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Abstract—Scene recognition algorithm is crucial for 

landmark recognition model development. Landmark 

recognition model is one of the main modules in the intelligent 

tour guide system architecture for the use of smart tourism 

industry. However, recognizing the tourist landmarks in the 

public places are challenging due to the common structure and 

the complexity of scene objects such as building, monuments and 

parks. Hence, this study proposes a super lightweight and robust 

landmark recognition model by using the combination of 

Convolutional Neural Network (CNN) and Linear Discriminant 

Analysis (LDA) approaches. The landmark recognition model 

was evaluated by using several pretrained CNN architectures for 

feature extraction. Then, several feature selections and machine 

learning algorithms were also evaluated to produce a super 

lightweight and robust landmark recognition model. The 

evaluations were performed on UMS landmark dataset and 

Scene-15 dataset. The results from the experiments have found 

that the Efficient Net (EFFNET) with CNN classifier are the best 

feature extraction and classifier. EFFNET-CNN achieved 100% 

and 94.26% classification accuracy on UMS-Scene and Scene-15 

dataset respectively. Moreover, the feature dimensions created by 

EFFNet are more compact compared to the other features and 

even have significantly reduced for more than 90% by using 

Linear Discriminant Analysis (LDA) without jeopardizing 

classification performance but yet improved its performance. 

Keywords—Scene recognition; convolutional neural network; 

smart tourism; feature selections 

I. INTRODUCTION 

Scene recognition is a crucial aspect for the development of 
many software applications such as in the area of intelligent 
robotics, autonomous driving and intelligent video 
surveillance. Moreover, scene recognition is the basis 
component in accomplishing the tasks for any object detection 
tasks [1]. The basic goal of scene recognition is to label all 
photos of scenes, whether they are outdoor or indoor, 
semantically and properly. 

The magnificent scenery as well as the beautiful and 
historical landmarks of certain places has become one of the 
attraction factors for the tourist to come and visit these places. 
In this context, a software application that equipped with an 
intelligent landmark detection based on scene recognition 
algorithm can be developed to serve certain useful tasks. For 
instance, a tourist may get useful information and 

recommendation based on the detected landmark such as the 
nearby food attractions, and transportation and accommodation 
information. Besides, the application may assist the tourist 
agent while guiding the tourist visiting the attraction places. 
However, the scene recognition is a challenging task due to the 
difficulty to distinguish the common structure of  the public 
scene objects such building, monuments, parks, beaches and so 
on [2].  Scene images also might be captured from different 
angles which triggered the high intra-class difference problems 
[3]. 

Deep learning and transfer learning based classification is 
the emergence approach in any machine learning tasks [4]–[6]. 
In scene recognition, the pretrained CNN models by using 
ResNet50 architecture were adopted [4], [5]. Although the 
classification accuracy obtained was good (92.17% and 
94.4%), ResNet50 produced larger features dimensionality. 
Therefore, there are lot of studies in the other domain have  
various of Efficient Net (EFFNET) CNN architectures such as 
masked face recognition [7], smoke detection [8], chest X-ray 
scanning [9]–[11] and fake face video detection [12] due to its 
exceptional classification performance as well as to generate 
lightweight features. 

The key contributions of this paper are the proposed super 
lightweight Landmark recognition model trained by using 
Convolutional Neural Network (CNN) to address the 
challenges of distinguishing the common public structure of 
landmark scenes. The features extracted by using the pretrained 
CNN model of EfficientNet (EFFNET) which produced the 
lightest features as compared to the other CNN models. 
Afterwards, Linear Discriminant Analysis (LDA) feature 
selection algorithm has been adopted that has significantly 
reduced the dimensionality of features without sacrificing 
classification performance at all and even have improved the 
classification performance. The recognition model training by 
using CNN was also very efficient as it required very minimal 
number epoch to complete and yield the best classification 
performance. 

The remainder of the paper is organized in the following 
way: Section II provide the previous studies conducted in scene 
recognition. In Section III, the Methodology is described in 
more detail. Sections IV presents the experimental results. The 
conclusions and directions for the future studies are presented 
in Section V. 
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II. RELATED WORKS 

Scene recognition is a subset of object recognition and can 
be treated as classification problem to serve certain purposes. It 
is a problem to describe the content or the objects that exist in 
the outdoor or indoor scene images. Scene recognition 
algorithms have adopted in many areas in computing field such 
as human computer interaction, robotics, smart surveillance 
system and autonomous driving [1]. Besides, scene recognition 
was also studied for tourism industry in assisting tourist or 
tourist guide to recognize the tourism attractive places or 
landmarks. There are Monulens [13], a real-time mobile-based 
landmark recognition, Smart Travelling [14] that used to 
recognize tourist attraction, nearby events, police stations and 
hospitals, Augmented Reality (AR) based landmark detection 
[15] and a system to distinguish large number of landmarks. 
All the aforementioned applications used the handcrafted 
features such as Histogram of Oriented Gradients (HOG), 
Scale Invariant Feature Transform (SIFT) and Bag of Features 
(BoF), and traditional machine learning approach such as 
Support Vector Machine (SVM). The recent works of scene 
recognition have shifted to deep learning-based approaches as 
tabulated in Table I. 

TABLE I.  RELATED WORKS OF SCENE RECOGNITION 

Authors Dataset Techniques Results 

[16] Places 

image 

ImageNet-Linear SVM Accuracy -

91.9% 

[2] Landmark 
database 

DEep Local Features (DELF) Specificity- 
0.99 

[4] Tourist 

Attraction 
Images 

ResNet50 Accuracy -  

92.17% 

[5] Scene 

images 

ResNet-CNN Accuracy -

94.4% 

The study conducted in [16] established Places dataset to 
benchmark the performance of scene recognition algorithm 
which was denser in term of density and diversity of scene 
images in comparisons to the other scene recognition 
benchmark datasets such as SUN, Scene-15 and MIT Indoor67. 
The scene recognition algorithm trained by using Places 
dataset outperformed the accuracy performance of scene 
recognition algorithm trained by using ImageNet dataset for all 
scene recognition benchmark datasets. The evaluations were 
carried out by using CNN based features and linear SVM as 
classifier. The problem of high density and diversity of scene 
images as well as to determine whether the scene images 
contained landmark objects have been also addressed in [2] 
study. A metric learning-based approach was proposed in 
which the CNN is trained by curriculum learning technique and 
updated version of Center loss to overcome large variations of 
scene images. On the other hand, the existence of landmark 
objects in scene images determined by calculating distance 
between the image embedding vector and one or more 
centroids per class. Other than landmarks diversity issue, the 
scene recognition algorithm is also facing the high inter-class 
similarities where numerous landmarks have very similar 
building or architecture design. To overcome this problem, the 
CNN model based on ResNet50 was adopted in [4] to classify 
tourist attraction places in Jakarta, Indonesia such as Cathedral 
Church, Jakarta Old Town, Istiqlal Mosque and Maritime 

Museum. The ResNet based model also demonstrated 
exceptional performance in [5] via its proposed method namely 
Scene-RecNet to classify the aerial scene views such as 
airports, forests and rivers. The Scene-RecNet was more 
versatile and stable as the features are adjusted and modified in 
the convolutional and fully-connected layers that eventually 
improved the processing speed, small storage space and good 
recognition accuracy. 

