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Abstract—For a long time, researchers have been working to 
predict the effort of software development with the help of 
various machine learning algorithms. These algorithms are 
known for better understanding the underlying facts inside the 
data and improving the prediction rate than conventional 
approaches such as line of code and functional point approaches. 
According to no free lunch theory, there is no single algorithm 
which gives better predictions on all the datasets. To remove this 
bias our work aims to provide a better model for software effort 
estimation and thereby reduce the distance between the actual 
and predicted effort for future projects. The authors proposed an 
ensembling of regressor models using voting estimator for better 
predictions to reduce the error rate to over the biasness provide 
by single machine learning algorithm. The results obtained show 
that the ensemble models were better than those from the single 
models used on different datasets. 

Keywords—Machine learning; software effort estimation; 
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I. INTRODUCTION 
For a given project, the effort estimation of software is 

always a burdensome task. For an extended period, team and 
finance managers strive to precisely calculate the effort, cost, 
and time while helping evaluate the project's schedule and 
budget parameters [1]. It is very tough to predict those 
specifications during the early stages of the project, where the 
scope of every module has yet to be marked, and when we still 
have no conclusive evidence for the ultimate functional 
requirements of the product [2]. Most frequently, insufficient 
knowledge of the affecting factors and the possible risks that 
can happen, or the work deadline fears, and conventional 
effort estimation methods [3], which are widely accepted by 
the opinions of various software domain experts, may 
sometimes lead to erroneous estimates . Because of these, the 
software product may not be delivered in time with the 
expected non-functional requirements. Though there are 
frequent improvements in the up-gradation of software 
development standards, surveys [4] show that only a quarter of 
the total number of beginnings is successful. These issues, 
which result in going beyond the budget or schedule, may lead 
to its termination [5]. Though the usage of agile methodology 
[6] reduced some concerns, project omissions are still 
occurring because of not having access to all the country's 
projects. For a country that just has a limit to its country's 

projects, obtaining success in the projects is still a problem. 
All the managers of the project are claiming otherwise. The 
causes are the poor skillsets of the teams on the project and 
less bonding with stakeholders. There are high chances of 
more project success if the effort is well predicted from the 
beginning. But once the project's parameters are set, it's not a 
good idea to increase either the budget or the schedule because 
that could lead to risks that are hard to predict. 

The client's approval for that scenario must be independent 
of the chosen process model for project development, time, 
and cost determination. For this case, some simple and easy 
conventional techniques that experts accept, such as PERT, 
CPM, etc., are primarily deployed [7]. Researchers started 
working on methods depending on software lines of code, and 
functional points as the previously mentioned techniques are 
vulnerable [8]. In various ways, the software parameters try to 
be up to date with the improved technologies. However, those 
techniques struggle to keep pace in the fastest-growing world, 
specifically with the reusability components and software 
dependencies that have already gone so far in their 
enhancement. 

After considering all these drawbacks, researchers dug 
deep for efficient predictive techniques for effort, especially in 
data science areas [9]. This area is highly trusted, proving its 
potential with uncertain and unstructured data. Hence, it is 
believed that they can find the effort and duration way better 
than existing models. In other methods, they consider patterns 
in the previous data and do not rely on human influences, 
making them unique in their work. The factors behind this are 
systematic research that builds the best model for prediction to 
reduce the error rate for data. Biased models have been 
generated for some time. Their work is limited to a particular 
dataset, repeatedly underfitting or overfitting using varied 
ensemble techniques. The critical role is preparing data that 
has a crucial impact on the model, but divergent methods are 
to be used. Even the individual algorithms may not give an 
improved score, which is evident from various journals. The 
same can be repeated with effort and cost prediction when 
working with data and building models with those algorithms 
[10]. 

Though using all project parameters produced better 
results in the literature, some works included proper feature 
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selection strategies, eliminating irrelevant features for less 
computation usage and creating a unique effect with fewer 
features than the others. Some of them are the Genetic 
Algorithm [11], PSO [12], and WCO [13]. 

This work aims to improvise the existing models on 
reliable machine learning algorithms for the best effort 
prediction. An averaging ensemble of various regressors 
proposes a hybrid model for this aim. Also, the proposed work 
conducted experiments on various datasets such as cocomo81, 
china, Desharnais, Maxwell, Kemerer, and Albrecht etc. to 
evaluate the behavior of the model with varying datasets. 

