
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

227 | P a g e

www.ijacsa.thesai.org

Paw Search-A Searching Approach for Unsorted Data

Combining with Binary Search and Merge Sort

Algorithm
Paw Search Algorithm

Md. Harun Or Rashid
1
, Ahmed Imtiaz

2

Department of Computer Science and Engineering, Rangamati Science and Technology University, Jhagrabil, Rangamati, 4500,

Chattogram, Bangladesh
1, 2

Abstract—Searching is one of the oldest core mechanism of

nature. Nature is changing gradually along with searching

approaches too. Data Mining is one of the most important

industrials topic now-a-days. Under this area all social networks,

governmental or non-governmental institutions and ecommerce

industries produce a huge number of unsorted data and they are

to utilize it. For utilizing this huge number of unsorted data there

needs some specific features based unsorted data structure tools

like searching algorithm. At present there are several sorted data

based searching algorithms like Binary Search, Linear Search,

Jump Search and Interpolation Search and so on. In this paper

of Paw Search Algorithm, it is fully focused to develop a new

approach of searching that can work on unsorted data merging

several searching techniques and sorting techniques. This

algorithm starts its operation by breaking down the given

unsorted array into several blocks by making the square root of

the length of the given array. Then these blocks will be searched

within its specific formula till the target data is found or not, and

in the inner side of each block there will be performed Merge

Sort and Binary Search approach gradually. Time and Space

Complexity of this Paw Search algorithm is comparatively

optimal.

Keywords—Paw; search; unsorted; data; blocks; square root

I. INTRODUCTION

In this present world, technology is the heart of all
activities, operations and so on, and the large amount of
unsorted data sets generated from different sites of the world as
well as different institutions are the largest and best resources
of the present technology. Managing this large amount of data
with proper data structure techniques is the best tool for leading
this IT world now-a-days. In this paper, we will go through a
new technique of searching of data from the given unsorted
array of data. There are several techniques raised now-a-days,
but here we will go through a new dimension of searching and
merging several built in techniques along with some new
approaches to generate an optimal output.

In present world there are tons of unsorted data produced
within a minimal time randomly. There are several searching
algorithms like Linear Search [1, 2, 3], Binary Search [1, 2],
Jump Search [1, 4], Hybrid Search [1, 5] and Interpolation
Search [1, 6] now-a-days which work only on sorted data. But
till now there are less approaches that work on randomly

generated unsorted data. Several optimal data structures tools
are badly required to operate this very large number of
unsorted data which are producing day by day. Data Mining is
one of the most important industrials topic now-a-days. Under
this area of data mining for all social networks, governmental
or non-governmental institutions and ecommerce industries
produce tons of unsorted data and they are to utilize it. For
utilizing this tons of unsorted data there is a need of some
specific feature based unsorted data structures tools like
searching algorithm [6] based on unsorted data array. So, a
data structure tool [7] that will work on directly unsorted data
is the prime concern for developing another searching
approach.

Data scientists are trying to develop several data structures
tools to utilize the tons of unsorted data randomly around the
globe continuously. With a view to helping the data scientists
here I am trying to develop data structures tools for finding out
of any data from any given array of unsorted data. We know
that sorting of data consumes a large number of time; so, from
this concept of time utilization there needs some specific
approach that can perform searching operation on unsorted
data which minimize the uses of time. As the technology and
technology related models/industries appreciate the approaches
that minimize time consuming, so this is the demand of time to
have high performer approach consuming less time without
sorting the large data set at a single time.

Through this whole paper we will go through the
approaches to develop a specific feature based searching
algorithm entitled paw search algorithm that will be capable to
perform searching operations on unsorted data, and here we
may also go through the help of some existing searching
approaches and sorting approaches at the inner phase of
searching operation to ensure the high performance of
searching.

The main principle of this Paw Search Algorithm is to work
on (i) unsorted data segmenting the given array of data into
several (ii) blocks.

Initially it starts working with x blocks of unsorted data by
making the square root of the length n of the given array of

data i.e., x=ceiling⌈√n⌉ where n is length of the given array of

unsorted data.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

228 | P a g e

www.ijacsa.thesai.org

This algorithm will never check all of the blocks of
unsorted data linearly, rather than it will go the blocks of
unsorted data all but as like as binary approach but not fully
follow the binary approaches. And for the inner block
operation we will also call here the merge sort approach for the
better performance of this paw search algorithm.

