques and declared that BSFO based on adaptive hill
climbing had shown better reliability. Carbonera et al. [17]
surveyed over 120 studies and indicated that this study
encouraged the researchers to minimize the space in the effort
estimation. Chhabra et al. [18] worked in soft computing
Fuzzy model along with PSO. This Fuzzy logic improved the
existing COCOMO technique. The metric followed is MRE
for result comparison. Ghatasheh et al. [19] proposed a firefly
algorithm to optimize software effort. The results were better
than the conventional models used earlier.

Wani et al. [20] worked on ANN and PSO. The limitation
in their work is that the combination is giving better results for
only the cocomo81 dataset. The ANN showed fast training
speed than MLP. This method ended with lesser MdMRE and
MRE than other models. Ali et al. [21] used all bio-inspired
feature selection strategies with Support Vector and Random
Forest regressors. The evaluation metrics considered are
Correlation Coefficient (CC), Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), Relative Absolute Error
(RAE), and Root Relative Squared Error (RRSP).

Kodmelwar et al. [22] modified a neural network for effort
prediction. The proposed method uses java for the front-end
tool. The metrics used for comparison are PRED, MRE, MAE,
MMRE, and RE. Desai et al. [23] combined ANN with
cuckoo optimization, and experiments were performed on
various datasets. This hybrid combination worked well then

all other literature models except for the ACO technique.
Langsari et al. [24] optimized the parameters of the COCOMO
II model using particle swarm optimization. PSO is a valuable
strategy for resolving dataset uncertainty and optimizing the
values. The author worked on the Turkish software industry
dataset.

Hosni et al. [25] concentrated on parameter tuning
ensemble using grid search optimization. The authors
evaluated results over seven datasets to compare statistical
measures, namely mean, median, and inverse ranked weighted
mean. Used three algorithms, GS, PSO, and UC-Weka, and
concluded that PSO gained over other approaches. Goyal et al.
[26] proposed an SG5 neural network model trained on the
Cocomo dataset and tested in the Kemerer dataset. It excelled
over the traditional models. Padhy et al. [27] developed an
Aging and survivability-related reusability optimization
model, and the software metric estimation is done with the
help of UML or Class diagrams. To overcome the limitations
of ANN, some different Evolutionary Computing (EC)
algorithms like Genetic Algorithms, Differential Evolution,
and Particle Swarm Optimization (PSO) have been proposed.
By implementing the above algorithms, the regression outputs
are improved so that the results are significantly accurate and
most effective.

Pospieszny et al. [28] proposed ensemble averaging with a
3-fold validation, namely SVM, MLP, and GLM, to predict
both effort and duration. Here used the standard ISBSG
dataset and considered the MMRE and PRED metrics. In their
paper, Shekhar et al. [29] discussed various software cost
estimation techniques and models. The authors classified these
techniques into algorithmic and non-algorithmic, which helps
the software team rule out the weaker methods and provides
specific areas for considering an approach.

Venkatesh et al. [30] calculated the workforce to
determine the cost and effort of the project, which
outperformed other models, like regression models and neural
networks. This work applied to several PROMISE datasets by
considering RMSE as the root metric. Nassif et al. [31]
worked on four different neural networks, the oldest projects
used for training and the newest projects used for testing. Here
ten-fold cross-validation is achieved. The author concluded
that in 60% of datasets, CCNN performed better than other
models, and on 40% of datasets, RBFNN performed better
than others. Miandoab et al. [32] proposed a hybrid Algorithm
using a particle swarm optimization algorithm and fuzzy logic.

Dizaji et al. [33] combined Ant Colony Optimization
(ACO) and Lorentz transformation as Chaos Optimization
Algorithm (COA). The meta-heuristic algorithms like ACO
and COA are used to estimate the cost of the software. Mean
Absolute Relative Error (MARE) is taken into consideration.
Here the dataset is classified and distributed among the ACO
and hybrid ACO and COA algorithms according to their
functionalities. The results show that the performance is
improved and efficient when the ACO algorithm is combined
with COA.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

174 | P a g e
www.ijacsa.thesai.org

III. METHOD
The proposed approach introduces a novel method of using

ensemble techniques with voting for software development
effort estimation. This approach combines the strengths of
multiple models and leverages the diversity of their
predictions to improve accuracy. By investigating the impact
of different factors on the accuracy of the ensemble with
voting, this approach can provide insights into how to
optimize the performance of the ensemble for different
datasets and problems. The proposed approach can also have
practical applications for software development organizations,
as it can help them to make more accurate and informed
decisions about project planning and resource allocation. The
proposed architecture is illustrated in Fig. 1.