II. RELATED WORK 
Amini et al. [14], in their paper combined two techniques, 

namely embedded and wrapper methods. The main motto of 
their writing is to integrate GA into regularized learning to 
improve prediction accuracy in regression problems. The 
outcome of their study reduced the dimension feature space by 
over 80% without affecting the accuracy. De Carvalho et al. 
[15] proposed an Extreme learning machine for forecasting 
software efforts. For selecting the best features, the Pearson 
correlation coefficient is used for feature selection. Extreme 
Learning Machines (ELM) are used with different numbers of 
hidden layers in their work. The ELM model values are 
compared with the models mentioned in the literature, namely 
LR, SVM, KNN, and MLP. The metric evaluated for 
comparison is MAE. 

Ghosh et al. [16] proposed the binary variant of SFO for 
selecting features. This work compared ten state-of-the-art 
techniques and declared that BSFO based on adaptive hill 
climbing had shown better reliability. Carbonera et al. [17] 
surveyed over 120 studies and indicated that this study 
encouraged the researchers to minimize the space in the effort 
estimation. Chhabra et al. [18] worked in soft computing 
Fuzzy model along with PSO. This Fuzzy logic improved the 
existing COCOMO technique. The metric followed is MRE 
for result comparison. Ghatasheh et al. [19] proposed a firefly 
algorithm to optimize software effort. The results were better 
than the conventional models used earlier. 

Wani et al. [20] worked on ANN and PSO. The limitation 
in their work is that the combination is giving better results for 
only the cocomo81 dataset. The ANN showed fast training 
speed than MLP. This method ended with lesser MdMRE and 
MRE than other models. Ali et al. [21] used all bio-inspired 
feature selection strategies with Support Vector and Random 
Forest regressors. The evaluation metrics considered are 
Correlation Coefficient (CC), Mean Absolute Error (MAE), 
Root Mean Square Error (RMSE), Relative Absolute Error 
(RAE), and Root Relative Squared Error (RRSP). 

Kodmelwar et al. [22] modified a neural network for effort 
prediction. The proposed method uses java for the front-end 
tool. The metrics used for comparison are PRED, MRE, MAE, 
MMRE, and RE. Desai et al. [23] combined ANN with 
cuckoo optimization, and experiments were performed on 
various datasets. This hybrid combination worked well then 

all other literature models except for the ACO technique. 
Langsari et al. [24] optimized the parameters of the COCOMO 
II model using particle swarm optimization. PSO is a valuable 
strategy for resolving dataset uncertainty and optimizing the 
values. The author worked on the Turkish software industry 
dataset. 

Hosni et al. [25] concentrated on parameter tuning 
ensemble using grid search optimization. The authors 
evaluated results over seven datasets to compare statistical 
measures, namely mean, median, and inverse ranked weighted 
mean. Used three algorithms, GS, PSO, and UC-Weka, and 
concluded that PSO gained over other approaches. Goyal et al. 
[26] proposed an SG5 neural network model trained on the 
Cocomo dataset and tested in the Kemerer dataset. It excelled 
over the traditional models. Padhy et al. [27] developed an 
Aging and survivability-related reusability optimization 
model, and the software metric estimation is done with the 
help of UML or Class diagrams. To overcome the limitations 
of ANN, some different Evolutionary Computing (EC) 
algorithms like Genetic Algorithms, Differential Evolution, 
and Particle Swarm Optimization (PSO) have been proposed. 
By implementing the above algorithms, the regression outputs 
are improved so that the results are significantly accurate and 
most effective. 

Pospieszny et al. [28] proposed ensemble averaging with a 
3-fold validation, namely SVM, MLP, and GLM, to predict 
both effort and duration. Here used the standard ISBSG 
dataset and considered the MMRE and PRED metrics. In their 
paper, Shekhar et al. [29] discussed various software cost 
estimation techniques and models. The authors classified these 
techniques into algorithmic and non-algorithmic, which helps 
the software team rule out the weaker methods and provides 
specific areas for considering an approach. 

Venkatesh et al. [30] calculated the workforce to 
determine the cost and effort of the project, which 
outperformed other models, like regression models and neural 
networks. This work applied to several PROMISE datasets by 
considering RMSE as the root metric. Nassif et al. [31] 
worked on four different neural networks, the oldest projects 
used for training and the newest projects used for testing. Here 
ten-fold cross-validation is achieved. The author concluded 
that in 60% of datasets, CCNN performed better than other 
models, and on 40% of datasets, RBFNN performed better 
than others. Miandoab et al. [32] proposed a hybrid Algorithm 
using a particle swarm optimization algorithm and fuzzy logic. 

