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Abstract—Since most of the road and traffic accidents are 
related to human errors or distraction, the study of irregular 
driving behaviors is considered one of the most important 
research topics in this field. To prevent road accidents and assess 
driving competencies, there is an urgent need to evaluate driving 
behavior through the design of a driving maneuvers assessment 
system. In this study, the recognition and classification of 
highway driving maneuvers using smartphones’ build-in sensors 
are presented. The paper examines the performance of three 
classical machine learning techniques and a novel hybrid system. 
The proposed hybrid system combines the pattern machining 
Dynamic Time Warping (DTW) technique for recognizing 
driving maneuvers and the machine learning techniques for 
classification. Results obtained from both approaches show that 
the performance of the hybrid system is superior to that obtained 
by using classical machine learning techniques. This 
enhancement in the performance of the hybrid system is due to 
the elimination of the overlapping in the target classes due to the 
separation, the recognition and the classification processes.  

Keywords—Driving behavior classification; driving maneuvers; 
pattern matching; machine learning 

I. INTRODUCTION 
According to previous studies in the field of traffic safety 

and road accidents, abnormal or irregular driving behaviors 
have been considered to be one of the main factors that greatly 
contribute to road accidents [1]. With the increase of vehicles 
all over the world, abnormal driving patterns detection and 
monitoring will most defiantly contribute to the reduction of 
road accidents. In addition to the above benefits, studies of 
driving patterns and behaviors have been instrumental in the 
development of advanced driver assistance systems (ADAS) 
and autonomous vehicles (AVs) [2, 3]. Driving behaviors can 
be assessed from two different perspectives namely; drivers’ 
actions or the vehicle’s dynamic state. In the first approach the 
driver is considered as the focal element where a set of 
parameters that affect the driver’s vigilance and attention are 
continuously observed to predict his/her competence to achieve 
the driving course in a robust and safe manner [4]. Drivers’ 
state monitoring systems may contain different modules, such 
as facial recognition systems, physiological signals monitoring 
and drivers’ interaction and control. For example, drivers' 
interaction and control, combined with facial recognition, have 
been shown to be effective in detecting driver fatigue, 
drowsiness, and distraction [4]. 

In the second approach, the dynamic state of the vehicle, 
such as longitudinal and lateral accelerations, braking, is 
monitored to detect and classify abnormal driving patterns or 
maneuvers. In general, signals captured through the vehicle’s 
built-in sensors captured through the CAN-BUS [5, 6], or 
external sensors such as accelerometers and gyroscopes, and 
GPS [7, 8], or a combination of in-vehicle and external sensors 
[9], can be used for the aforesaid purposes. In the past ten 
years, smartphones have emerged as an efficient and very 
reliable tool in this field, since they have powerful 
computational capabilities, richness and variety of built-in 
sensing devices and ability to have multiple ways of 
communication with external devices connected to the OBD-II 
port. Furthermore, smartphones especially with the emergence 
of 5G technology have been enabled to play cooperative 
coordinator between vehicles through vehicle-to-everything 
networks. With all the above listed features provided by 
smartphones, attention has been immensely focused on the 
utilization of smartphones in monitoring and analyzing driving 
behaviors. 

The analysis of driving behavior is dependent on the 
maneuvers to be analyzed as well as the collected data or 
estimated parameters used to describe them. Various methods 
were proposed in the literature to perform this task. The 
simplest approach considers the driving process as a rule-based 
or fuzzy classification problem. A set of thresholds are defined 
or extracted, based on experience or trial-and-error, to assess 
the driving parameters and then classify driving maneuvers [7, 
10-18]. In general, these methods are not reliably accurate 
because the thresholds, fuzzy sets and rules, as well as the 
classification results, are all based on presuppositions. The 
second approach is based on pattern matching and recognition 
techniques, such as Dynamic Time Warping (DTW) [19]. This 
approach is based on measuring the level of similarity between 
captured signals and standard patterns. The disadvantage of 
using classical DTW is the heavy computational burden 
especially when dealing with multivariate time series. 

Recent research has demonstrated that machine learning 
techniques are capable of identifying and classifying irregular 
driving patterns using models and rules that evaluate driving 
maneuvers and then driving behavior. Machine learning 
approaches are generally classified into supervised learning 
approaches and unsupervised learning approaches. Various 
supervised learning approaches, such as K-Nearest Neighbor 
(KNN), Naive Bayes, Decision Trees, and Random Forest (RF) 
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[20], linear regression [21], Support Vector Machines (SVM) 
[22, 23], and Neural Networks [24] require the extraction of 
features, such as statistical values, time domain parameters, 
and frequency domain parameters, for training. On the other 
hand, unsupervised learning approaches, such as K-means 
clustering [25] and Principal Component Analysis algorithms 
[21] can infer and generate rules and threshold-based 
discriminators for clustering purposes. During the past decade, 
different methodologies and techniques have been proposed 
and implemented successfully in the field of driving behavior 
classification [4, 8]. 