• Collect historical project data: Gather historical project
data including information on the size of the project,
the number of developers involved, the complexity of
the software, and the amount of time and resources
required to complete the project.

• Preprocess the data: Preprocess the data to remove any
outliers or errors, and to convert the data into a format
that can be used by the ensemble models.

• Train multiple estimation models: Train multiple
estimation models on the preprocessed data, such as
linear regression, decision trees, neural networks, and
support vector machines.

• Implement the voting algorithm: Implement the voting
algorithm to combine the predictions from the multiple
models. There are different types of voting algorithms
such as majority voting, weighted voting, and threshold
voting.

• Evaluate the ensemble with voting: Evaluate the
accuracy of the ensemble with voting using a
validation set of historical data that was not used
during training. Compare the performance of the
ensemble with voting against individual models and
other ensemble techniques.

• Investigate the impact of different factors: Investigate
the impact of different factors on the accuracy of the
ensemble with voting, such as the number of models,
the type of models, the voting algorithm, and the size
and quality of the historical data.

• Apply the ensemble with voting to new data: Apply the
ensemble with voting to new software development
projects to assess its accuracy and reliability in real-
world scenarios.

A. Data Preprocessing
Preprocessing of data involves data cleansing approaches.

It has a clear positive impact on training the machine learning
models. It reduces the dataset's noise by filling in missing
values, removing duplicate records, dropping unnecessary
columns, etc. Finally, it produces the data in its best
representation to be used for model building. Without
preprocessing, models might learn the noise as an underlying
pattern, leading to overfitting or underfitting the data. Here,

we dropped some attributes in our work, such as project ids,
dates of projects, other categorical details, etc. We ignored the
missing data records.

B. Normalization
Normalization is done as a second step, and it is essential

to scale the features within a range for the model's
performance. This normalization sets the feature scale from 0
to 1 and is implemented using the MinMax scalar in Python.
In our datasets, we normalized all the input and output
features.

𝑥_𝑛𝑒𝑤 = 𝑥 − 𝑥_𝑚𝑖𝑛
x_max− 𝑥_𝑚𝑖𝑛

 (1)

C. 5 - Cross Fold Validation
Cross-fold validation is an interesting technique, which

makes our model more reliable. Instead of considering a
particular subset for training and the remaining part for
testing, it uses the entire dataset for training and testing
purposes. A five-fold validation usually splits the entire
dataset into five equal sets or folds, where for every time, four
sets are used for training, and one set is used for testing. This
process is repeated for four (k-1) iterations, i.e., all possible
combinations, and it will give the average score of all
iterations.

Fig. 1. Proposed architecture

D. Algorithms
In our work, we build a hybrid model with the help of five

machine learning Regression algorithms. Each algorithm has a
different structure in its implementation.

1) Linear regression: Linear Regression frames an
equation for the given attributes to fetch the target variable. It
assumes a linear relationship between the characteristics of a
dataset. The equation is y = f (x), where y represents the
output variable and x is the set of input attributes. This
algorithm performs better than complex models when the
dataset is linear.

2) Random forest: Random Forest is a bagging model. It
constructs several trees for prediction. Every tree is
constructed from a subset of the training data. Every tree will
give some effort for a test set. All predictions are averaged to

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

175 | P a g e
www.ijacsa.thesai.org

get the final estimate of how much work needs to be done,
lowering the result's error rate.

3) Boosting techniques: Every boosting algorithm has a
base model. After each iteration, a new weak learner is added
to the sequence of learners; every iteration model reduces the
residual effort. We implemented three boosting models in our
work: Ada Boost, Gradient Boost (GB), and Extreme Gradient
Boost. AdaBoost handles missing data well and undergoes no
overfitting. It has fewer parameters to tune when needed and
is sensitive to outliers. Gradient Boosting is a sequence of tree
learners robust to outliers, depending on residuals. XGB has
been showing better results than GB as it includes the
calculation of similarity weights.