Dizaji et al. [33] combined Ant Colony Optimization 
(ACO) and Lorentz transformation as Chaos Optimization 
Algorithm (COA). The meta-heuristic algorithms like ACO 
and COA are used to estimate the cost of the software. Mean 
Absolute Relative Error (MARE) is taken into consideration. 
Here the dataset is classified and distributed among the ACO 
and hybrid ACO and COA algorithms according to their 
functionalities. The results show that the performance is 
improved and efficient when the ACO algorithm is combined 
with COA. 
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III. METHOD 
The proposed approach introduces a novel method of using 

ensemble techniques with voting for software development 
effort estimation. This approach combines the strengths of 
multiple models and leverages the diversity of their 
predictions to improve accuracy. By investigating the impact 
of different factors on the accuracy of the ensemble with 
voting, this approach can provide insights into how to 
optimize the performance of the ensemble for different 
datasets and problems. The proposed approach can also have 
practical applications for software development organizations, 
as it can help them to make more accurate and informed 
decisions about project planning and resource allocation. The 
proposed architecture is illustrated in Fig. 1. 

• Collect historical project data: Gather historical project 
data including information on the size of the project, 
the number of developers involved, the complexity of 
the software, and the amount of time and resources 
required to complete the project. 

• Preprocess the data: Preprocess the data to remove any 
outliers or errors, and to convert the data into a format 
that can be used by the ensemble models. 

• Train multiple estimation models: Train multiple 
estimation models on the preprocessed data, such as 
linear regression, decision trees, neural networks, and 
support vector machines. 

• Implement the voting algorithm: Implement the voting 
algorithm to combine the predictions from the multiple 
models. There are different types of voting algorithms 
such as majority voting, weighted voting, and threshold 
voting. 

• Evaluate the ensemble with voting: Evaluate the 
accuracy of the ensemble with voting using a 
validation set of historical data that was not used 
during training. Compare the performance of the 
ensemble with voting against individual models and 
other ensemble techniques. 

• Investigate the impact of different factors: Investigate 
the impact of different factors on the accuracy of the 
ensemble with voting, such as the number of models, 
the type of models, the voting algorithm, and the size 
and quality of the historical data. 

• Apply the ensemble with voting to new data: Apply the 
ensemble with voting to new software development 
projects to assess its accuracy and reliability in real-
world scenarios. 

A. Data Preprocessing 
Preprocessing of data involves data cleansing approaches. 

It has a clear positive impact on training the machine learning 
models. It reduces the dataset's noise by filling in missing 
values, removing duplicate records, dropping unnecessary 
columns, etc. Finally, it produces the data in its best 
representation to be used for model building. Without 
preprocessing, models might learn the noise as an underlying 
pattern, leading to overfitting or underfitting the data. Here, 

we dropped some attributes in our work, such as project ids, 
dates of projects, other categorical details, etc. We ignored the 
missing data records. 

B.  Normalization 
Normalization is done as a second step, and it is essential 

to scale the features within a range for the model's 
performance. This normalization sets the feature scale from 0 
to 1 and is implemented using the MinMax scalar in Python. 
In our datasets, we normalized all the input and output 
features. 

𝑥_𝑛𝑒𝑤 = 𝑥 − 𝑥_𝑚𝑖𝑛
x_max− 𝑥_𝑚𝑖𝑛

 (1) 

C. 5 - Cross Fold Validation 
Cross-fold validation is an interesting technique, which 

makes our model more reliable. Instead of considering a 
particular subset for training and the remaining part for 
testing, it uses the entire dataset for training and testing 
purposes. A five-fold validation usually splits the entire 
dataset into five equal sets or folds, where for every time, four 
sets are used for training, and one set is used for testing. This 
process is repeated for four (k-1) iterations, i.e., all possible 
combinations, and it will give the average score of all 
iterations. 

 
Fig. 1. Proposed architecture 

D. Algorithms 
In our work, we build a hybrid model with the help of five 

machine learning Regression algorithms. Each algorithm has a 
different structure in its implementation. 

1) Linear regression: Linear Regression frames an 
equation for the given attributes to fetch the target variable. It 
assumes a linear relationship between the characteristics of a 
dataset. The equation is y = f (x), where y represents the 
output variable and x is the set of input attributes. This 
algorithm performs better than complex models when the 
dataset is linear. 

2) Random forest: Random Forest is a bagging model. It 
constructs several trees for prediction. Every tree is 
constructed from a subset of the training data. Every tree will 
give some effort for a test set. All predictions are averaged to 
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get the final estimate of how much work needs to be done, 
lowering the result's error rate. 