Table II shows the summary of previous studies that have 
adopted deep learning approaches, specifically transfer models. 

TABLE II.  RELATED WORKS OF DEEP LEARNING 

Authors Dataset Techniques Results 

[17] Land images LeNet+Bagging based CNN Recall-0.784 

[7]  Face Mask EFFNET based CNN Accuracy- 
0.9972 

[18] Computer 

Tomography 

(CT) Images 

Fusion of a moment invariant 

(MI) method+ 

ResNet150+VGG16 

Accuracy-

0.93 

[8] Smoke 

detection 

images 

EFFNET based CNN Accuracy-

0.9818 

[9] Chest X-ray  DenseNet+EFFNetB0+Bi-
LSTM 

Accuracy-
92.489% 

[10] Chest X-ray EfficientNet-B2+CNN Accuracy- 

96.33% 

[12] Fake Face 
Video 

EFFNetB5+CNN Accuracy-
74.4% 

[11] Chest X-ray EFFNetB0+CNN Accuracy -  

95.82% 

[19] TripAdvisor 
and Google 

CNN Accuracy-
46.4% 

The study conducted in [17] addressed the problem of land-
use classification at the hilly and mountainous area by using 
ensemble learning approaches to improve the overall 
classification accuracy performance and classes number 
optimization to solve classification accuracy problem for 
coniferous forest. The bagging-based CNN using Bagging 
(Bootstrap AGGregatING) ensemble classifier is capable to 
overcome the problem of unstable procedures which means the 
great impact on classification due to minor differences of the 
data. Whereby the optimization of the classes‟ number was 
carried out by utilizing spectral clustering (SC) that divides 
data into subsets based on its similarity. The pre-trained LeNet 
CNN architecture have used for feature extraction. The pre-
trained CNN architecture was also proposed in [18] for 
automatic screening of COVID-19. Specifically, two pre-
trained CNN architecture ResNet50 and VGG16 were fused 
with the combination of Moment Invariant methods that 
improved the performance of previous COVID-19 
classification models. It is also worth to note that many 
previous studies were adopted variant of EfficientNet 
(EFFNET) CNN architectures for extracting the features from 
the X-ray to detect lung related diseases. A variant of EFFNET 
namely EFFNETB0 with Bi-LSTM was proposed by [9]  
detect Covid-19 faster and with high accuracy low cost on 
chest X-ray images. Along with that, the features from 
EFFNETB0 were fused with DenseNet121 and LAB and CIE 
color space. The model training was performed by using Bi-
LSTM classifier that yield the best classification accuracy as 
compared to the other ensemble classifiers. Similar techniques 
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were also used in [11] to detect COVID-19 from lung X-ray. 
The other variant of EFFNET so called EFFNET B2 was found 
to be most effective as compared to the other variants in [10] to 
reduce the class imbalance problem for diagnosing pneumonia 
from chest X-RAY. The fine tuning on EFFNET architecture 
provides desirable impacts which reduce computational effort 
and the use of batteries. The evaluation of several EFFNET 
variants were also carried out in [12] to detect fake face video 
in social media website. Based on the evaluation, the optimal 
performance of detection is by using EFFNET B4 and B5 and 
the classification accuracy performance drops when using 
EFFNET B6 and B7. Next, The EFFNET with Linear SVM 
were used to address the issues images complexity to recognize 
the face mask wearing in [7] . In this study, the classification 
accuracy EFFNET has outperformed the other CNN models 
using DENSENET201, NASNETLARGE and 
INCEPTIONRESNETV2 with very light size of features. The 
lightness of features produced by EFFNET have been utilized 
by [8] through the proposed novel lightweight smoke detection 
for detecting fire in its early stages. A module for smoke region 
segmentation was also proposed in this study where the 
encoder-decoder approach with atrous separable convolutions 
were investigated. 

According to the comprehensive survey conducted by [1], 
the top three performance recognition approaches fall under 
Patch Feature Encoding, Discriminative Region Detection and 
Hybrid Deep Models. Specifically, the CNN based feature 
extraction using ResNet-152, AlexNet and SE-ResNeXt-101 
were recorded the significant performance on Scene-15, 
Sports-8, Indoor-67 and SUN-397. 

Based on the discussions of the previous studies, it can be 
summarized that the pretrained CNN architecture is flexible 
and capable to provide robust recognition performance in 
various fields and domains. The CNN architecture is flexible as 
the layers and its parameters can be easily fine tuned to fit the 
requirement of data and optimum performance could be 
achieved. In particular, the EFFNET based CNN architecture 
has proven quite decent performance so far in terms of 
classification performance as well as to produce lightweight 
features. Therefore, the use EFFNET also might be extended in 
the domain of scene recognition to overcome the issue of high 
inter-class similarity in scene images. 

III. METHODOLOGY 

This section describes the methodology undertaken to carry 
out this research, as depicted in Fig. 2. The methodology 
consists of four parts which are data acquisition, feature 
extraction, feature selection and model training. 

A. Experimental Setup 

The experiment in this study was performed by using 
Python libraries based on Spyder 4.2.2 and PyCharm 2020.3.3 

(Community Edition) software tools. Specifically, the feature 
extractions and classifications were performed by using Scikit-
learn and Keras libraries. 

B. Scene Recognition Model Training 

The landmark recognition model training consists of four 
main steps which are data acquisition, feature extraction, 
feature selection and classification model training. 

1) Data acquisition: The images for UMS Landmark 

Dataset were captured with a Nikon D7100 camera with a 

resolution of 6000 × 4000 pixels between 10.00 am. and 11.00 

am. Fig. 1 shows the image samples of the popular landmarks 

in UMS [20]. This dataset has been made public and is 

available for download on the Kaggle website [21]. 

 
Fig. 1. Samples of UMS landmark dataset 

Based on Fig. 1, there are nine categories of landmark 
consisting around 100 images with different camera angles. 
These landmarks are the popular tourist attractions for 
sightseeing and photography. Aside from this dataset, the 
public Scene-15 dataset [22] for scene recognition 
benchmarking was also evaluated in order to test the efficacy 
of the landmark recognition algorithm. This dataset contained 
15 scene categories, comprising outdoor and indoor sceneries. 
There were 200 to 400 images in each category with an 
average resolution of 300 X 250 pixels. 
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Fig. 2. Methodology 

2) Feature extraction: Feature extraction is a process to 

transform the representation of the data into meaningful 

semantics for determining the category of the data in 

classification. In this work, the feature extraction was carried 

out by using transfer learning approach. The features of the 

images were extracted by re-using the model weights on the 

pre-trained Convolutional Neural Network (CNN) model. 

Transfer learning reduces the time it takes to train a neural 

network model and lead in decreasing generalization error. 

The extracted features of an image had created a vector of 

values that the model would use to characterize the image 

features. These characteristics were used in designing a new 

model. 
In particular, four pre-trained CNN model were evaluated 

for feature extraction, which are Efficient Net (EFFNET) [23], 
RESNET152 [24], NASNetMobile [25]  and MobileNetV2 
[26].  EFFNET has been adopted and demonstrated to have an 
outstanding performance in recent studies such as in the Covid-
19 detection based on chest X-Ray [9], [27], smoke detection 
[8], fake video detection [12], pneumonia classification [10], 
masked face detection [7] and food recognition [28]. 
Meanwhile, the RESNET152 was also reported to have a good 
performance for scene recognition [1]. 