II. LITERATURE REVIEW

In this section we will go through the several existing
searching algorithms, and most of them here work only on
sorted data:

A. Classification of Searching Techniques

There are several searching techniques present now-a-days.
Depending on external and internal issue there are two types of
searching techniques as (i) external search and (ii) internal
search, and based on sequential and interval issue there are two
types of searching techniques as (i) sequential search and (ii)
interval search.

B. Present Searching Algorithms

There are several searching algorithms based on sorted
data. Some of them are listed below-

1) Linear search algorithm: Linear search algorithm [3]

could be an easy search algorithmic program. It's a sequent

search that performed on sequences of numbers that are

ascending or down or unordered. And it checks every

component of the whole list to look a specific information

from the list. If the comparison is equal, then the search is

stopped and declared productive. For a listing with n things,

the most effective case is once the worth of item to be

searched is adequate to the primary component of the list,

during this case only one comparison is required. Worst case

is once the worth isn't within the list or happens one time at

the top of the list, during this case n comparisons are required.

2) Binary search algorithm: It is a quick search formula

because the run-time quality is Ο (log n). Divide and conquer

Principle is used here as its’ search formula. This formula

performs higher for sorted knowledge assortment. In binary

search [8], we tend to 1st compare the key with the item

within the middle position of the info assortment. If there's a

match, we are able to come forthwith. If the secret's but

middle key, then the item should lie the lower 1/2 the info

collection; if it's bigger, then the item should lie the higher 1/2

the info assortment.

3) Hybrid search algorithm: Hybrid Search algorithmic

[3, 9] rule combines properties of each linear search and

binary search and provides a far better and economical

algorithmic rule. This algorithmic rule may be accustomed

search in associate degree unsorted array whereas taking less

time as compared to the linear search algorithmic rule. As

mentioned this algorithmic rule is combines 2 looking

algorithms, viz. Linear Search and Binary Search. Like Hybrid

Search algorithmic rule, the array is split into 2 sections so

searched in every of the sections. The algorithmic rule starts

with examination the key component to be searched with the 2

extreme components of the array, the primary and therefore

the last, further because the middle component. If a match is

found, the index worth comes back. However, if it's not, the

array is split into two sections, from the center index.

Currently the search is meted out within the section on the left

in a very similar method. The acute components and therefore

the middle component of the left division are compared with

the key worth for a match, that if found, returns the index

worth. If not, the left section is once more divided into two

components and this method goes on until a match is found

within the left section. If no match is found within the left

division, then the algorithmic rule moves on to the proper

division, and therefore the same procedure is meted out to

search out a match for the key worth. Now, if no worth is

found that matches the key worth even when ransacking

through all sections, then it's more divided and therefore the

method repeats iteratively till it reaches the atomic state. If the

worth isn't gift within the array, as a result of that the

algorithmic rule returns -1.

4) Interpolation search algorithm: Interpolation search [2,

10] rule is improvement over Binary search. The binary search

checks the part at middle index. However, interpolation search

could search at completely different locations supported price

of the search key. The weather should be in sorted order so as

to implement interpolation search. As mentioned the

Interpolation Search is Associate in Nursing improvement

over Binary explore for instances, wherever the values in a

very sorted array are uniformly distributed. Binary Search

continuously goes to the center part to ascertain. On the

opposite hand, interpolation search could head to completely

different locations in line with the worth of the key being

searched. For example, if the worth of the secret's nearer to the

last part, interpolation search is probably going to start out

search toward the tip facet.

5) Jump search algorithm: Jump search algorithmic [11,

12] rule, additionally known as block search algorithmic rule.

Solely sorted list of array or table will use the Jump search

algorithmic rule. In jump search algorithmic rule, it's not in

any respect necessary to scan each component within the list

as we have a tendency to liquidate linear search algorithmic

rule. We have a tendency to simply check the m component

and if it's but the key component, then we have a tendency to

move to the m + m component, wherever all the components

between the m and m + m component square measure skipped.

This method is sustained till m component becomes adequate

to or larger than key component known as boundary price.