3) Boosting techniques: Every boosting algorithm has a 
base model. After each iteration, a new weak learner is added 
to the sequence of learners; every iteration model reduces the 
residual effort. We implemented three boosting models in our 
work: Ada Boost, Gradient Boost (GB), and Extreme Gradient 
Boost. AdaBoost handles missing data well and undergoes no 
overfitting. It has fewer parameters to tune when needed and 
is sensitive to outliers. Gradient Boosting is a sequence of tree 
learners robust to outliers, depending on residuals. XGB has 
been showing better results than GB as it includes the 
calculation of similarity weights. 

E. Voting 
Every algorithm is unique in its background processing of 

data. Hence, all algorithms can find their patterns of data. 
Here comes the idea of ensembling [34]. Ensembling is 
obtained by combining various models. Bagging, boosting, 
voting, etc., are some of the ensemble approaches [35]. Here 
we aggregated predictions of various models, i.e., averaged 
the output predictions of all models and produced one model 
closer to the actual effort than any individual model. We took 
the Linear Regression, Decision Tree Regression, Random 
Forest Regression, Support Vector Regression, and Neural 
Network Regression outputs, calculated the average of all the 
values, and compared them with the actual effort in the test 
dataset. The results are given for evaluation metrics. 

F. Pseudo Code 
# Step 1: Collect historical project data 
data = load_data() 
# Step 2: Preprocess the data 
data = preprocess_data(data) 
# Step 3: Train multiple estimation 
models 
models = [] 
for i in range(num_models): 
    model = train_model(data) 
    models.append(model) 
# Step 4: Implement the voting algorithm 
def ensemble_predict(models, input): 
    predictions = [model.predict(input) 
for model in models] 
    return voting_algorithm(predictions) 
# Step 5: Evaluate the ensemble with 
voting 
validation_set = load_validation_set() 
ensemble_accuracy = 0 
for input, target in validation_set: 
    ensemble_prediction = 
ensemble_predict(models, input) 
    ensemble_accuracy += 
evaluate_prediction(ensemble_prediction, 
target) 
ensemble_accuracy /= len(validation_set) 
# Step 6: Investigate the impact of 
different factors 

# For example, vary the number of models, 
the type of models, the voting algorithm, 
and the size and quality of the 
historical data. 
 
# Step 7: Apply the ensemble with voting 
to new data 
new_data = load_new_data() 
for input in new_data: 
    ensemble_prediction = 
ensemble_predict(models, input) 
process_prediction(ensemble_prediction) 

IV. EVALUATION CRITERIA 
In problems like predicting continuous values, we 

calculate the error rate given as the difference between the 
actual and predicted values. For our problem statement, we 
looked at the MAE (Mean Absolute Error), MSE (Mean 
Squared Error), and RMSE (Root Mean Square Error) metrics, 
which are used to compare models. 

𝑀𝐴𝐸 = ∑𝑎𝑏𝑠�𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑�

n
 (2) 

𝑀𝑆𝐸 = ∑�𝑦𝑎𝑐𝑡𝑢𝑎𝑙−𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑�
2

𝑛
 (3) 

𝑅𝑀𝑆𝐸 = �∑�𝑦𝑎𝑐𝑡𝑢𝑎𝑙−𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑�
2

𝑛

2
 (4) 

V. RESULTS AND DISCUSSION 
Below, Fig. 2 represents the deviation between actual and 

predicted effort values on all datasets, where the X-axis 
represents the record number. The Y-axis represents the effort 
of the record. Fig. 2(a), 2(d) on Cocomo81 and Maxwell show 
a notifiable difference in peak effort values. The values are 
closer to the China dataset in Fig. 2(b). Fig. 2(c) and 2(f) show 
a constant gap between actual and predicted values. Fig. 2(e) 
on Albrecht shows a considerable difference. 

 
(a) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 2. (a) Cocomo81 actual vs. predicted effort (b): China's actual vs. 
predicted effort (c) Desharnais actual vs. predicted effort (d) Maxwell actual 
vs. predicted effort (e) Kemerer actual vs. predicted effort (f) Albrecht actual 

vs. predicted effort 

Fig. 2(a) represents a line graph drawn to show the 
deviations between actual effort and the predicted effort by 
our proposed model in the COCOMO81 dataset. This graph 
shows a noticeable difference at the peak points. 

Fig. 2(b) represents a line graph drawn to show the 
deviations between actual effort and the predicted effort by 
our proposed model in the China dataset. We can see that the 
predicted line has come close to the actual line in many places. 

Fig. 2(c) represents a line graph drawn to show the 
deviations between actual effort and the predicted effort by 
our proposed model in the Desharnais dataset. In this graph, 
records 10 and 11 have a significant deviation, whereas 
records 12 to 14 have the least deviation. 

Fig. 2(d) represents a line graph drawn to show the 
deviations between actual effort and the predicted effort by 
our proposed model in the Maxwell dataset. This graph shows 
a noticeable difference at the peak points. 