In this paper, three classical machine learning techniques 
namely Random Forest (RF), Support Vector Machine (SVM) 
and K-Nearest Neighbor (KNN) were used to recognize and 
classify six highway driving maneuvers. The data required for 
training and testing the machine learning models were 
collected through smartphones' accelerometers and gyroscope 
sensors. Furthermore, a novel hybrid approach based on the 
integration of pattern matching DTW and machine learning 
approaches has also been proposed and investigated in this 
study. The basic idea of this hybrid approach is to separate the 
recognition process from the classification process. The DTW 
developed in this study is used to provide signal similarity 
measures for the input signals, while the three above-
mentioned machine learning techniques were utilized for 
classification. 

The rest of the paper is organized as follows: Section II 
introduces briefly three machine learning techniques, the RF, 
the SVM and the KNN. Section III provides a brief description 
of the structure and workflow of the system. In Section IV, the 
maneuver detection unit is described with emphasis on the 
implementation of an adaptive sliding window. In section V, 
the structure and implementation of the driving maneuvers 
identification unit is presented. Evaluation of the performance 
of the two approaches is presented and compared in Section 
VI. The conclusions are drawn in Section VII. 

II. CLASSICAL MACHINE LEARNING 
A wide range of techniques have been developed to 

recognize and classify driving maneuvers in the literature. In 
recent years, driving maneuver classification using machine 
learning techniques has received increasing attention for the 
evaluation of driving patterns and drivers’ profiling [4]. Three 
machine learning techniques have been used in this study, 
namely RF, SVM, and KNN, for recognizing and classifying 
driving maneuvers. These three techniques will be discussed 
briefly: 

A. Random Forest Technique 
A random forest classifier is an ensemble classifier that is 

made up of a set of decision trees trained on different sub-sets 
of the training data and then their predictions are aggregated to 
improve prediction accuracy and control over-fitting. An RF 
classifier usually uses bootstrap aggregation and boosting, in 
which random samples of the training dataset are selected with 
replacement and trained independently. The use of bagging and 
feature randomness to generate a set of decision tree classifiers 
typically results in high variance and low correlation. As a 
solution to this problem, these decision trees are usually 

connected in parallel and by using majority voting the variance 
is minimized and thus the prediction is improved. The 
implementation of RF classifier is summarized as follows: 
[26]: 

1) Select M random samples from the labeled training set 
using the bootstrapping technique. 

2) Construct a RF with N parallel decision trees. 
3) Form N samples to train the N parallel decision tree 

models as follows: 
a) For each feature x in a given feature set Ni calculate 

the Information gain from the entropy of the classes and the 
entropy of the feature x. 

b) Find the node with the maximum information gain 
and split it into sub-nodes. 

c) Iterate through a and b to form the tree until reaching 
the lowest amount of samples nedded to split. 

4) Repeat steps (1) and (2) to get N tree classifiers. 
5) For testing data, find the prediction of each decision 

tree, and allocate the new data to the category that wins the 
majority votes using the following formula: 

𝑃∗(𝑥) = 𝑚𝑎𝑥𝑦 ∑ 𝐼�𝑁𝑡(𝑥) = 𝑃(𝑥)�𝑁
𝑡=1   (1) 

In the formula, P*(x) is the classification result of random 
forest, Nt(x) is the classification result of each classification 
tree, P(x) is a classification target, and I(⋅) is an indicator 
function which returns 1 if the condition in the argument is 
true, 0 otherwise. 

B. Support Vector Machine 
The main function of the SVM algorithm is to find the 

finest hyperplane in an N-dimensional space that separates the 
data and clusters them based on classes by using a kernel 
function. The SVM is in fact a binary classifier but can be 
extended to handle multi-class classification by training a 
series of binary SVMs or by solving a single optimization 
problem. A high classification rate can be achieved if the 
optimal selected hyperplane has the largest functional margin. 
This margin is represented by the distance of the hyperplane to 
the nearest training data points of any class. For the learning 
process of the SVM algorithm, constrained nonlinear 
optimization is used to obtain an optimal hyperplane. In 
general, a SVM classifier uses a nonlinear mapping function 
that maps the data into a high-dimensional feature space to 
distinctly classify the data points as follows: 

𝑃(𝑥) = ∑ 𝜆𝑖𝐾𝑖〈𝑥 ∙ 𝑥𝑖〉𝑖 + 𝑏         (2) 