Many previous studies have shown that the 
NASNeTMobile model performs well, such as the 
classification of rice diseases with an accuracy of 85.9% [29], 
ECG signal classification for cardiac examination [30] with an 
accuracy of 97.1 %, lung nodule classification from CT lung 
images with an accuracy of 88.28% [31] and skin lesion 
classification from dermoscopic images with an accuracy of 
88.28% [32]. For on-device and embedded applications, the 
proposed MobileNetV2 has a low-latency, low-computation 
architecture. For instance, MobileNetV2 was used as an 
embedded food recognizer [33]. 

The pretrained CNN models were built with various layer 
types. In this work, two layer types of EFFNET layer were 
chosen to generate the feature matrices, namely top_cov and 
avg_pool. The model weights used in the EFFNET were 
ImageNet and both layers produced 62,720 and 1,280 feature 
dimensions. On the other hand, the avg_pool was the selected 
layer to generate 2048 features dimensions for RESNET152 
model. Then, both NASNetMobile and MobileNetV2 produced 
1000 feature dimensions. 

The extracted features consist of one dimensional (1D) 
features matrix which will be fed into the traditional machine 
learning classifiers and the 1D CNN classifier (Conv1D). To 
work with 2D CNN classifier (Conv2D), the 1D features 
matrix was reshaped into 2D features matrix. The top_cov and 
avg_pool layers in EFFNET produced (16, 16, 5) and 
(16,16,245) output shape after being reshaped. Meanwhile, the 
avg_pool layer of RESNET152 produced (32, 32, 2) feature 
shape after being reshaped. Meanwhile the prediction layer of 
NASNeTMobile and MobileNetV2 generated a (2, 2, 250) 
feature shape. The feature shape represents the height, width 
and depth of the images which make the edge and colors of the 
spatial features to be detected. 

3) Classification model: The extracted Conv1D or 1D 

features as described in (2) were fed to Linear Support Vector 

Machine (LSVM), CNN (1D), Gradient-Boosting Decision 

Tree (GBDT), Stochastic Gradient Descent (SGD) and 

Multilayer Perceptron (MLP). Linear kernel is applied and 

one-versus all (OVA) training strategy is used in LSVM.  The 

parameters used for the classifiers during the experiment are 

shown in Tables III, IV, V and VI. 
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TABLE III.  LSVM PARAMETERS 

Parameters Value  Description 

Penalty  l2 Specifies the norm used in the 

penalization. The „l1‟ leads 

to coef_ vectors that are sparse. 

Loss square_hinge Specifies the loss function. „hinge‟ is 

the standard SVM loss (used e.g. by 

the SVC class) while „squared_hinge‟ 
is the square of the hinge loss. 

Dual 1e-4 Tolerance for stopping criteria. 

C 1.0 Regularization parameter. The 

strength of the regularization is 

inversely proportional to C. Must be 
strictly positive. 

Multi-class ovr Determines the multi-class strategy 

if y contains more than two 

classes. "ovr" trains n_classes one-vs-
rest classifiers, 

while "crammer_singer" optimizes a 

joint objective over all classes 

TABLE IV.  GBDT PARAMETERS 

Parameters Value  Description 

Loss deviance The loss function to be optimized. 

„deviance‟ refers to deviance (= logistic 
regression) for classification with 

probabilistic outputs 

learning_rate 0.1 Learning rate shrinks the contribution of 
each tree by learning_rate. There is a trade-

off between learning_rate and n_estimators. 

n_estimators 100 The number of boosting stages to perform. 
Gradient boosting is fairly robust to over-

fitting so a large number usually results in 

better performance. 

subsample 1.0 The fraction of samples to be used for 
fitting the individual base learners. If 

smaller than 1.0 this results in Stochastic 

Gradient Boosting. subsample interacts with 

the parameter n_estimators. 

Choosing subsample < 1.0 leads to a 

reduction of variance and an increase in 
bias. 

criterion friedman_mse The function to measure the quality of a 

split 

TABLE V.  SGD PARAMETERS 

Parameters Value  Description 

Loss hinge Defaults to „hinge‟, which 

gives a linear SVM 

penalty l2 Defaults to „l2‟ which is the 
standard regularizer for linear 

SVM models 

alpha 0.0001 Constant that multiplies the 
regularization term 

fit_intercept True Whether the intercept should 

be estimated or not. If False, 

the data is assumed to be 
already centered. 

max_iter 1000 The maximum number of 

passes over the training data 
(aka epochs). It only impacts 

the behavior in the fit method, 

and not the partial_fit method. 

TABLE VI.  MLP PARAMETERS 

Parameters Value  Description 

hidden_layer_sizes (100,) The ith element represents the 

number of neurons in the ith 

hidden layer. 

activation relu Activation function for the 

hidden layer. 

solver adam The solver for weight 

optimization. 

alpha 0.0001 0.0001 

batch_size auto Size of minibatches for 
stochastic optimizers 

learning_rate constant Learning rate schedule for 

weight updates. 

On the other hand, the Conv2D training features produced 
by EFFNET were fed into 2D Convolutional Neural Network 
classifier which is a fully connected layer. Table VII shows all 
the layers, the output shapes and the total parameters for 
EFFNET (avg_pool), EFFNET (top_conv) and RESNET152.  

TABLE VII.  2D CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE 

Layer (type) Output Shape  Parameters  

 EFF 

NET 

(AvgPo

ol) 

EFF 

NET 

(TopC

ov) 

RES 

NET15

2 

EFFN

ET 

(AvgPo

ol) 

EFFN

ET 

(TopCo

v) 

RES 

NET1

52 

conv2d 

(Conv2D) 

(None, 

16, 16, 
32) 

(None, 

16, 16, 
32) 

(None, 

32, 32, 
32) 

1472    70592 608 

dropout 

(Dropout)   

(None, 

16, 16, 
32) 

(None, 

16, 16, 
32) 

(None, 

32, 32, 
32) 

0 0 0 

conv2d_1 

(Conv2D) 

(None, 

14, 14, 

32) 

(None, 

14, 14, 

32) 

(None, 

30, 30, 

32)   

9248   9248   9248 

max_pooling

2d 

(MaxPooling
2D) 

(None, 

7, 7, 

32) 

(None, 

7, 7, 

32)   

(None, 

15, 15, 

32) 

0 0 0 

flatten 

(Flatten) 

(None, 

1568) 

(None, 

1568) 

(None, 

7200) 

0 0 0 

dense 
(Dense) 

(None, 
512) 

(None, 
512)   

(None, 
512)   

803328 80332
8 

36869
12    

dropout_1 

(Dropout) 

(None, 

512) 

(None, 

512) 

(None, 

512)    

  0 0 0 

dense_1 
(Dense)   

(None, 
12) 

(None, 
12) 

(None, 
12) 

  6156   6156   6156   

Total params 820,20

4 

883,16

8 

3,702,9

24 

   

Trainable 
params 

820,20
4 

883,16
8 

3,702,9
24 

   

Non-

trainable 

params 

0 0 0    

CNN possesses convolution layer that has several filters to 
perform the convolution operation, which are RELU, pooling 
layer, and fully connected layer. The RELU layer produces the 
rectified feature map by performing the operation on the 
elements. The rectified feature map next feeds into a pooling 
layer. Pooling is a down-sampling operation that reduces the 
dimensions of the feature map. The rectified feature map is fed 
into a pooling layer. Pooling is a down-sampling operation that 
decreases the feature map's dimensionality. By flattening the 

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier.partial_fit
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two-dimensional arrays from the pooled feature map, the 
pooling layer turns them into a single, long, continuous, linear 
vector. When the flattened matrix from the pooling layer is 
given as an input, a fully connected layer forms classifies the 
images. 