E. Voting
Every algorithm is unique in its background processing of

data. Hence, all algorithms can find their patterns of data.
Here comes the idea of ensembling [34]. Ensembling is
obtained by combining various models. Bagging, boosting,
voting, etc., are some of the ensemble approaches [35]. Here
we aggregated predictions of various models, i.e., averaged
the output predictions of all models and produced one model
closer to the actual effort than any individual model. We took
the Linear Regression, Decision Tree Regression, Random
Forest Regression, Support Vector Regression, and Neural
Network Regression outputs, calculated the average of all the
values, and compared them with the actual effort in the test
dataset. The results are given for evaluation metrics.

F. Pseudo Code
Step 1: Collect historical project data
data = load_data()
Step 2: Preprocess the data
data = preprocess_data(data)
Step 3: Train multiple estimation
models
models = []
for i in range(num_models):
 model = train_model(data)
 models.append(model)
Step 4: Implement the voting algorithm
def ensemble_predict(models, input):
 predictions = [model.predict(input)
for model in models]
 return voting_algorithm(predictions)
Step 5: Evaluate the ensemble with
voting
validation_set = load_validation_set()
ensemble_accuracy = 0
for input, target in validation_set:
 ensemble_prediction =
ensemble_predict(models, input)
 ensemble_accuracy +=
evaluate_prediction(ensemble_prediction,
target)
ensemble_accuracy /= len(validation_set)
Step 6: Investigate the impact of
different factors

For example, vary the number of models,
the type of models, the voting algorithm,
and the size and quality of the
historical data.

Step 7: Apply the ensemble with voting
to new data
new_data = load_new_data()
for input in new_data:
 ensemble_prediction =
ensemble_predict(models, input)
process_prediction(ensemble_prediction)

IV. EVALUATION CRITERIA
In problems like predicting continuous values, we

calculate the error rate given as the difference between the
actual and predicted values. For our problem statement, we
looked at the MAE (Mean Absolute Error), MSE (Mean
Squared Error), and RMSE (Root Mean Square Error) metrics,
which are used to compare models.

𝑀𝐴𝐸 = ∑𝑎𝑏𝑠�𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑�

n
 (2)

𝑀𝑆𝐸 = ∑�𝑦𝑎𝑐𝑡𝑢𝑎𝑙−𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑�
2

𝑛
 (3)

𝑅𝑀𝑆𝐸 = �∑�𝑦𝑎𝑐𝑡𝑢𝑎𝑙−𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑�
2

𝑛

2
 (4)

V. RESULTS AND DISCUSSION
Below, Fig. 2 represents the deviation between actual and

predicted effort values on all datasets, where the X-axis
represents the record number. The Y-axis represents the effort
of the record. Fig. 2(a), 2(d) on Cocomo81 and Maxwell show
a notifiable difference in peak effort values. The values are
closer to the China dataset in Fig. 2(b). Fig. 2(c) and 2(f) show
a constant gap between actual and predicted values. Fig. 2(e)
on Albrecht shows a considerable difference.

(a)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

176 | P a g e
www.ijacsa.thesai.org

(b)

(c)

(d)

(e)

(f)

Fig. 2. (a) Cocomo81 actual vs. predicted effort (b): China's actual vs.
predicted effort (c) Desharnais actual vs. predicted effort (d) Maxwell actual
vs. predicted effort (e) Kemerer actual vs. predicted effort (f) Albrecht actual

vs. predicted effort

Fig. 2(a) represents a line graph drawn to show the
deviations between actual effort and the predicted effort by
our proposed model in the COCOMO81 dataset. This graph
shows a noticeable difference at the peak points.

Fig. 2(b) represents a line graph drawn to show the
deviations between actual effort and the predicted effort by
our proposed model in the China dataset. We can see that the
predicted line has come close to the actual line in many places.

Fig. 2(c) represents a line graph drawn to show the
deviations between actual effort and the predicted effort by
our proposed model in the Desharnais dataset. In this graph,
records 10 and 11 have a significant deviation, whereas
records 12 to 14 have the least deviation.

Fig. 2(d) represents a line graph drawn to show the
deviations between actual effort and the predicted effort by
our proposed model in the Maxwell dataset. This graph shows
a noticeable difference at the peak points.

Fig. 2(e) represents a line graph drawn to show the
deviations between actual effort and the predicted effort by
our proposed model in the Kemerer dataset. As the test set
records are meager, they show a significant deviation, but the
deviation range is 0.05.