Where, λi is support vector, xi is data sample, i = 1, 2,…, 
C; C number of classes and Ki<x⋅x i> are a set of kernel 
functions defined by: 

𝐾𝑖〈𝑥 ∙ 𝑥𝑖〉 = �
𝑒−𝑧1ℎ(𝑥)2 𝑖𝑓 𝑥 ∈ 𝑋1

⋮ ⋮
𝑒−𝑧𝐶ℎ(𝑥)2 𝑖𝑓 𝑥 ∈ 𝑋𝐶

   (3) 

In the above equation h(x) is a binary decision function 
expressed as: 

ℎ(𝑥) = ∑ 𝜆𝑗𝑦𝑖〈𝑥 ∙ 𝑥𝑖〉𝑗 + 𝑏       (4) 
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While xi is the ith sample of the training dataset, which 
includes the N number of samples with C categories and the 
value of the parameter zj can be computed from the chi-square 
test [27]. The final classification decision is made according to 
a rule of the form: 

𝑃∗(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝐶(𝑤𝑐𝐾𝑖〈𝑥 ∙ 𝑥𝑖〉 + 𝑏)  (5) 

The weighting factor appearing in Eqn. 8 is defined as: 

𝑤𝑖 =
𝑁 𝑛𝑖�

∑ 𝑁 𝑛𝑖�𝐶
𝑖=1

   (6) 

Where, N and C denote the training sample size and 
category size, respectively. ni indicates the sample size of 
every category with i = 1, 2,…, C. 

The implementation of the SVM classifier is summarized 
as follows: 

1) Select M random samples from the labeled training set 
using the 5-fold technique and initialize the kernel matrix Ki. 

2) For each sample x calculate: 
a) Calculate the distance hj(x), {j = 1, 2, …., C}; C 

number of classes. 
b) Calculate the value of the weighting factor wj and 

parameter zj for every support vector. 
3) Find P(x) from Eqn.(2). 
4) Find the new Kernel matrix from P(x) and from the 

previous Kernel matrix. 
5) Repeat steps (2) to (4) until finding the optimal 

hyperplane, i.e hj(x) with optimal functional margin. 
6) For testing data, find the prediction from equation (4). 

C. K-Nearest-Neighbors Technique 
The KNN is a supervised machine learning algorithm for 

classifying classes based on their feature similarity to other 
classes. In the KNN the classification of a certain testing 
sample depends on its distance with respect to other samples in 
the training dataset. The distance between two samples is 
employed to measure their similarity [28]. The distance is 
calculated using different measures such as the Chebyshev 
distance, the Euclidean distance, and more generally the 
Minkowski distance. In this paper the Minkowski distance 
between two feature vectors is used. Where the Minkowski 
distance is a distance measured between two points in N-
dimensional feature space by the following formula: 

𝑑�𝑥𝑖 − 𝑥𝑗� = �∑ �𝑥𝑖 − 𝑥𝑗�
𝑝𝐶

𝑖=1 �
1
𝑝    (7) 

Where xi and xj are two features vectors and p is an integer 
value. 

The implementation of the KNN classifier is summarized 
as follows: 

1) Select M random samples from the labeled training set 
using the 5-fold technique. 

2) Set the value of the nearest data points K which can be 
any integer preferably to be odd integer. 

3) For every point in the testing data do the following: 

a) Compute the distance between the test data and each 
sample in the training data as in Eqn(7). 

b) Sort the distances obtained in (a)in an ascending 
order. 

c) Select the first K rows from the sorted distances 
array. 

d) Assign a class to the test point depending on most 
frequent class of these rows. 

III. SYSTEM STRUCTURE 
Fig. 1, shows the general workflow of the proposed system. 

The system consists of four main interrelated units namely, 
data collection unit, data processing unit, maneuver recognition 
unit, and finally, maneuver classification unit. In this section, 
the functions of the first two units are briefly introduced. A 
detailed description of the operation of these units can be found 
in [29]. 

 
Fig. 1. The proposed system workflow. 

Using calibrated Android smartphones with built-in 
accelerometers and gyroscopes, raw vehicle data was collected 
at a rate of 50 samples/second. The calibration method for the 
smartphones’ IMUs sensors are adopted from [30]. As well as 
the data captured by the IMUs, the smartphones' GPS data was 
used for referencing the location of the vehicle. 