Fig. 2(e) represents a line graph drawn to show the 
deviations between actual effort and the predicted effort by 
our proposed model in the Kemerer dataset. As the test set 
records are meager, they show a significant deviation, but the 
deviation range is 0.05. 

Fig. 2(f) represents a line graph drawn to show the 
deviations between actual effort and the predicted effort by 
our proposed model in the Albrecht dataset, where the X-axis 
represents the record number and the Y-axis represents the 
effort of the record. Fig. 3 represents the residuals graphs 
between actual and predicted effort values on all datasets. Fig. 
3(a) and 3(d) on Cocomo81 and Maxwell shows a notifiable 
difference in peak effort values. Fig. 3(b) of the China dataset 
shows values closer to 0 ("zero"). Fig. 3(c) and 3(f) show a 
constant gap between actual and predicted values. There is a 
significant difference in Albrecht's Fig. 3(e). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 3. (a) Cocomo81 prediction residuals (b) China prediction residuals (c) 
Desharnais prediction residuals (d) Maxwell prediction residuals (e) Kemerer 

prediction residuals (f) Albrecht prediction residuals 

The above Fig. 3(a) represents a graph that shows the 
residuals between actual effort and the predicted effort of the 
data records of the COCOMO81 dataset ranging from-0.4 to 
+0.4, and most of the data points are present in the range of-
0.2 to +0.2. 

The above Fig. 3(b) represents a graph that shows the 
residuals between actual effort and the prediction effort of the 
data records of the China dataset ranging from-0.10 to +0.25. 
In the presented graph, most data points are nearer to 0, 
indicating that the proposed model is working much more 
efficiently in the China dataset. 

The above Fig. 3(c) represents a graph that shows the 
residuals between actual effort and the predicted effort of the 
data records of the Desharnais dataset, ranging from-0.10 to 
+0.20. In this graph, most of the data points are below point 0. 
That means the proposed model predicted values are less than 
the actual values. 

Fig. 3(d) shows a graph of the residuals between actual 
effort and predicted effort of the Maxwell dataset data records, 
ranging from -0.2 to +0.8. According to this graph, the 
proposed model prediction is much closer to the actual values 
based on working on this dataset. 

Fig. 3(e) depicts a graph displaying the residuals between 
actual effort and predicted effort of the Kemerer dataset data 
records, ranging from 0.05 to +0.16. 
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The above Fig. 3(f) represents a graph that shows the 
residuals between actual effort and the predicted effort of the 
data records of the Albrecht dataset ranging from-0.15 to 
+0.20. 

Below, Fig. 4 shows the bar plots of all the implemented 
models, representing the mean absolute error on all six 
datasets. Fig. 4(a) the voting model outperformed GB, XGB, 
RF, and LR except for ADB. Fig. 4(b) shows that, except for 
RF, voting showed less residual than all others. Fig. 4(c), (d), 
and (f) voting models are reliable. From all the above 
comparisons, we concluded that voting is a constant 
performer. On all datasets, the models behave randomly, 
whereas voting shows an upvote constantly. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 4. (a) COCOMO81 mean absolute error (b) CHINA mean absolute 
error (c) DESHARNAIS mean absolute error (d) MAXWELL mean absolute 

error (e) KEMERER mean absolute error (f) ALBRECHT mean absolute 
error 

The graphical representation of Mean Absolute Error for 
various models that are worked on the COCOMO dataset is 
shown in Fig. 4(a), with the ADB model giving the slightest 
error followed by voting and the Random Forest giving the 
highest error among the models presented. 

Fig. 4(b) shows a graphical representation of the Mean 
Absolute Error for various models tested on the CHINA 
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dataset. The RF model produces the lowest error, and the 
ADB produces the highest error. 

Fig. 4(c) shows a graphical representation of the Mean 
Absolute Error for various models tested on the Desharnais 
dataset, with the Voting and XGB models producing the 
lowest error and the ADB having the highest error. 

The graphical representation of Mean Absolute Error for 
various models that are worked on the MAXWELL dataset is 
shown in Fig. 4(d), with the XGB model giving a minor error 
and the LR model giving the highest error among the models 
presented. 

Fig. 4(e) shows a graphical representation of the Mean 
Absolute Error for various models tested on the Kemerer 
dataset. The XGB model produces the lowest error, and the 
LR model produces the highest error. 

Fig. 4(f) shows a graphical representation of the Mean 
Absolute Error for various models tested on the Albrecht 
dataset. The RF model produces the lowest error, and the LR 
model produces the highest error. 