Fig. 2(f) represents a line graph drawn to show the
deviations between actual effort and the predicted effort by
our proposed model in the Albrecht dataset, where the X-axis
represents the record number and the Y-axis represents the
effort of the record. Fig. 3 represents the residuals graphs
between actual and predicted effort values on all datasets. Fig.
3(a) and 3(d) on Cocomo81 and Maxwell shows a notifiable
difference in peak effort values. Fig. 3(b) of the China dataset
shows values closer to 0 ("zero"). Fig. 3(c) and 3(f) show a
constant gap between actual and predicted values. There is a
significant difference in Albrecht's Fig. 3(e).

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

177 | P a g e
www.ijacsa.thesai.org

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3. (a) Cocomo81 prediction residuals (b) China prediction residuals (c)
Desharnais prediction residuals (d) Maxwell prediction residuals (e) Kemerer

prediction residuals (f) Albrecht prediction residuals

The above Fig. 3(a) represents a graph that shows the
residuals between actual effort and the predicted effort of the
data records of the COCOMO81 dataset ranging from-0.4 to
+0.4, and most of the data points are present in the range of-
0.2 to +0.2.

The above Fig. 3(b) represents a graph that shows the
residuals between actual effort and the prediction effort of the
data records of the China dataset ranging from-0.10 to +0.25.
In the presented graph, most data points are nearer to 0,
indicating that the proposed model is working much more
efficiently in the China dataset.

The above Fig. 3(c) represents a graph that shows the
residuals between actual effort and the predicted effort of the
data records of the Desharnais dataset, ranging from-0.10 to
+0.20. In this graph, most of the data points are below point 0.
That means the proposed model predicted values are less than
the actual values.

Fig. 3(d) shows a graph of the residuals between actual
effort and predicted effort of the Maxwell dataset data records,
ranging from -0.2 to +0.8. According to this graph, the
proposed model prediction is much closer to the actual values
based on working on this dataset.

Fig. 3(e) depicts a graph displaying the residuals between
actual effort and predicted effort of the Kemerer dataset data
records, ranging from 0.05 to +0.16.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

178 | P a g e
www.ijacsa.thesai.org

The above Fig. 3(f) represents a graph that shows the
residuals between actual effort and the predicted effort of the
data records of the Albrecht dataset ranging from-0.15 to
+0.20.

Below, Fig. 4 shows the bar plots of all the implemented
models, representing the mean absolute error on all six
datasets. Fig. 4(a) the voting model outperformed GB, XGB,
RF, and LR except for ADB. Fig. 4(b) shows that, except for
RF, voting showed less residual than all others. Fig. 4(c), (d),
and (f) voting models are reliable. From all the above
comparisons, we concluded that voting is a constant
performer. On all datasets, the models behave randomly,
whereas voting shows an upvote constantly.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4. (a) COCOMO81 mean absolute error (b) CHINA mean absolute
error (c) DESHARNAIS mean absolute error (d) MAXWELL mean absolute

error (e) KEMERER mean absolute error (f) ALBRECHT mean absolute
error

The graphical representation of Mean Absolute Error for
various models that are worked on the COCOMO dataset is
shown in Fig. 4(a), with the ADB model giving the slightest
error followed by voting and the Random Forest giving the
highest error among the models presented.

Fig. 4(b) shows a graphical representation of the Mean
Absolute Error for various models tested on the CHINA

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

179 | P a g e
www.ijacsa.thesai.org

dataset. The RF model produces the lowest error, and the
ADB produces the highest error.

Fig. 4(c) shows a graphical representation of the Mean
Absolute Error for various models tested on the Desharnais
dataset, with the Voting and XGB models producing the
lowest error and the ADB having the highest error.

The graphical representation of Mean Absolute Error for
various models that are worked on the MAXWELL dataset is
shown in Fig. 4(d), with the XGB model giving a minor error
and the LR model giving the highest error among the models
presented.

Fig. 4(e) shows a graphical representation of the Mean
Absolute Error for various models tested on the Kemerer
dataset. The XGB model produces the lowest error, and the
LR model produces the highest error.

Fig. 4(f) shows a graphical representation of the Mean
Absolute Error for various models tested on the Albrecht
dataset. The RF model produces the lowest error, and the LR
model produces the highest error.