The dataset will undergo training and testing phase in 
creating the classification model. In CNN, the epoch refers to 
the number of times the model trains all datasets. Whereby, 
batch size is a small amount of data used for training. A 
suitable number of epochs needs to be adjusted until a small 
gap between test and training error can be observed. When the 
appropriate number of epochs is not chosen, underfitting and 
overfitting problems occur. 

The learning rate determines how frequently the weight in 
the optimization method is updated. Fixed learning rate is used 
and the Adam is chosen as optimizer. 

Dropout is a better regularization strategy for deep neural 
networks to avoid overfitting. The method essentially removes 
units from a neural network based on the probability desired. A 
default value of 0.5 is set in this experiment. Loss function 
measure the successfulness of classification and in this 
experiment by defining the distance between two data points. 
In this experiment, the categorical cross-entropy loss function 
was used. 

4) Feature selection: Feature selection plays important 

roles to improve the performance of recognition model by 

reducing the features dimensionality and transforming the 

feature into meaningful features [34], [35]. The meaningful 

features are characterized by the features that are more salient,  

less overfit and reduced the training execution time which 

eventually improve the accuracy performance [36]. In this 

work, Principal Component Analysis (PCA) [37], Linear 

Discriminant Analysis (LDA) [38],  Boruta [39] and 

Recursive Feature Elimination (RFE)[40] were evaluated. 
Table VIII shows the number of features selected after 

performing the feature selection algorithms. Unlike PCA, LDA 
and RFE, Boruta provided automatic mechanism in 
determining the number of features. Therefore, manual 
parameter configurations to determine the number of features 
selected were not required. Meanwhile, the number of features 
selected for LDA need to be set to less or equal to the total 
class in the dataset. For PCA and RFE, experiments were 
conducted to test three configurations with different 
percentages of features selected, which are 70%, 40% and 
10%. 

TABLE VIII.  NUMBER OF FEATURES SELECTED 

Feature 

Selection  

Configurations  Features UMS 

Dataset 

Scene-

15  

Dataset 

PCA PCA1 (70%) EFFNET 896 

  RESNET152 819 

  NASNETMobile 700 

  MobileNetV2 700 

 PCA2 (40%) EFFNET 512 

  RESNET152 205 

  NASNETMobile 400 

  MobileNetV2 400 

 PCA3 (10%) EFFNET 128 

  NASNETMobile 100 

  MobileNetV2 100 

LDA  EFFNET  
8 

 
14 

 RESNET152 

 NASNETMobile 

 MobileNetV2 

BORUTA  EFFNET 749 372 

  RESNET152 479 149 

  NASNETMobile 677 61 

  MobileNetV2 777 158 

RFE RFE1 (70%) EFFNET 896 

  RESNET152 1434 

  NASNETMobile 700 

  MobileNetV2 700 

 RFE2 (40%) EFFNET 512 

  RESNET152 819 

  NASNETMobile 400 

  MobileNetV2 400 

 RFE2 (10%) EFFNET 128 

  RESNET152 205 

  NASNETMobile 100 

  MobileNetV2 100 
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5) Classification model performance metrics: The model's 

overall performance on the testing set was measured using the 

accuracy metric as the performance metric. Assume that CM 

is a n by n confusion matrix, with n equaling the total number 

of various scene categories. Next, the actual category is 

indicated by the row of CM, while the anticipated category is 

indicated by the column of CM. Then, let C (i,j) denote the 

value of the CM cell in index row I and column j, with 

i,j=1,2,...,n. The following equation defined the accuracy 

metrics: 

         
∑     
 
     

∑ ∑     
 
   

 
   

 (1) 

IV. FINDINGS 

This section presents the analysis from the experiment 
results comprising feature extraction, classification and feature 
selection performance. The first part of this section presents the 
discussion of classification performance evaluation, the second 
part discusses about the feature dimensions size, shape and the 
number of epoch used in CNN training, followed by the 
performance analysis for feature selection. 

A. Classification Performance 

Table IX shows the recognition accuracy of feature 
extraction based on EFFNET, RESNET152, NASNetMobile 
and MobileNetV2 and classification by using Linear SVM 
(LSVM), CNN (2D), CNN (1D), Gradient-Boosting Decision 
Tree (GBDT), Stochastic Gradient Descent (SGD) and 
Multilayer Perceptron (MLP) on UMS-Scene and Scene-15 
dataset. 

TABLE IX.  CLASSIFICATION ACCURACY COMPARISONS BETWEEN UMS 

LANDMARK AND SCENE-15 DATASET 

Feature 

Extraction 

Layer 

Name 

Classification  UMS-

Scene 

Scene-

15 

EFFNET 1 avg_pool LSVM 1.00 0.94 

  CNN (2D) 1.00 0.85 

  CNN (1D) 1.00 0.94 

  GBDT 1.00 0.68 

  SGD 1.00 0.68 

  MLP 0.44 0.43 

EFFNET 2 top_conv LSVM 0.94 0.94 

  CNN (2D) 0.95 0.91 

  CNN (1D) 1.00 0.92 

  GBDT 1.00 0.66 

  SGD 1.00 0.92 

  MLP 0.12 0.40 

RESNet152 avg_pool LSVM 1.00 0.62 

  CNN (2D) 0.85 0.58 

  CNN (1D) 1.00 0.62 

  GBDT 1.00 0.41 

  SGD 0.95 0.37 

  MLP 0.12 0.23 

NASNetMobile prediction LSVM 0.77 0.68 

  CNN (2D) 0.13 0.38 

  CNN (1D) 1.00 0.74 

  GBDT 0.99 0.55 

  SGD 0.82 0.58 

  MLP 0.33 0.39 

MobileNetV2 prediction LSVM 0.85 0.69 

  CNN (2D) 0.13 0.36 

  CNN (1D) 1.00 0.82 

  GBDT 1.00 0.07 

  SGD 0.77 0.68 

  MLP 0.56 0.34 

In comparison to the Scene-15 dataset, most of the 
algorithms performed well on the UMS landmark dataset, as 
shown in Table IX. As the UMS landmark dataset had a higher 
image resolution, the quality of the collected images was more 
likely to have influenced the result. The bar charts in Fig. 3, 
Fig. 4, Fig. 5, and Fig. 6 show how the features and classifiers 
employed in the UMS landmark and Scene-15 datasets 
compare in terms of performance. The classification accuracy 
of various features on various classifiers is shown in Fig.3. 
EFFNET with avg_pool layer is the best feature due to its 
perfect achievement on all classifiers except MLP. To 
demonstrate its efficacy, Fig. 4 shows the classification 
accuracy of various classifiers on various features. Except for 
NASNetMobile, CNN 1D and GBDT had been found to be 
resilient to a variety of features, including the ability to attain 
100% classification accuracy on all features. In contrary, CNN 
2D performed poorly with NASNetMobile and MobileNetV2. 
This was most likely because the 2D shape features generated 
by the CNN 2D classifier were incompatible. 