We normalized the literature results and compared them 
with the obtained model’s results (see Tables I-VI) 

TABLE I.  COCOMO81 DATASET 

Model MAE MSE RMSE 
Linear Regression 0.1499 0.0393 0.1984 

AdaBoost 0.1248 0.0395 0.1989 

Random Forest 0.1627 0.0680 0.2608 

Gradient Boosting 0.1587 0.0662 0.2574 

XGB 0.1509 0.0680 0.2665 

Ali et al. [10] 0.1652 - 0.4322 

Voting 0.1466 0.0527 0.2297 

TABLE II.  CHINA DATASET 

Model MAE MSE RMSE 
Linear Regression 0.0080 0.0005 0.0231 

AdaBoost 0.0159 0.0013 0.0363 

Random Forest 0.0070 0.0008 0.0286 

Gradient Boosting 0.0072 0.0008 0.0295 

XGB 0.0077 0.0009 0.0308 

Hosni et al. [14] 0.0099 - - 

Voting 0.0077 0.0007 0.0270 

TABLE III.  DESHARNAIS DATASET 

Model MAE MSE RMSE 
Linear Regression 0.0625 0.0070 0.0841 

AdaBoost 0.0912 0.0107 0.1037 

Random Forest 0.0757 0.0095 0.0976 

Gradient Boosting 0.0728 0.0075 0.0866 

XGB 0.0601 0.0065 0.0790 

De Carvalho et al., [2] 0.0562 0.0078 0.0880 

Hosni et al. [14] 0.0664 - - 

Voting 0.0627 0.0061 0.0783 

TABLE IV.  MAXWELL DATASET 

Model MAE MSE RMSE 
Linear Regression 0.1519 0.0571 0.2390 

AdaBoost 0.1287 0.0503 0.2243 

Random Forest 0.1333 0.0739 0.2719 

Gradient Boosting 0.1166 0.0565 0.2378 

XGB 0.1131 0.0544 0.2334 

Voting 0.1221 0.0555 0.2356 

TABLE V.  KEMERER DATASET 

Model MAE MSE RMSE 
Linear Regression 0.2009 0.0462 0.2151 

AdaBoost 0.0714 0.0085 0.0922 

Random Forest 0.0865 0.0074 0.0865 

Gradient Boosting 0.0684 0.0066 0.0815 

XGB 0.0625 0.0079 0.0893 

Ali et al. [10] 0.1113 - 0.2200 

Hosni et al. [14] 0.0866 - - 

Voting 0.0925 0.0160 0.1031 

TABLE VI.  ALBRECHT DATASET 

Model MAE MSE RMSE 
Linear Regression 0.1078 0.1977 0.1406 

AdaBoost 0.0790 0.0113 0.1064 

Random Forest 0.0786 0.0077 0.0878 

Gradient Boosting 0.0995 0.0168 0.1298 

XGB 0.0835 0.0115 0.1073 

Ali et al. [10] 0.0856 - 0.1196 

Voting 0.0775 0.0099 0.0996 
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Our work includes testing the voting regressor on six 
datasets. From the above tables, observations in all datasets 
voted on, showed excellent performance in minimizing the 
actual and predicted effort error. On the COMO81 dataset, 
absolute error is the minimum for voting, and squared errors 
are minor for linear regression. On COCOMO81, China, 
Desharnais, Kemerer, Maxwell, and Albrecht had excellent 
performances. Finally, we concluded that all dataset 
implementations support voting, which makes voting more 
reliable and robust. Voting followed by linear regression 
shows that the datasets have a linear relationship between the 
attributes of the projects. 

VI. CONCLUSION 
We studied various existing research papers on software 

effort estimation in this work. In the early days, we relied on 
many conventional approaches, considering the line of codes, 
functional points, CPM and PERT, etc., or merely relying on 
the people's judgment that has ample experience in software 
project effort determination. Because extensive developments 
in project building consider multiple parameters in every 
project, these techniques might not be feasible anymore with 
rapid results in software projects. And at the same time, 
machine learning has gained momentum in recent decades in 
various domains. And there is some work taking place in 
software engineering through machine learning. Therefore, 
our work aims to provide a robust machine learning model for 
effort calculation. We successfully used the machine learning 
ensembling concept to predict software development efforts. 
We considered every parameter for the effort estimation. 
Based on our research, the ensembling of models 
outperformed other single models. We recorded a lower error 
rate from the ensemble model comparatively. The average of 
different predictors positively impacted the output, which 
shows the vital role played in optimizing software effort 
estimation in the machine learning area. The input dataset 
dramatically affects how well the machine learning algorithm 
works, and in our work, models performed very well with our 
datasets. 