The worth of m is given by m = √n, wherever n is that the

total range of components in associate array. Once the m

components attain the boundary price, a linear search is

finished to seek out the key price and its position within the

array. And also the numbers of comparisons square measure

adequate to (n/m + m -1). It should be noted that in Jump

search algorithmic rule, a linear search is finished in reverse

manner that's from boundary price to previous price of m.
Though there is a large number of searching approaches

[13] on different aspects like strings [14], numeric values and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

229 | P a g e

www.ijacsa.thesai.org

so on there is still a concern of optimizing [15, 16] these
approaches.

Now-a-days industry requires specific feature based
searching tools like audio, video and/or image based searching
[17, 18], and as the industry is changing day by day with the
help of upgraded technology, searching approaches are also
gradually being changed as needed [19, 20].

And, still there needs of most powerful, high performer,
fast searching unsorted data based searching approaches;
keeping this conscious in mind, this paw search approach for
unsorted data is demand of time now.

III. METHODOLOGY

In this Methodology section, we will go through several
sections like Planning, Design, Paw Search Algorithm etc. for
the development of the proposed approach of search precisely
and clearly:

A. Planning

Define To develop this algorithm I have planned several
data structure approaches, arrays, sub-arrays or blocking,
sorting approaches and so on.

 First plan is to manage several unsorted data sets that
may be generated from different environment like
weather data, space data and son.

 Second plan is to find out the length of the array with
filling this array with that unsorted raw data.

 Third plan is to divide the unsorted array into several
sub-arrays which are termed as data blocks in the later
chapters of this paper.

 Fourth plan is to find out an optimal way to have
operations on these blocks by traversing them.

 Fifth plan is to operate a searching approach on the
blocks for finding out the optimal outputs.

 Sixth plan is to calculate the time and space complexity
of this algorithm.

 Seventh plan is to compare these time and space
complexity with different present searching algorithms
properly.

The designation process of this algorithm is briefly
described in part B of this section.

B. Design

To design this algorithm we are to go through a list of
unsorted data set firstly as the main principle of this Paw
Search - A Searching Approach for Unsorted Data Combining
with Binary Search and Merge Sort Algorithm is to work on (i)
unsorted data segmenting the given array of data into several
(ii) blocks.

Initially it starts working with x blocks of unsorted data by
making the square root of the length n of the given array of

data i.e., x=ceiling⌈√n ⌉ where n is length of the given array

of unsorted data. but when the length of this array isn’t a
perfect square root number then the block number becomes a

fraction number, but the block number can’t be a number as a
fraction number in real, so we are to operate here the ceiling
operator to get the integer number of blocks. But in this
situation there needs some dummy data as like zero to make
the block size perfect i.e., same length of each block.

For example let assume an unsorted array arr1[] of data of
the length of 16 which is a perfect square root number that is
shown in Table I.

TABLE I. UNSORTED ARRAY ARR[] OF 16 LENGTH

5 0 6 3 7 1 9 2 4 17 10 8 11 16 13 15

Here n=16; Since 16 is a perfect square root number

So the block numbers, x = int⌈√16⌉ = 4

TABLE II. X BLOCKS FROM ARR1[]

5 0 6 3 7 1 9 2 4 17 10 8 11 16 13 15

Block 1 Block 2 Block 3 Block 4

Here the Block1, Block2, Block3 and Block4 are the four
blocks of the segmented arr1 [] shown in Table II

Now let assume another unsorted array arr2 [] of data of
the length of 8 which is not a perfect square root number that is
shown in Table III

TABLE III. UNSORTED ARRAY ARR2[] OF 8 LENGTH

7 5 10 3 21 1 6 9

Here n=8; Since 8 is not a perfect square root number

So the block numbers, x = int⌈√8 ⌉

= int⌈2.828427125⌉

= 3 [By applying ceiling operation]

TABLE IV. X BLOCKS FROM ARR2[]

7 5 10 3 21 1 6 9 0

Block 1 Block 2 Block 3

Here the Block1, Block2 and Block3 are the three blocks of
the segmented arr2[] shown in Table IV. In Block4 there is
putted an extra zero as a dummy data for remaining the blocks
size same.

However, this paw search algorithm will never visit all of
the blocks of unsorted data linearly, rather than it will go
through the blocks of unsorted data all but as like as binary
approach. But it won’t fully follow the binary approach.