We normalized the literature results and compared them
with the obtained model’s results (see Tables I-VI)

TABLE I. COCOMO81 DATASET

Model MAE MSE RMSE
Linear Regression 0.1499 0.0393 0.1984

AdaBoost 0.1248 0.0395 0.1989

Random Forest 0.1627 0.0680 0.2608

Gradient Boosting 0.1587 0.0662 0.2574

XGB 0.1509 0.0680 0.2665

Ali et al. [10] 0.1652 - 0.4322

Voting 0.1466 0.0527 0.2297

TABLE II. CHINA DATASET

Model MAE MSE RMSE
Linear Regression 0.0080 0.0005 0.0231

AdaBoost 0.0159 0.0013 0.0363

Random Forest 0.0070 0.0008 0.0286

Gradient Boosting 0.0072 0.0008 0.0295

XGB 0.0077 0.0009 0.0308

Hosni et al. [14] 0.0099 - -

Voting 0.0077 0.0007 0.0270

TABLE III. DESHARNAIS DATASET

Model MAE MSE RMSE
Linear Regression 0.0625 0.0070 0.0841

AdaBoost 0.0912 0.0107 0.1037

Random Forest 0.0757 0.0095 0.0976

Gradient Boosting 0.0728 0.0075 0.0866

XGB 0.0601 0.0065 0.0790

De Carvalho et al., [2] 0.0562 0.0078 0.0880

Hosni et al. [14] 0.0664 - -

Voting 0.0627 0.0061 0.0783

TABLE IV. MAXWELL DATASET

Model MAE MSE RMSE
Linear Regression 0.1519 0.0571 0.2390

AdaBoost 0.1287 0.0503 0.2243

Random Forest 0.1333 0.0739 0.2719

Gradient Boosting 0.1166 0.0565 0.2378

XGB 0.1131 0.0544 0.2334

Voting 0.1221 0.0555 0.2356

TABLE V. KEMERER DATASET

Model MAE MSE RMSE
Linear Regression 0.2009 0.0462 0.2151

AdaBoost 0.0714 0.0085 0.0922

Random Forest 0.0865 0.0074 0.0865

Gradient Boosting 0.0684 0.0066 0.0815

XGB 0.0625 0.0079 0.0893

Ali et al. [10] 0.1113 - 0.2200

Hosni et al. [14] 0.0866 - -

Voting 0.0925 0.0160 0.1031

TABLE VI. ALBRECHT DATASET

Model MAE MSE RMSE
Linear Regression 0.1078 0.1977 0.1406

AdaBoost 0.0790 0.0113 0.1064

Random Forest 0.0786 0.0077 0.0878

Gradient Boosting 0.0995 0.0168 0.1298

XGB 0.0835 0.0115 0.1073

Ali et al. [10] 0.0856 - 0.1196

Voting 0.0775 0.0099 0.0996

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

180 | P a g e
www.ijacsa.thesai.org

Our work includes testing the voting regressor on six
datasets. From the above tables, observations in all datasets
voted on, showed excellent performance in minimizing the
actual and predicted effort error. On the COMO81 dataset,
absolute error is the minimum for voting, and squared errors
are minor for linear regression. On COCOMO81, China,
Desharnais, Kemerer, Maxwell, and Albrecht had excellent
performances. Finally, we concluded that all dataset
implementations support voting, which makes voting more
reliable and robust. Voting followed by linear regression
shows that the datasets have a linear relationship between the
attributes of the projects.

VI. CONCLUSION
We studied various existing research papers on software

effort estimation in this work. In the early days, we relied on
many conventional approaches, considering the line of codes,
functional points, CPM and PERT, etc., or merely relying on
the people's judgment that has ample experience in software
project effort determination. Because extensive developments
in project building consider multiple parameters in every
project, these techniques might not be feasible anymore with
rapid results in software projects. And at the same time,
machine learning has gained momentum in recent decades in
various domains. And there is some work taking place in
software engineering through machine learning. Therefore,
our work aims to provide a robust machine learning model for
effort calculation. We successfully used the machine learning
ensembling concept to predict software development efforts.
We considered every parameter for the effort estimation.
Based on our research, the ensembling of models
outperformed other single models. We recorded a lower error
rate from the ensemble model comparatively. The average of
different predictors positively impacted the output, which
shows the vital role played in optimizing software effort
estimation in the machine learning area. The input dataset
dramatically affects how well the machine learning algorithm
works, and in our work, models performed very well with our
datasets.