REFERENCES 
[1]  Ramesh, M. R., & Reddy, C. S. (2016). Difficulties in software cost 

estimation: A survey. International Journal of Scientific Engineering and 
Technology, 5(1), 10-13. 

[2]  Hareton, L., and Zhang F: “Software Cost Estimation”, Department of 
Computing, Hong Kong Polytechnic 
University.http://paginaspersonales.deusto.es/cortazar/doctorado/articulo
s/leung-andbook.pdf, accessed 24th Nov 2019. 

[3]  Rajeswari, K., &Beena, D. R. (2018). A Critique on Software Cost 
Estimation. International Journal of Pure and Applied Mathematics, 
118(20), 3851-3862. 

[4]  Bull Survey, 1998, Failure Causes. 
http://www.itcortex.com/Stat_Failure_Cause.htm#surveys, Retrieved on 
1stJune 2013. 

[5]  KPMG Canada, 1997, Failure Causes. 
http://itcortex.com/Stat_Failure_Cause.htm#surveys. Retrieved on 
2ndJune 2013. 

[6]  Ziauddin, Shahid Kamal Tipu, ShahrukhZia, “An Effort Estimation 
Model for Agile Software Development”, Advances in Computer 
Science and its Applications (ACSA), Vol. 2, No. 1, 2012, ISSN 2166-
2924. 

[7]  Boehm, B. W. (2017, May). Software cost estimation meets software 
diversity. In 2017 IEEE/ACM 39th International Conference on 
Software Engineering Companion (ICSE-C) (pp. 495-496). IEEE. 

[8]  Santanu Kumar Rath, “Use Case Point Approach Based Software Effort 
Estimation using Various Support Vector Regression Kernel Methods”, 
January 2014. 

[9]  Ali BouNassif , Mohammad Azzeh , Ali Idri , and Alain Abran, Hindawi 
, Software Development Effort Estimation Using Regression Fuzzy 
Models, Computational Intelligence and Neuroscience Volume 2019. 

[10]  C. E. L. Peixoto, J. L. N. Audy and R. Prikladnicki, "Effort Estimation 
in Global Software Development Projects: Preliminary Results from a 
Survey," 2010 5th IEEE International Conference on Global Software 
Engineering, Princeton, NJ, 2010, pp. 123-127, doi: 
10.1109/ICGSE.2010.22. 

[11]  B Rajesh Kumar Singh, A.K.Misra,”Software Effort Estimation by 
Genetic Algorithm Tuned Parameters of Modified Constructive Cost 
Model for NASA Software Projects”,  International Journal of 
Computer Applications 59(9):22-26, December 2012. 

[12]  Kumar, G., & Bhatia, P. K.. Empirical assessment and optimization of 
software cost estimation using soft computing techniques. In Advanced 
Computing and Communication Technologies (pp. 117-130). Springer, 
Singapore, 2016. 

[13]  Ahmad, S. W., & Bamnote, G. R.. Whale–crow optimization (WCO)-
based Optimal Regression model for Software Cost Estimation. 
Sādhanā, 44(4), 94, 2019. 

[14]  Amini, F., & Hu, G. (2021). A two-layer feature selection method using 
a genetic algorithm and elastic net. Expert Systems with Applications, 
166, 114072. 

[15]  De Carvalho, H. D. P., Fagundes, R., & Santos, W. (2021). Extreme 
Learning Machine Applied to Software Development Effort Estimation. 
IEEE Access, 9, 92676-92687. 

[16]  Ghosh, K. K., Ahmed, S., Singh, P. K., Geem, Z. W., & Sarkar, R. 
(2020). Improved binary sailfish optimizer based on adaptive β-hill 
climbing for feature selection. IEEE Access, 8, 83548-83560. 

[17]  Carbonera, C. E., Farias, K., & Bischoff, V. (2020). Software 
development effort estimation: a systematic mapping study. IET 
Software, 14(4), 328-344. 

[18]  Chhabra, S., & Singh, H. (2020). Optimizing design of a fuzzy model 
for software cost estimation using particle swarm optimization 
algorithm. International Journal of Computational Intelligence and 
Applications, 19(01), 2050005. 

[19]  Ghatasheh, N., Faris, H., Aljarah, I., & Al-Sayyed, R. M. (2019). 
Optimizing software effort estimation models using the firefly 
algorithm. arXiv preprint arXiv:1903.02079. 

[20]  Wani, Z. H., & Quadri, S. M. K. (2019). An improved particle swarm 
optimization-based functional link artificial neural network model for 
software cost estimation. International Journal of Swarm Intelligence, 
4(1), 38-54. 