 

Fig. 3. Performance of features on UMS landmark dataset 
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Fig. 4. Performance of classifiers on UMS-landmark dataset 

EFFNET based features performed well across many 
classifiers in the Scene-15 dataset, apart from GBDC and MLP, 
as shown in Fig. 5. RESNet152, NASNetMobile, and 
MobileNetV2, on the other hand, produced less discriminative 
features. Fig. 6 shows that LSVM and CNN 1D perform 
consistently across all features and worked exceptionally well 
with EFFNET features. GBDC and MLP, on the other hand, 
only achieved 67.61% and 43.39% accuracy, respectively. 
Moreover, the CNN 2D and SGD only worked well with 
EFFNET features. Overall, the best classification accuracy on 
the Scene-15 dataset was 94.26% using CNN 1D classifier and 
EFFNET (AVGPOOL) features. Based on the study conducted 
in [1], the RESNet152 indeed yielded the best performance on 
Scene-15, Sports-8, Indoor-67 and SUN-397. However, based 
on the result of the experiment in this paper revealed that the 
EFFNET have better performance on Scene-15 dataset. Next, 
the confusion matrix of classification accuracy is illustrated in 
Fig. 7. 

 

Fig. 5. Performance on features on scene-15 dataset 

 

Fig. 6. Performance of classifiers on scene-15 dataset 

 
Fig. 7. Confusion matrix of classification using CNN 1D-EFFNET  

(AVGPOOL) on Scene-15 dataset 

As plotted in Fig. 7, there are few scene images had been 
miscategorized. For instance, category 1 (office) was classified 
as category 5 (store), category 7 (tall building) was classified 
as category 11 (coast), category 9 (street) was classified as 
category 3 (living room), category 13 (mountain) was 
classified as category 9 (open country), and category 12 (open 
country) could be classified as category 9 (open country) 
(street). This shows that the high inter-class similarity 
classification problem still exists due to the appearance 
diversity of scene photos. 

Table X and Table XI shows the precision, recall, F1-score 
and sup. (support) performance of the algorithms on UMS 
landmark dataset and Scene-15 dataset. Precision is the 
capability of a classifier to avoid classifying a negative 
instance as positive. It is described for each class as the 
proportion of true positives to the total of true positives and 
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false positives. Recall is the capacity of a classifier to find all 
instances that are positive. It is described as the ratio of true 
positives to the total of true positives and false negatives for 
each class. A weighted harmonic mean of recall and precision 
is used to get the F1 score, with the best result being 1.0 and 
the lowest being 0.0. Due to the inclusion of precision and 
recall in their computation, F1 scores are lower than accuracy 
measurements. Support is the number of instances of the class 
that occur in the particular dataset. The requirement for 
stratified sampling or rebalancing may be indicated by 
unbalanced support in the training data, which may point to 
structural flaws in the classifier's reported scores. Imbalanced 
support in the training data may indicate structural weaknesses 
in the reported scores of the classifier and could indicate the 
need for stratified sampling or rebalancing. 

TABLE X.  CLASSIFICATION PERFORMANCE ON UMS LANDMARK 

DATASET 

Feature 

Extraction 

Classifier  Prec. Rec. F1-

Score 

Sup. 

EFFNet 1 LSVM 
1 1 1 309 

 CNN (2D) 
0.99 0.99 0.99 281 

 CNN (1D) 
1 1 1 310 

 GBDT 
1 1 1 281 

 SGD 
1 1 1 281 

 MLP 
0.35 0.44 0.36 281 

EFFNet 1 LSVM 
1 1 1 309 

 CNN (2D) 
0.96 0.95 0.95 281 

 CNN (1D) 
1 1 1 310 

 GBDT 
1 1 1 282 

 SGD 
1 1 1 282 

 MLP 
0.01 0.12 0.02 282 

RESNet152 LSVM 
1 1 1 309 

 CNN (2D) 
0.86 0.85 0.84 281 

 CNN (1D) 
1 1 1 310 

 GBDT 
1 1 1 282 

 SGD 
0.95 0.95 0.94 282 

 MLP 
0.01 0.12 0.02 282 

NASNetMobile LSVM 
0.82 0.77 0.74 282 

 CNN (2D) 
0.02 0.13 0.03 281 

 CNN (1D) 
1 1 1 310 

 GBDT 
0.99 0.99 0.99 282 

 SGD 
0.88 0.82 0.79 282 

 MLP 
0.34 0.33 0.27 282 

MobileNetV2 LSVM 
0.87 0.85 0.86 282 

 CNN (2D) 
0.02 0.13 0.03 281 

 CNN (1D) 
1 1 1 310 

 GBDT 
1 1 1 282 

 SGD 
0.88 0.77 0.75 282 

 MLP 
0.56 0.66 0.59 282 

TABLE XI.  CLASSIFICATION PERFORMANCE ON SCENE-15 DATASET 

Feature 

Extraction 

Classifier  Prec. Rec. F1-

Score 

Sup. 

EFFNet 1 LSVM 
0.94 0.94 0.94 1480 

 CNN (2D) 
0.83 0.83 0.83 1167 

 CNN (1D) 
0.94 0.94 0.94 1481 

 GBDT 
0.69 0.68 0.67 1346 

 SGD 
0.69 0.68 0.67 1346 

 MLP 
0.34 0.43 0.36 1346 

EFFNet 2 LSVM 
0.94 0.94 0.94 1480 

 CNN (2D) 
0.91 0.91 0.91 1167 

 CNN (1D) 
0.92 0.92 0.92 1481 

 GBDT 
0.68 0.66 0.6 1480 

 SGD 
0.92 0.91 0.92 1480 

 MLP 
0.43 0.4 0.5 1480 

RESNet152 LSVM 
0.63 0.62 0.63 1480 

 CNN (2D) 
0.56 0.55 0.54 1167 

 CNN (1D) 
0.63 0.62 0.62 1481 

 GBDT 
0.42 0.41 0.4 1346 

 SGD 
0.52 0.37 0.31 1346 

 MLP 
0.14 0.23 0.17 1346 

NASNetMobile LSVM 
0.69 0.68 0.66 1346 

 CNN (2D) 
0.29 0.38 0.31 1350 

 CNN (1D) 
0.74 0.74 0.74 1481 

 GBDT 
0.52 0.55 0.5 1346 

 SGD 
0.67 0.58 0.57 1346 

 MLP 
0.25 0.39 0.29 1346 

MobileNetV2 LSVM 
0.7 0.69 0.69 1346 

 CNN (2D) 
0.28 0.36 0.3 1350 

 CNN (1D) 
0.82 0.82 0.82 1481 

 GBDT 
0.04 0.07 0.05 1346 

 SGD 
0.72 0.68 0.67 1346 

 MLP 
0.26 0.34 0.28 1346 

B. Features Shape and Number of Epoch 

The extracted features were reshaped into 1D and 2D 
representations, as can referred in Table XIII. The 1D feature 
shape was being fed to LSVM, CNN 1D, GBDT, SGD, and 
MLP, whereby the 2D feature shape was being fed to CNN 2D 
classifier. For both datasets, Table XII and Table XIII show the 
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features‟ form as well as the best number of epoch for training 
the CNN. As seen in Table XII, the EFFNET generated the 
largest 1D features (62720) by using the average pool layer. 
NASNetMobile and MobileNetV2, on the other hand, 
generated the smallest number of features (1000). The best 
classification accuracy can be obtained by using only 30 
epochs via CNN 1D for all the features. Whereby, the number 
of epochs was higher for training the CNN 2D are except for 
MobileNetV2. 