REFERENCES
[1] Ramesh, M. R., & Reddy, C. S. (2016). Difficulties in software cost

estimation: A survey. International Journal of Scientific Engineering and
Technology, 5(1), 10-13.

[2] Hareton, L., and Zhang F: “Software Cost Estimation”, Department of
Computing, Hong Kong Polytechnic
University.http://paginaspersonales.deusto.es/cortazar/doctorado/articulo
s/leung-andbook.pdf, accessed 24th Nov 2019.

[3] Rajeswari, K., &Beena, D. R. (2018). A Critique on Software Cost
Estimation. International Journal of Pure and Applied Mathematics,
118(20), 3851-3862.

[4] Bull Survey, 1998, Failure Causes.
http://www.itcortex.com/Stat_Failure_Cause.htm#surveys, Retrieved on
1stJune 2013.

[5] KPMG Canada, 1997, Failure Causes.
http://itcortex.com/Stat_Failure_Cause.htm#surveys. Retrieved on
2ndJune 2013.

[6] Ziauddin, Shahid Kamal Tipu, ShahrukhZia, “An Effort Estimation
Model for Agile Software Development”, Advances in Computer
Science and its Applications (ACSA), Vol. 2, No. 1, 2012, ISSN 2166-
2924.

[7] Boehm, B. W. (2017, May). Software cost estimation meets software
diversity. In 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C) (pp. 495-496). IEEE.

[8] Santanu Kumar Rath, “Use Case Point Approach Based Software Effort
Estimation using Various Support Vector Regression Kernel Methods”,
January 2014.

[9] Ali BouNassif , Mohammad Azzeh , Ali Idri , and Alain Abran, Hindawi
, Software Development Effort Estimation Using Regression Fuzzy
Models, Computational Intelligence and Neuroscience Volume 2019.

[10] C. E. L. Peixoto, J. L. N. Audy and R. Prikladnicki, "Effort Estimation
in Global Software Development Projects: Preliminary Results from a
Survey," 2010 5th IEEE International Conference on Global Software
Engineering, Princeton, NJ, 2010, pp. 123-127, doi:
10.1109/ICGSE.2010.22.

[11] B Rajesh Kumar Singh, A.K.Misra,”Software Effort Estimation by
Genetic Algorithm Tuned Parameters of Modified Constructive Cost
Model for NASA Software Projects”, International Journal of
Computer Applications 59(9):22-26, December 2012.

[12] Kumar, G., & Bhatia, P. K.. Empirical assessment and optimization of
software cost estimation using soft computing techniques. In Advanced
Computing and Communication Technologies (pp. 117-130). Springer,
Singapore, 2016.

[13] Ahmad, S. W., & Bamnote, G. R.. Whale–crow optimization (WCO)-
based Optimal Regression model for Software Cost Estimation.
Sādhanā, 44(4), 94, 2019.

[14] Amini, F., & Hu, G. (2021). A two-layer feature selection method using
a genetic algorithm and elastic net. Expert Systems with Applications,
166, 114072.

[15] De Carvalho, H. D. P., Fagundes, R., & Santos, W. (2021). Extreme
Learning Machine Applied to Software Development Effort Estimation.
IEEE Access, 9, 92676-92687.

[16] Ghosh, K. K., Ahmed, S., Singh, P. K., Geem, Z. W., & Sarkar, R.
(2020). Improved binary sailfish optimizer based on adaptive β-hill
climbing for feature selection. IEEE Access, 8, 83548-83560.

[17] Carbonera, C. E., Farias, K., & Bischoff, V. (2020). Software
development effort estimation: a systematic mapping study. IET
Software, 14(4), 328-344.

[18] Chhabra, S., & Singh, H. (2020). Optimizing design of a fuzzy model
for software cost estimation using particle swarm optimization
algorithm. International Journal of Computational Intelligence and
Applications, 19(01), 2050005.

[19] Ghatasheh, N., Faris, H., Aljarah, I., & Al-Sayyed, R. M. (2019).
Optimizing software effort estimation models using the firefly
algorithm. arXiv preprint arXiv:1903.02079.

[20] Wani, Z. H., & Quadri, S. M. K. (2019). An improved particle swarm
optimization-based functional link artificial neural network model for
software cost estimation. International Journal of Swarm Intelligence,
4(1), 38-54.