[21]  Ali, A., & Gravino, C. (2019, December). Using Combinations of Bio-
inspired Feature Selection Algorithms in Software Efforts Estimation: 
An Empirical Study. In 2019 13th International Conference on Open 
Source Systems and Technologies (ICOSST) (pp. 1-8). IEEE. 

[22]  Kodmelwar, M. K., Joshi, S. D., & Khanna, V. (2018). A deep learning 
modified neural network is used for efficient effort estimation. Journal 
of Computational and Theoretical Nanoscience, 15(11-12), 3492-3500. 

[23]  Desai, V. S., & Mohanty, R. (2018, October). ANN-Cuckoo 
optimization technique to predict software cost estimation. In 2018 
Conference on Information and Communication Technology (CICT) 
(pp. 1-6). IEEE. 

[24]  Langsari, K., & Sarno, R. (2018). Optimizing effort parameter of 
COCOMO II using particle swarm optimization method. Telkomnika, 
16(5), 2208-2216. 

[25]  Hosni, M., Idri, A., Abran, A., & Nassif, A. B. (2018). On the value of 
parameter tuning in heterogeneous ensembles effort estimation. Soft 
Computing, 22(18), 5977-6010. 

[26]  Goyal, S., & Parashar, A. (2018). Machine learning application to 
improve COCOMO model using neural networks. International Journal 
of Information Technology and Computer Science (IJITCS), 3, 35-51. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 14, No. 2, 2023 

181 | P a g e  
www.ijacsa.thesai.org 

[27]  Padhy, N., Singh, R. P., & Satapathy, S. C. (2018). Software reusability 
metrics estimation: algorithms, models and optimization techniques. 
Computers & Electrical Engineering, 69, 653-668. 

[28]  Pospieszny, P., Czarnacka-Chrobot, B., & Kobylinski, A. (2018). An 
effective approach for software project effort and duration estimation 
with machine learning algorithms. Journal of Systems and Software, 
137, 184-196. 

[29]  Shekhar, S., & Kumar, U. (2016). Review of various software cost 
estimation techniques. International Journal of Computer Applications, 
141(11), 31-34. 

[30]  Venkataiah, V., Mohanty, R., Pahariya, J. S., & Nagaratna, M. (2017). 
Application of ant colony optimization techniques to predict software 
cost estimation. In Computer Communication, Networking and Internet 
Security (pp. 315-325). Springer, Singapore. 

[31]  Nassif, A. B., Azzeh, M., Capretz, L. F., & Ho, D. (2016). Neural 
network models for software development effort estimation: a 
comparative study. Neural Computing and Applications, 27(8), 2369-
2381. 

[32]  Miandoab, E. E., & Gharehchopogh, F. S. (2016). A novel hybrid 
algorithm for software cost estimation based on cuckoo optimization and 
k-nearest neighbors algorithms. Engineering, Technology & Applied 
Science Research, 6(3), 1018-1022. 

[33]  Dizaji, Z. A., & Gharehchopogh, F. S. (2015). A hybrid of ant colony 
optimization and chaos optimization algorithms approach for software 
cost estimation. Indian Journal of science and technology, 8(2), 128. 

[34]  Mahmood, Y., Kama, N., Azmi, A., Khan, A. S., & Ali, M. (2021). 
Software Effort Estimation Accuracy Prediction of Machine Learning 
Techniques: A Systematic Performance Evaluation. ArXiv. 
https://doi.org/10.48550/arXiv.2101.10658 

[35]  Marco, R., Ahmad, S. S. S., & Ahmad, S. (2022). Bayesian 
hyperparameter optimization and Ensemble Learning for Machine 
Learning Models on software effort estimation. International Journal of 
Advanced Computer Science and Applications, 13(3). 

 
 
 


	I. Introduction
	II. Related Work
	III. Method
	A. Data Preprocessing
	B.  Normalization
	C. 5 - Cross Fold Validation
	D. Algorithms
	1) Linear regression: Linear Regression frames an equation for the given attributes to fetch the target variable. It assumes a linear relationship between the characteristics of a dataset. The equation is y = f (x), where y represents the output variable a�
	2) Random forest: Random Forest is a bagging model. It constructs several trees for prediction. Every tree is constructed from a subset of the training data. Every tree will give some effort for a test set. All predictions are averaged to get the final est�
	3) Boosting techniques: Every boosting algorithm has a base model. After each iteration, a new weak learner is added to the sequence of learners; every iteration model reduces the residual effort. We implemented three boosting models in our work: Ada Boost�

	E. Voting
	F. Pseudo Code

	IV. Evaluation Criteria
	V. Results and Discussion
	VI. Conclusion
	References