TABLE XII.  FEATURES‟ DIMENSION SIZE AND EPOCH FOR UMS 

LANDMARK DATASET 

Feature 

Extraction 

Layer 

Name 

Feature

s Shape 

(1D) 

Features 

Shape 

(2D) 

No.Epoc

h (CNN 

1D) 

 

No.Epoc

h (CNN 

2D) 

 

EFFNet avg_pool (1, 

1280) 

(16,16,5) 30 120 

 top_conv (1, 

62720) 

(16,16,24

5) 

30 120 

RESNet152 avg_pool (1,2048

) 

(32,32,2) 30 150 

NASNetMobi

le 

 
  

Predictio

n 

(1,1000

) 

(2,2,250) 30 60 

MobileNetV2

 

 
  

Predictio

n 

(1,1000

) 

(2,2,250) 30 30 

TABLE XIII.  FEATURES DIMENSIONS SIZE AND EPOCH DOR SCENE-15 

DATASET 

Feature 

Extraction 

Layer 

Name 

Feature

s 

Length 

(1D) 

Features 

Length 

(2D) 

No.Epoc

h (CNN 

1D) 

 

No.Epoc

h (CNN 

2D) 

 

EFFNET avg_pool (1, 

1280) 

(16,16,5) 120 150 

 top_conv (1, 
62720) 

(16,16,24
5) 

30 150 

RESNET 

152 

avg_pool (1,2048

) 

(32,32,2) 60 150 

NASNetMobi
le 

 
  

Predictio
n 

(1,1000
) 

(2,2,250) 60 150 

MobileNetV2

 

 
  

Predictio

n 

(1,1000

) 

(2,2,250) 30 150 

Based on Table XIII, the number of epoch required for 
training the CNN classifiers for Scene-15 dataset was larger 
than UMS landmark dataset. It was found that the CNN 2D 
required up to 150 epochs for CNN training. 

Fig. 8, Fig. 9, Fig. 10, and Fig. 11 present the graph of 
model accuracy and model loss over number of epochs for 
EFFNET and MobilenetV2 by using CNN 2D and CNN 1D 
classifiers. To determine the appropriate number of epochs for 
each CNN architecture, the evaluation was made on 30, 60, 90, 
120, and 150 epochs. By using 120 number of epoch, the 
EFFNET with avg_pool layer managed to obtain the best 
classification performance with very minimal gap between 
training and test model lost, as can be seen in Fig. 9. On the 

other hand, a slightly larger gap size can be observed between 
training and testing in model loss in EFFNET using top_conv 
layer with stagnant performance in model accuracy despite of 
larger number of epochs being used as shown in Fig. 11. 

In summary, the feature extraction by using EFFNET by 
using avg_pool and top_conv layers with both CNN and SVM 
classifiers can be considered as the best option in this context 
and with their own merits. For instance, the EFFNET with 
avg_pool layer produced a light feature size which definitely 
use less computational effort for storage and classification. 
Meanwhile, the EFFNET with top_conv layer, even though it 
produced a larger size of features, but required a very 
minimum number of epochs to run the CNN classifier with a 
high classification accuracy. Thus, the trained model, by using 
EFFNET-avg_pool with CNN 1D classifier could be deployed 
in the development of Landmark Recognition System. 

 
Fig. 8. EFFNET (AVGPOOL)- CNN 2D on UMS scene dataset 

 
Fig. 9. MobileNetV2 – CNN 1D on UMS scene dataset 

 

Fig. 10. EFFNET(TOPCONV)- CNN 2D on scene-15 dataset 

 

Fig. 11. EFFNET(AVGPOOL)- CNN 1D on scene 15 dataset 
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C. Effect of Feature Selection 

The performance of feature selection methods such as 
PCA, LDA, Boruta, and RFE on the UMS and Scene-15 
datasets, is discussed in this section. The feature selections 
were applied to EFFNET, RESNET152, NASNETMobile, and 
MobileNetV2 features, in particular. 

1) UMS dataset: The three PCA variations, as shown in 

Table XIV, mirrored the varying proportions of features 

selected, as seen in Table IX. As shown in Table XIV, the 

baseline referred to the findings achieved in the prior trial 

without any treatment employing feature selection. 

TABLE XIV.  EFFECT OF PCA ON ACCURACY FOR UMS DATASET 

Feature 

Extraction 

Classificatio

n 

Baselin

e 

PCA

1 

PCA

2 

PCA

3 

Spark

-line 

EFFNET LSVM 1.00 1.00 1.00 1.00  

 CNN (1D) 1.00 1.00 1.00 1.00  

 GBDT 1.00 0.99 0.99 0.99  

 SGD 1.00 1.00 1.00 1.00  

 MLP 0.44 0.68 0.59 0.57  

RESNET 
152 

LSVM 
1.00 

1.00 1.00 1.00  

 CNN (1D) 1.00 1.00 1.00 1.00  

 GBDT 1.00 0.98 0.96 0.95  

 SGD 0.95 1.00 1.00 1.00  

 MLP 0.12 0.66 0.64 0.64  

NASNet 

Mobile 

LSVM 
0.77 

0.77 0.77 0.77  

 CNN (1D) 1.00 1.00 1.00 1.00  

 GBDT 0.99 0.91 0.92 0.98  

 SGD 0.82 0.88 0.80 0.91  

 MLP 0.33 0.12 0.12 0.61  

MobileNetV
2 

LSVM 
0.85 

0.85 0.85 0.85  

 CNN (1D) 1.00 1.00 1.00 1.00  

 GBDT 1.00 0.88 0.87 0.89  

 SGD 0.77 0.82 0.77 0.85  

 MLP 0.56 0.72 0.12 0.12  

Based on the overall result in Table XIV, the treatment of 
PCA had a positive effect on majority of the features as it has 
retained accuracy performance and even more, slight 
improvement on the accuracy can be observed on all the 
features especially the MLP classifiers. In a flipside, the 
accuracy performance using GBDT has slightly affected 
regardless any features used. 

Table XV shows the classification performance after the 
LDA and Boruta were performed on all the features. The LDA 
had a positive effect on the accuracy performance for almost all 
the features except the classification using MLP. Despite 
pruning more that 90% of features by using LDA, the accuracy 
performance improvement can be observed on RESNET152, 
NASNETMobile and MobileNetV2 along sustaining the best 
accuracy performance on EFFNET. On the other hand, the 
BORUTA only demonstrated positive effect on EFFNET and 
RESNET152. The other highlight was the classification using 
MLP on EFFNET features has dramatically improved the 
accuracy performance from 0.44 to 0.83. 