[21] Ali, A., & Gravino, C. (2019, December). Using Combinations of Bio-
inspired Feature Selection Algorithms in Software Efforts Estimation:
An Empirical Study. In 2019 13th International Conference on Open
Source Systems and Technologies (ICOSST) (pp. 1-8). IEEE.

[22] Kodmelwar, M. K., Joshi, S. D., & Khanna, V. (2018). A deep learning
modified neural network is used for efficient effort estimation. Journal
of Computational and Theoretical Nanoscience, 15(11-12), 3492-3500.

[23] Desai, V. S., & Mohanty, R. (2018, October). ANN-Cuckoo
optimization technique to predict software cost estimation. In 2018
Conference on Information and Communication Technology (CICT)
(pp. 1-6). IEEE.

[24] Langsari, K., & Sarno, R. (2018). Optimizing effort parameter of
COCOMO II using particle swarm optimization method. Telkomnika,
16(5), 2208-2216.

[25] Hosni, M., Idri, A., Abran, A., & Nassif, A. B. (2018). On the value of
parameter tuning in heterogeneous ensembles effort estimation. Soft
Computing, 22(18), 5977-6010.

[26] Goyal, S., & Parashar, A. (2018). Machine learning application to
improve COCOMO model using neural networks. International Journal
of Information Technology and Computer Science (IJITCS), 3, 35-51.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

181 | P a g e
www.ijacsa.thesai.org

[27] Padhy, N., Singh, R. P., & Satapathy, S. C. (2018). Software reusability
metrics estimation: algorithms, models and optimization techniques.
Computers & Electrical Engineering, 69, 653-668.

[28] Pospieszny, P., Czarnacka-Chrobot, B., & Kobylinski, A. (2018). An
effective approach for software project effort and duration estimation
with machine learning algorithms. Journal of Systems and Software,
137, 184-196.

[29] Shekhar, S., & Kumar, U. (2016). Review of various software cost
estimation techniques. International Journal of Computer Applications,
141(11), 31-34.

[30] Venkataiah, V., Mohanty, R., Pahariya, J. S., & Nagaratna, M. (2017).
Application of ant colony optimization techniques to predict software
cost estimation. In Computer Communication, Networking and Internet
Security (pp. 315-325). Springer, Singapore.

[31] Nassif, A. B., Azzeh, M., Capretz, L. F., & Ho, D. (2016). Neural
network models for software development effort estimation: a
comparative study. Neural Computing and Applications, 27(8), 2369-
2381.

[32] Miandoab, E. E., & Gharehchopogh, F. S. (2016). A novel hybrid
algorithm for software cost estimation based on cuckoo optimization and
k-nearest neighbors algorithms. Engineering, Technology & Applied
Science Research, 6(3), 1018-1022.

[33] Dizaji, Z. A., & Gharehchopogh, F. S. (2015). A hybrid of ant colony
optimization and chaos optimization algorithms approach for software
cost estimation. Indian Journal of science and technology, 8(2), 128.

[34] Mahmood, Y., Kama, N., Azmi, A., Khan, A. S., & Ali, M. (2021).
Software Effort Estimation Accuracy Prediction of Machine Learning
Techniques: A Systematic Performance Evaluation. ArXiv.
https://doi.org/10.48550/arXiv.2101.10658

[35] Marco, R., Ahmad, S. S. S., & Ahmad, S. (2022). Bayesian
hyperparameter optimization and Ensemble Learning for Machine
Learning Models on software effort estimation. International Journal of
Advanced Computer Science and Applications, 13(3).

	I. Introduction
	II. Related Work
	III. Method
	A. Data Preprocessing
	B. Normalization
	C. 5 - Cross Fold Validation
	D. Algorithms
	1) Linear regression: Linear Regression frames an equation for the given attributes to fetch the target variable. It assumes a linear relationship between the characteristics of a dataset. The equation is y = f (x), where y represents the output variable a�
	2) Random forest: Random Forest is a bagging model. It constructs several trees for prediction. Every tree is constructed from a subset of the training data. Every tree will give some effort for a test set. All predictions are averaged to get the final est�
	3) Boosting techniques: Every boosting algorithm has a base model. After each iteration, a new weak learner is added to the sequence of learners; every iteration model reduces the residual effort. We implemented three boosting models in our work: Ada Boost�

	E. Voting
	F. Pseudo Code

	IV. Evaluation Criteria
	V. Results and Discussion
	VI. Conclusion
	References