The designing resources and working procedures list of this
algorithm is listed here-

 Unsorted Data Set

 Square Root Generating Function

 Ceiling Operator

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

230 | P a g e

www.ijacsa.thesai.org

 Generating Blocks

 Block Visiting Loop

 Inner Block Searching Approach

 Exit

C. Paw Search Algorithm

Assume that there is an array with the length of n of the
nodes value of any given graph or other randomly generated
unsorted data, now let’s demonstrate our desired Paw Search
Algorithm for finding out the target data from this given array
of unsorted data. Here, we will go through the procedural steps
of this Paw Search Algorithm. The procedures of this Paw
Search Algorithm are shown below-

PAW (SEARCH ALGORITHM)

Divide the given array into x blocks where x = ceiling [√n]

Loop for Block

//For Block1:

Block[] = x1[] = []

 mergesort (Block[], L, U])

If(Block[last_element] ≥ Target)

{

 If(x[last_element] == target)

 {Print “TARGET FOUND”}

 Exit

 Else

 {

 BinarySearch (Block(x)[], 1,U)

 If (x[mid] == target)

 {Print “TARGET FOUND”}

 Exit

 Else

 {Jump to the next Block}

 }

Else

 {Jump Block[] = x[last]}

Update Loop

Loop Exit

If (target == not found)

 {Print “Unsuccessful”}

Exit

 //Merge Sort Function

mergesort (Block[], l, U)

If U > l

Find the middle point to divide the array into two halves:

middle m = l+ (U-l)/2

 Call mergeSort for first half:

 Call mergeSort(arr, l, m)

 Call mergeSort for second half:

 Call mergeSort(arr, m+1, U)

 Merge the two halves sorted in step 2 and 3:

 Call merge(arr, l, m, U)

 //Binary Search Function

Binary Search (Block[], 1,U)

Input the Block[] array of x elements I sorted form

LB = 0,UB = n; mid = int((LB+UB))/2)

Repeat step 4 and 5 while(LB <= UB and (A[mid] != item)

If (item < A[mid]) UB = mid-1

Else

LB = mid+1

mid = int((LB+UB)/2)

If (A[mid] == item)

Print “Item is found”

Else

Print “Item is not found”

Exit

The above mentioned procedures are the proposals of the
Paw Search Algorithm, which also includes the Binary Search
and Merge Sort Algorithm for completing its operation more
efficiently. The further explanation of this algorithm is
discussed later sections with proper examples.

D. Explanation and Implementation

Let’s understand the block visiting procedures now, a
graphical view is illustrated in Fig. 1 to show the working flow
of the x blocks generated from the length of the array by
making square root on it, and the length of each block is also x
i.e., the block size and the block numbers are same.

Here x is the block number and l, k, m, p, y are also the sub
number of x and they are the right mid, right-right mid, ……. ,
left mid, left-right mid, …….. , and gradually so on.

For implementing this algorithm let assume an array A[]
with the length of n as shown in the following Table V.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

231 | P a g e

www.ijacsa.thesai.org

TABLE V. GIVEN ARRAY WITH N ELEMENTS

ARRAY ELEMENTS

INDEX NUMBER 0 1 2 3 4 5 6 7 8 ---- n-4 n-3 n-2 n-1 n

So the initial step of this algorithm is to calculate the square
root value x of the length of the given array A[].

x = sqrt(n)=ceiling(√n)

It generates x number of blocks as Block(1), Block(2),
Block(3), Block(4), ……………..… , Block(x-3), Block(x-2),
Block(x-1), Block(x) which are shown in Fig. 2.

The operational steps of these x number of blocks are also
shown in Fig. 2. This algorithm follows the Left to Right
approach. According to this Fig. 2, the first Block[1] is to go
under the algorithmic operation firstly, secondly the last
Block[x], then Block [mid], then Block [Right-mid], then
Block [Right-mid], ……..,….…. , ….…. , Block [Left-mid],
Block [Left-Right-mid], …… , Block [Left-Left-mid], ………
, ………… , ……….. etc.