TABLE XV.  EFFECTS OF LDA AND BORUTA ON ACCURACY FOR UMS 

DATASET 

Feature 

Extraction 

Classificatio

n  

Baselin

e 

LD

A 

BORUT

A 

Trendline 

EFFNET LSVM 1.00 1.00 1.00 
 

 CNN (1D) 1.00 1.00 1.00 
 

 GBDT 1.00 1.00 1.00 
 

 SGD 1.00 1.00 1.00 
 

 MLP 0.44 0.19 0.83 
 

RESNET 

152 

LSVM 
1.00 

1.00 1.00 
 

 CNN (1D) 1.00 1.00 1.00 
 

 GBDT 1.00 1.00 1.00 
 

 SGD 0.95 1.00 0.99 
 

 MLP 0.12 0.12 0.12 
 

NASNet 
Mobile 

LSVM 
0.77 

1.00 0.77 
 

 CNN (1D) 1.00 1.00 1.00 
 

 GBDT 0.99 1.00 0.99 
 

 SGD 0.82 1.00 0.93 
 

 MLP 0.33 0.12 0.12 
 

MobileNetV

2 

LSVM 
0.85 

1.00 0.85 
 

 CNN (1D) 1.00 1.00 1.00 
 

 GBDT 1.00 1.00 1.00 
 

 SGD 0.77 1.00 0.77 
 

 MLP 0.56 0.19 0.12 
 

Table XVI presents the analysis of feature selection 
performance using RFE. 
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TABLE XVI.  EFFECTS OF RFE ON ACCURACY FOR UMS DATASET 

Feature 

Extraction 

Classificati

on  

Baselin

e 

RFE

1 

RFE

2 

RFE

3 

Spark-

line 

EFFNet LSVM 1.00 1.00 1.00 1.00 
 

 CNN (1D) 1.00 1.00 1.00 1.00 
 

 GBDT 1.00 1.00 1.00 1.00  

 SGD 1.00 1.00 1.00 1.00  

 MLP 0.44 0.46 0.48 0.55  

RESNet152 LSVM 1.00 1.00 1.00 1.00  

 CNN (1D) 1.00 1.00 1.00 1.00  

 GBDT 1.00 1.00 1.00 0.96  

 SGD 0.95 0.93 1.00 1.00  

 MLP 0.12 0.39 0.12 0.64  

NASNet 

Mobile 

LSVM 
0.77 

0.14 0.16 0.20  

 CNN (1D) 1.00 0.82 0.34 0.12  

 GBDT 0.99 0.96 0.98 0.99  

 SGD 0.82 0.44 0.39 0.10  

 MLP 0.33 0.12 0.12 0.12  

MobileNet

V2 

LSVM 
0.85 

0.13 0.23 0.22  

 CNN (1D) 1.00 1.00 0.77 0.17  

 GBDT 1.00 0.99 0.99 0.98  

 SGD 0.77 0.13 0.13 0.12  

 MLP 0.56 0.12 0.12 0.12  

RFE worked well on EFFNET and RESNET152, as shown 
in Table XVII. Moreover, the performance of MLP on 
RESNET152 had substantially improved from 0.12 to 0.64. On 
the other hand, RFE absolutely failed to perform on 
NASNetMobile and MobileNetV2, resulting in a significant 
fall in the accuracy of all classifiers used. 

Next, the detailed analysis of feature selection performance 
on each feature and machine learning classifier are shown in 
Fig. 12, Fig. 13, Fig.14 and Fig.15. 

 
Fig. 12. Effects of feature selection on machine learning classifiers for 

EFFNET (UMS dataset) 

As shown in Fig. 12, except for MLP, all classifiers in 
EFFNET performed remarkably well on all feature selections. 
Whereby, the EFFNET features would be more compatible 
with MLP if PCA and BORUTA is applied as the accuracies 
were increased by 55% and 89% respectively. On RESNET152 
with EFFNET, a similar pattern of feature selection 
performance can be observed, as shown in Fig. 13. In fact, 
regardless of which feature selection is employed, the accuracy 
of SGD can be improved. When PCA and RFE were used with 
MLP, a positive effect on accuracy was noticed. 

 
Fig. 13. Effects of feature selection on machine learning classifiers for 

RESNET152 (UMS dataset) 

 
Fig. 14. Effects of feature selection on machine learning classifiers for 

NASNETMOBILE (UMS dataset) 

According to the graph in Fig. 14, GBDT's performance 
appeared to be consistent across all feature selections, but the 
performance of the other classifiers dropped when RFE was 
applied. The best performance of LSVM and SGD could be 
seen when LDA was used. On MobileNetV2, CNN performed 
very well with all the feature selections and GBDT was slightly 
incompatible with PCA. Similar with NASNetMobile, LDA 
had also improved the accuracy of LSVM and SGD. 
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Fig. 15. Effects of feature selection on machine learning classifiers for 

MOBILENETV2 (UMS dataset) 

 
Fig. 16. The average performance comparisons of feature selection for UMS 

dataset 

The summary of feature selection performance across 
features and classifiers for the UMS dataset is shown in Fig. 
16. The PCA was found to be the most robust feature selection 
method since its performance was consistent across various 
features and classifiers. However, when accuracy and feature 
size were taken into account, LDA's performance was the most 
significant. Meanwhile, if execution time was not a major 
concern and automatic feature selection is one of the criteria 
for selecting features, the BORUTA could be considered. 
Aside from that, the results of Tables XII, XIII, and XIV 
implied that EFFNET is the best and stable features. The best 
classifiers were GBDT and CNN, which consistently excelled 
across a variety of feature selections. 

2) Scene-15 dataset: Table XVII shows the performance 

analysis of PCA on Scene-15 dataset. 

TABLE XVII.  EFFECTS OF PCA ON ACCURACY FOR SCENE-15 DATASET 

Feature 

Extraction 

Classificatio

n  

Baselin

e 

PCA

1 

PCA

2 

PCA

3 

Spark 

line 

EFFNET LSVM 0.94 0.94 0.93 0.91  

 CNN (1D) 0.94 0.93 0.92 0.93  

 GBDT 0.68 0.06 0.01 0.05  

 SGD 0.68 0.93 0.93 0.93  

 MLP 0.43 0.56 0.32 0.33  

RESNET15
2 

LSVM 0.62 0.61 0.59 0.55  

 CNN (1D) 0.62 0.66 0.66 0.66  

 GBDT 0.41 0.33 0.44 0.49  

 SGD 0.37 0.54 0.52 0.52  

 MLP 0.23 0.40 0.44 0.44  

NASNet 

Mobile 

LSVM 0.68 0.70 0.68 0.67  

 CNN (1D) 0.74 0.77 0.73 0.71  

 GBDT 0.55 0.52 0.51 0.54  

 SGD 0.58 0.68 0.61 0.64  

 MLP 0.39 0.63 0.08 0.08  

MobileNet
V2 

LSVM 0.69 0.70 0.70 0.68  

 CNN (1D) 0.82 0.79 0.79 0.73  

 GBDT 0.07 0.42 0.42 0.56  

 SGD 0.68 0.65 0.68 0.65  

 MLP 0.34 0.60 0.08 0.08  

AVERAGE  0.57 0.62 0.55 0.57  

Overall, PCA did not enhance classification accuracy 
considerably. SGD and MLP are the only two classifiers that 
performed better with PCA. For instance, EFFNET-SGD 
accuracy increased from 0.68 to 0.94, whereas 
NASNETMobile's classification accuracy increased from 0.39 
to 0.63. 

The accuracy performance of LDA and BORUTA 
treatment as compared to without feature selection treatment 
(Baseline) can be referred in Table XVIII. As depicted in Table 
XVIII, LDA performed excellently on many features and 
classifiers, except EFFNET-GBDT, NASNETMobile-GBDT 
and MOBILENetV2-GBDT. In contrast, BORUTA did not 
increase the accuracy of nearly all features, and there was even 
a slight drop in accuracy. 

 

 

0.83 0.86 0.83 0.83 

0.68 
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TABLE XVIII.  EFFECTS OF LDA AND BORUTA ON ACCURACY FOR 

SCENE-15 DATASET 

Feature 

Extraction 

Classificatio

n  

Baselin

e 

LD

A 

BORUT

A 

Spark 

line 

EFFNet LSVM 0.94 0.99 0.93 
 

 CNN (1D) 0.94 0.99 0.93 
 

 GBDT 0.68 0.05 0.70 
 

 SGD 0.68 0.99 0.90 
 

 MLP 0.43 0.69 0.64 
 

RESNet152 LSVM 0.62 0.93 0.58 
 

 CNN (1D) 0.62 0.93 0.60 
 

 GBDT 0.41 0.69 0.38 
 

 SGD 0.37 0.94 0.36 
 

 MLP 0.23 0.58 0.08 
 

NASNet 

Mobile 

LSVM 0.68 0.91 0.40 
 

 CNN (1D) 0.74 0.90 0.72 
 

 GBDT 0.55 0.04 0.55 
 

 SGD 0.58 0.89 0.42 
 

 MLP 0.39 0.77 0.46 
 

MobileNetV

2 

LSVM 0.69 0.75 0.62 
 

 CNN (1D) 0.82 0.91 0.79 
 

 GBDT 0.07 0.01 0.19 
 

 SGD 0.68 0.91 0.61 
 

 MLP 0.34 0.75 0.23 
 

AVERAGE  0.57 0.73 0.55  

The analysis of RFE accuracy performance is shown in 
Table XIX. The pattern of data presented in Table XIX 
obviously indicates that RFE has brought less impact on 
improving almost all feature representation. However, the 
positive effects of RFE can be seen on EFFNET-SGD, 
EFFNET-MLP and MobileNetV2-MLP. 

TABLE XIX.  EFFECTS OF RFE ON ACCURACY FOR SCENE-15 DATASET 

Feature 

Extraction 

Classificati

on  

Baselin

e 

RFE

1 

RFE

2 

RFE

3 

Spark 

line 

EFFNet LSVM 0.94 0.94 0.93 0.89  

 CNN (1D) 0.94 0.92 0.93 0.89  

 GBDT 0.68 0.61 0.70 0.66  

 SGD 0.68 0.91 0.92 0.84  

 MLP 0.43 0.54 0.36 0.38  

RESNet152 LSVM 0.62 0.59 0.46 0.04  

 CNN (1D) 0.62 0.57 0.53 0.11  

 GBDT 0.41 0.40 0.37 0.12  

 SGD 0.37 0.34 0.45 0.08  

 MLP 0.23 0.24 0.08 0.08  

NASNet 

Mobile 

LSVM 0.68 0.19 0.04 0.04  

 CNN (1D) 0.74 0.79 0.63 0.20  

 GBDT 0.55 0.66 0.56 0.07  

 SGD 0.58 0.44 0.08 0.06  

 MLP 0.39 0.27 0.08 0.08  

MobileNet
V2 

LSVM 0.69 0.70 0.68 0.06  

 CNN (1D) 0.82 0.80 0.80 0.60  

 GBDT 0.07 0.07 0.07 0.19  

 SGD 0.68 0.67 0.69 0.23  

 MLP 0.34 0.59 0.08 0.08  

AVERAGE  0.57 0.56 0.47 0.28  

Fig. 17 to 20 show a detailed analysis of feature selection 
performance for each feature and machine learning classifier. 
Based on the graph shown in Fig. 17, the transformation of 
EFFNET feature by using LDA had improved the classification 
accuracy of LSVM, CNN, SGD and MLP. In addition to that, 
the PCA, BORUTA and RFE brought significant effects on the 
accuracies for MLP and SGD. 

 
Fig. 17. Effects of feature selection on machine learning classifiers for 

EFFNET (scene-15 dataset) 

 
Fig. 18. Effects of feature selection on machine learning classifiers for 

RESNET152 (scene-15 dataset) 
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As for RESNET152, as shown in Fig. 18, there was a 
tremendous increase on the accuracy when LDA was being 
used to transform the features for CNN, LSVM and SGD. The 
rest of the feature selection techniques by using PCA, 
BORUTA and RFE seemed to have less positive impacts on 
the accuracies. Similarly in Fig. 19 and Fig. 20, LDA still 
outperformed the accuracy of PCA, BORUTA and RFE on all 
classifiers except GBDT. For NASNETMobile, PCA 
demonstrated a bit of an improvement on the accuracies for 
CNN, SGD and MLP. There were no positive effects on the 
LSVM, CNN, SGD, and MLP accuracies for BORUTA and 
RFE. 

 
Fig. 19. Effect of feature selection on machine learning classifiers for 

NASNETMOBILE (scene-15 dataset) 

 
Fig. 20. Effect of feature selection on machine learning classifiers for 

MOBILENETV2 (scene-15 dataset) 

 
Fig. 21. The average performance comparisons of feature selection for scene-

15 dataset 

Fig. 21 shows the summary of feature selection 
performance on the Scene-15 dataset. LDA was the best 
feature selection technique for the Scene-15 dataset since it not 
only worked with a wide range of features and classifiers, but it 
also improved classification accuracy significantly. BORUTA 
and RFE, on the other hand, have no substantial impact on 
classification performance. Due to the constant performance 
across numerous feature selections, it can also be inferred that 
EFFNET is the best features and, LSVM is the best classifier. 

V. CONCLUSION AND FUTURE WORKS 

This paper evaluated several transfer learning approaches 
and feature selections for effective and super lightweight 
landmark recognition model. A landmark recognition model 
was trained through the features extraction by using the pre-
trained CNN architectures and machine learning classifiers. 
The new UMS landmark datasets were created, and the 
landmark recognition model was also evaluated with the 
Scene-15 dataset. The findings showed that the EFFNET CNN 
architecture with CNN classifier is the best feature extraction 
and classifier in this study. EFFNET-CNN achieved 100% and 
94.26% accuracies on UMS landmark and Scene-15 dataset, 
respectively.  Moreover, the features created by EFFNET were 
more compact compared to the other features. Furthermore, 
based on the evaluation of several feature selection algorithms, 
LDA was determined to be the best feature selection technique 
for vastly reducing feature dimensionality by 99.69% for UMS 
landmark dataset and 98.90% for Scene-15 dataset while 
maintaining good accuracies. However, although a super 
lightweight landmark recognition model was produced, it must 
undergo extra pre-processing step to reduce the dimensionality 
of features which will impose excessive computational costs of 
processing. Therefore, future works that can be suggested are 
to evaluate the effect of the proposed dimensionality reduction 
technique on the computational cost of the algorithms as well 
as to test it on various benchmark datasets. 
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