Fig. 1. Traversing procedure tree of the x blocks

Fig. 2. Graphical view with paw search algorithm of the given array (table 5) with elements

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

232 | P a g e

www.ijacsa.thesai.org

For better understanding the implementation of this Paw
Search Algorithm we will go through an example with proper
explanation. Lets’ assume another array B[] with the length of
n, where n=9 as shown in Table VI. And let the SEARCH
ITEM = Target = 5.

TABLE VI. ARRAY B[] WITH 9 ELEMENTS

4 6 1 9 3 5 8 7 2

Firstly, Lets’ find out the number of Blocks:

x = ceiling⌈√n⌉ = ceiling⌈√9⌉ = 3

So, the blocks are shown in Table VII follows:

TABLE VII. BLOCKS OF ARRAY B[] WITH 9 ELEMENTS

4 6 1 9 3 5 8 7 2

Block 1 Block 2 Block 3

For Block1:

//Sort the block using merge sort approach

mergesort (Block1[], 0, 2]) //input

{

Block(x)[]={3, 5, 9} //sorted

}

If((Block1(last)==6)≥(Target==5))

{

If(x(last)==target)

{

Print “TARGET FOUND”

}

Else

{

//Binary Search

beg = lower_bound = 0

end = upper_bound = 2

mid =(beg + end)/2=(0 + 2)/2= 1

Block1[mid]= x[1]= 4

if (x[1]== target)

{

Print “TARGET FOUND”

Exit

}

Else

{

Jump to the next Block

}

}

Else

{

Jump x(last)

}

x++

Exit

For Block2:

//Sort the block using merge sort approach

mergesort (Block2[], 3, 5]) //input

{

Block(x)[]={3, 5, 9} //sorted

}

If((Block1(last)==9)≥(Target==5))

{

If(x(last)==target)

{

Print “TARGET FOUND”

}

Else

{

//Binary Search

beg = lower_bound = 3

end = upper_bound = upper_bound+2=5

mid =(beg + end)/2=(3 + 2)/2= 4

Block1[mid]= x[4]= 5

if (x[4]== target)

{

Print “TARGET FOUND”

Exit

}

Else

{

Jump to the next Block

}

}

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

233 | P a g e

www.ijacsa.thesai.org

Else

{

Jump x(last)

}

x++

Exit

So, here the target is found in Block2.

IV. PERFORMANCE ANALYSIS

Some fundamental key terms related to performance
measurement of this proposed searching approach of paw
search algorithm will be discussed through this section briefly.
Basically, here we will cover the time and space complexity of
this proposed searching approach and also cover a brief
comparison of different existing searching approaches with this
proposed searching approach:

A. Space Complexity

The Now lets’ go through the time complexity phase of this
Paw Search Algorithm. For calculating Time complexity of
this algorithm we are to go through the divide and conquer
approach of recursive method through traversing the x blocks
generated by squaring root the length n of the given array of
data.

Let the block1 of the length of x elements generated by
squaring root the length n of the given array of data i.e.,
Block1(x) = {E(1),E(2),E(3),E(4),….,E(x-3),E(x-2),E(x-
1),E(x)}.

First of all we are to calculate the space complexity of
merge sort approach for sorting this sub array i.e., Block1 of x
length. And we already know that the space complexity of this
merge sort approach is O(x) that means that it needs of space
for sorting this sub array data is as equal as the length of the
sub array, here which is x. As the size of each and every block
is same and at a time only one block will be sorted, so here the
space complexity is O(x).

Now, let’s calculate the space complexity of this paw
search algorithm to find out the target value for this sub array x
i.e., Block1

For Block1:

//Space Complexity Calculation

If(x(last)>=target)

{

If(x(last)==target)

{

Print “TARGET FOUND”

}

Else

{

Binary Search Algorithm

if (x[i]== target)

{

Print “TARGET FOUND”

i++

Exit

}

Else

{

Jump to the next Block

}

}

}

Else

{

Jump x(last)

}

Exit

So, there needs space as same as the length of the array x
for performing this operation successfully. We can also see the
graphical view (push and pop operation of stack method) of the
recursive method of this Block1 x as below in Fig. 3.

Fig. 3. Space complexity calculation

Where Fig. 3(A) shows the PUSHING of Block1’s data
into the STACK, Fig. 3(B) shows Block1 fully PUSHED into
the STACK, Fig. 3(C) shows the POPPING of Block1’s data
from the STACK and Fig. 3(D) shows the Block1 which is
fully popped from the STACK.

So, this Block1 needs same space as the length of this
Block1 i.e., x. Similarly, all rest of the blocks need same space
as their block size. So, here the space complexity is log (x).

Now, for finding out the target element from each block we
will operate here the Binary Search approach. And we already
know that the space complexity of the Binary Search approach
is log (x).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

234 | P a g e

www.ijacsa.thesai.org

So, the space complexity under the categories of worst
case, average case and best case of this Paw Search Algorithm
as below:

Paw_(Space_complexity) S(n)=O{(Space Complexity of
the Block of given array+Space Complexity of Merge Sort
Algorithm + Space Complexity of Binary Search Algorithm)}

⇒Paw_(Space_complexity) S(n)=O(log n + n + log n)

= O(n+2 log n)

=O(2 log n)

∴Paw_(Space_complexity) S(n)=O(log n) [∵2 is the

constant]

Hence the space complexity of this paw search algorithm is
log n

B. Time Complexity

Now lets’ go through the time complexity phase of this
Paw Search Algorithm. For calculating Time complexity of
this algorithm we are to go through the divide and conquer
approach of recursive method through traversing the x blocks
generated by squaring root the length n of the given array of
data.

Let the Block1 of the length of x elements generated by
squaring root the length n of the given array of data i.e.,
Block1(x) = {E(1), E(2), E(3), E(4), …. , E(x-3), E(x-2), E(x-
1), E(x)}.

Firstly, we are to calculate an extra time for generating this
x blocks by making square root of the given data array of the
length of n.

Secondly, we are to consider the time complexity of merge
sort approach for sorting this sub array i.e., Block1 of x length.
And we already know that the time complexity of this merge
sort approach is x log (x).

Now, let’s calculate the space complexity of this paw
search algorithm to find out the target value for this sub array x
i.e., Block1

//For Block1:

If(x(last)>=target)

 If(x(last)==target)

 Print “TARGET FOUND”

 Exit

Else

 BinarySearch(Block[], L, U)

 if (x[i] == target)

 Print “TARGET FOUND”

 Exit

 Else

 Jump: Update Block

Else

 Jump: Update Block

Exit Block

Exit Loop

Thirdly, we are to find out the time complexity for the
Binary Search approach for this Block1 i.e., x. And we already
know that the time complexity of the Binary Search approach
is log (x).

So, the time complexity under the best case category is √n

And the time complexity under the category of worst case
and average case of this Paw Search Algorithm as bellow:

Paw_(Time_Complexity) T(n)=O{(Time for making
Square Root of the given arry+Time Complexity of Merge Sort
Algorithm + Time Complexity of Binary Search
Algorithm)*Number of Blocks}

⇒Paw_(Time_Complexity) T(n)=O{(1+n log n + log n)*√
n}

= O{√n(1+(n+1) log n)}

= O{√n (n log n)}

= O{n*√n (log n)}

= O[√(n^3)(log n)]

∴Paw_(Time_Complexity) T(n) = O(√(n^3) log n)

Hence the time complexity under the categories of worst

case and average case of this paw search algorithm is √(n^3)

log n

C. Difference between Binary Search and Paw Search

The Paw Search Algorithm and the Binary Search
Algorithm aren’t same. There are several distinct difference
between this two approaches. A difference chart between these
two algorithms is shown in Table VIII follows:

TABLE VIII. DIFFERENCE BETWEEN PAW SEARCH AND BINARY SEARCH

ALGORITHM

Paw Search Algorithm Binary Search Algorithm

It begins its operation with the

unsorted array of data.

It begins its operation with the sorted

array of data.

It divides the given array of unsorted

array of data of n length into x blocks
by squaring root the length i.e.,

It doesn’t divide the array into

blocks.

The input data is either unsorted or

unsorted doesn’t fact here.
The input data must be sorted here.

Time Complexity here in Worst Case

is √

Time Complexity here in Worst Case

is

Time Complexity here in Average

Case is √

Time Complexity here in Average

Case is

Time Complexity here in Best Case

is √

Time Complexity here in Best Case

is

Space Complexity here in Worst

Case is

Space Complexity here in Worst

Case is

Space Complexity here in Average

Case is

Space Complexity here in Average

Case is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

235 | P a g e

www.ijacsa.thesai.org

Time Complexity here in Best Case

is

Time Complexity here in Best Case

is

It is a combined searching system. It is a unique searching system.

So, the Paw and Binary Searching technique isn’t similar at
all rather than it is quite different and comparatively more
efficient than Binary Searching technique. It also should be
mentioned that the Paw Search Algorithm solves the limitation
of taking fully sorted array as an input of Binary Search
Algorithm.

D. Difference between Jump Search and Paw Search

The Paw Search Algorithm and the Jump Search Algorithm
aren’t same. There are several distinct difference between this
two approaches. A difference chart between these two
algorithms is shown in Table IX follows:

TABLE IX. DIFFERENCE BETWEEN PAW SEARCH AND JUMP SEARCH

ALGORITHM

Paw Search Algorithm Jump Search Algorithm

It begins its operation with the
unsorted array of data.

It begins its operation with the sorted
array of data.

It divides the given array of unsorted
array of data of n length into x blocks
by squaring root the length i.e.,

It also divides the given array of
sorted array of data of n length into x
blocks by squaring root the length
i.e.,

It doesn’t follow the linear approach
for traversing its blocks.

It follows the linear approach for
traversing its blocks.

It is faster. It is comparatively slower.

It doesn’t travel the blocks
sequentially.

It travels the blocks sequentially.

Under the block operation it operates
here binary search approach as an
inner approach.

Under the block operation it operates
here linear search approach as an
inner approach.

The input data is either unsorted or
unsorted doesn’t fact here.

The input data must be sorted here.

It is a combined searching system. It is a unique searching system.

So, the Paw and Jump Searching technique isn’t similar at
all rather than it is quite different and comparatively more
efficient than Jump Searching technique. It also should be
mentioned that the Paw Search Algorithm solves the limitation
of taking fully sorted array as an input of Jump Search
Algorithm.

E. Time Complexity Comparisons with others Algorithms

A comparison list of time complexity of different search
algorithms like linear search, binary search, hybrid search,
interpolation search and paw search in different cases like
worst case, average case and best case is shown in Table X as
follows:

TABLE X. TIME COMPLEXITY COMPARISONS

 Best Case Average Case Worst Case

Linear Search O() O() O()

Binary Search O() O() O()

Hybrid Search O() O() O()

Interpolation
Search

O() O(()) O()

F. Space Complexity Comparisons with Others Algorithms

A comparison list of space complexity of different search
algorithms like linear search, binary search, hybrid search,
interpolation search and paw search in different cases like
worst case, average case and best case is shown in Table XI as
follows:

TABLE XI. SPACE COMPLEXITY COMPARISONS

 Best Case Average Case Worst Case

Linear Search O() O() O()

Binary Search O() O() O()

Hybrid Search O() O() O()

Interpolation
Search

O() O(()) O()

Paw Search O() O() O()

V. CONCLUSION WITH FUTURE WORK

By developing this long discussion of this research paper, I
come to know that research is the fundamental weapon of this
globalizing world i.e., IT world, and the large number of
unsorted data is the heart of each and every research now-a-
days. And managing this large number of unsorted data
properly with proper searching technique is the core point of
this paw search algorithm. The prime attraction of this research
work is to develop a specific as well as more optimal formula
of searching purposes from the unsorted list or array of data
with the help of other searching and sorting techniques like
merge sort and binary search. This Paw Search Algorithm
shows the optimal way to generate a proper searching output
taking an unsorted data list or array of data along with optimal
time and space complexity, several comparisons of different
searching approaches with this paw search algorithm are
shown in Table VIII, IX, X and XI consecutively.

However, research is a continuous process. It will be
upgraded with the demand of time day by day. There are also
available a lot of future works here, some of them are listed
below:

 Developing a more optimal logic/formula to optimize
this algorithm

 Developing a Machine Learning Model to predict the
desired block containing the desired data with Machine
Learning Approach

ACKNOWLEDGMENT

It is a great pleasure for me to present this thesis paper
titled as “Paw Search - A Searching Approach for Unsorted
Data Combining with Binary Search and Merge Sort
Algorithm”.

I express heartiest thanks to friends and my well-wisher for
their continuous inspiration and support, which led me to
complete this research work.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

236 | P a g e

www.ijacsa.thesai.org

Finally, I express my appreciation to my parents and other
family members for their unconditional support as without
their support and inspiration, it would be impossible for me to
complete this research successfully.

REFERENCES

[1] Sultana, N., Paira, S., Chandra, S., & Alam, S. S. (2017, February). A
brief study and analysis of different searching algorithms. In 2017
Second International Conference on Electrical, Computer and
Communication Technologies (ICECCT) (pp. 1-4). IEEE.

[2] Roopa, K., & Reshma, J. (2018). A comparative study of sorting and
searching algorithms. International Research Journal of Engineering and
Technology (IRJET).

[3] Das, P., & Khilar, P. M. (2013). A randomized searching algorithm and
its performance analysis with binary search and linear search algorithms.
International Journal of Computer Science & Applications (TIJCSA),
1(11).

[4] Pathak, A. (2015). Analysis and Comparative Study of Searching
Techniques. International Journal of Engineering Sciences & Research
Technology, 4(3), 235-237.

[5] Subbarayudu, B., Gayatri, L. L., Nidhi, P. S., Ramesh, P., Reddy, R. G.,
& Reddy, C. K. K. (2017). Comparative analysis on sorting and
searching algorithms. International Journal of Civil Engineering and
Technology (IJCIET), 8(8), 955-978.

[6] Rahim, R., Nurarif, S., Ramadhan, M., Aisyah, S., & Purba, W. (2017,
December). Comparison searching process of linear, binary and
interpolation algorithm. In Journal of Physics: Conference Series (Vol.
930, No. 1, p. 012007). IOP Publishing.

[7] Data Stuctures, Seymour Lipschutz and G A Vijayalakshmi Pai,
SCHAUMS’S OUTLINES, 2013-2014.

[8] Jacob, A. E., Ashodariya, N., & Dhongade, A. (2017, August). Hybrid
search algorithm: Combined linear and binary search algorithm. In 2017

International Conference on Energy, Communication, Data Analytics
and Soft Computing (ICECDS) (pp. 1543-1547). IEEE.

[9] Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, Clifford Stein, Third Edition, 2017-2018

[10] Harman, M., & McMinn, P. (2009). A theoretical and empirical study of
search-based testing: Local, global, and hybrid search. IEEE
Transactions on Software Engineering, 36(2), 226-247.

[11] Shneiderman, B. (1978). Jump searching: A fast sequential search
technique. Communications of the ACM, 21(10), 831-834.

[12] Mahboob, T., Akhtar, F., Asif, M., Siddique, N., & Sikandar, B. (2015).
Survey and Analysis of Searching Algorithms. International Journal of
Computer Science Issues (IJCSI), 12(3), 169.

[13] Boyer, R. S., & Moore, J. S. (1977). A fast string searching algorithm.
Communications of the ACM, 20(10), 762-772.

[14] Bentley, J. L., & Sedgewick, R. (1997, January). Fast algorithms for
sorting and searching strings. In Proceedings of the eighth annual ACM-
SIAM symposium on Discrete algorithms (pp. 360-369).

[15] Mehlhorn, K., Sanders, P., & Sanders, P. (2008). Algorithms and data
structures: The basic toolbox (Vol. 55, p. 56). Berlin: Springer.

[16] Tuparov, G., Tuparova, D., & Jordanov, V. (2014). Teaching sorting and
searching algorithms through simulation-based learning objects in an
introductory programming course. Procedia-Social and Behavioral
Sciences, 116, 2962-2966.

[17] Wang, A. (2003, October). An industrial strength audio search
algorithm. In Ismir (Vol. 2003, pp. 7-13).

[18] Zabinsky, Z. B. (2009). Random search algorithms. Department of
Industrial and Systems Engineering, University of Washington, USA.

[19] Shareef, H., Ibrahim, A. A., & Mutlag, A. H. (2015). Lightning search
algorithm. Applied Soft Computing, 36, 315-333.

[20] Bentley, J. L., & Yao, A. C. C. (1976). An almost optimal algorithm for
unbounded searching. Information processing letters, 5(SLAC-PUB-
1679).