The pre-processing unit is intended to achieve two main 
functions namely, signal filtering, and transformation of 
sensors data to the vehicle's coordinate system. The first 
problem is typically attributed to the fact that the IMUs in 
Smartphones are based on MEMS technology, thus they suffer 
from white Gaussian noise. Furthermore, the sensors are very 
sensitive hence they capture in addition to the variation of the 
dynamic parameters of the vehicle's vibration [30]. Fig. 2 
shows instantaneous captured data for a sample maneuver. A 
locally weighted running line smoother (LOSS) filtering 
technique is used for removing this noise and smoothing the 
recorded signals. The use of this type of filter was investigated 
and its performance was compared with two other filters; the 
one-dimensional Kalman filter and the simple moving average 
filter. The LOSS filter was found to be the best effective 
filtering approach when compared with others, and Fig. 3 
shows a sample of a smoothed signal [29-30]. 

A coordinate reorientation module is integrated with the 
pre-processing to correct the collected sensors' data by aligning 
the smartphone’s coordinate system with the vehicle coordinate 
system. By presuming that the vehicle is driven on a horizontal 
road, during the initial calibration, the vehicle roll and pitch 
angles relative to a tangent frame both can be considered to be 
zero. Furthermore, if the vehicle does not experience any 
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acceleration, the smartphone’s roll and pitch angles can be 
estimated from accelerometer measurements of the gravity 
vector. This can be done using a set of geometrical rotations 
using Euler angles. The determination of Euler angles is fully 
explained in [31]. 

 
Fig. 2.  Raw signals captured by the smartphone’s IMUs. 

 
Fig. 3. Raw and filtered accelerometer signal. 

IV. MANEUVERS DETECTION 
Table I, presents the list of maneuvers that can be detected 

by the proposed system. These maneuvers have been detected 
by an adaptive sliding window with a short-term energy 
endpoint detection algorithm. 

TABLE I.  MANEUVERS CLASSES 

1- Acceleration straight road 
segment 2- Braking straight road segment 

3- Left lane change straight 
road segment 4- Right lane change straight road 

segment 
5- Merging into highway 6- Exit from highway 

Maneuvers are detected in three iterative stages. In the first 
stage a window of 100ms width is used to compute the short-
term energy of the signal. Based on the fact that for an infinite 
sequence of a discrete signal the energy is defined by: 

y�[n] = y[n]W[m − n], m − M + 1 ≤ n ≤ M  (8) 

Where W is a window function given by: 

W[m − n] = �1 0 ≤ m ≤ M − 1
0 Otherwise       (9) 

The energy contained in this short interval then can be 
computed by: 

Ew = ∑ (y[m]W[n − m])2m
n=m−M+1    (10) 

 
Fig. 4. Maneuver detection using short-term energy. 

Once the short-energy is computed it will be compared 
with a set of pre-defined thresholds, as shown in Fig. 4. If this 
energy is less than a specific threshold Tl for the whole 
100msec window, then this frame will be ignored and will be 
considered a non-event. Otherwise, if the energy is greater than 
Tl, then the starting time of the event detected is recorded and 
the short-term energy is computed for a sliding window as in 
Eq. (10). The width of the window will increase by 20msec and 
the short-term energy will be calculated over the whole interval 
of the extended window. For each step in this stage the 
following conditions will be checked: 

• If the computed short-term energy remains less than 
the upper threshold Tu for 1 second or drops below Tl 
in a short time, then this segment will be considered a 
false event and the system will start with a new 
100msec window as in the first stage. 

• When the short-term energy for the extendable sliding 
window is computed to be higher than the upper 
threshold Tu for more than one second, then the system 
will consider this signal as a result of an event. If the 
system records the starting time of the event, it will 
continue to compute the short-term energy for the 
extendable sliding window and compare it with Tu. If 
the short-term energy drops below Tl for more than 
100ms, the system will record the ending time of the 
event. 

V. MANEUVERS IDENTIFICATION 
Generally, supervised machine learning techniques such as 

decision trees, support vector machines, neural networks, and 
many others are used to identify and classify types of driving 
maneuvers in a single process. All these techniques require a 
set of features to represent the input signals such as time, 
frequency or statistical features, for training and testing. In this 
study, sixteen time and statistical features listed in Table II 
were used to train and test the recognition and classification 
performance of the first approach. It should be noted that 
classical machine learning techniques, when trained with time 
and statistical features, cannot provide a clear description of 
how patterns of signals behave. In this regard, it is difficult to 
draw any conclusions from the parameters of the systems. 
Additionally, errors resulting from recognition and 
classification will accumulate and affect the performance of 
these techniques. 
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TABLE II.  SELECTED STATISTICAL FEATURES 

1 Mean 9 Peak to peak value 

2 Median 10 Peak to RMS value 

3 Maximum value 11 Root-sum-of-squares 

4 Minimum value 12 Skewness 

5 Standard of deviation 13 Kurtosis 

6 Mode 14 Range of values 

7 Variance 15 Interquartile range values 

8 RMS value 16 The mean absolute deviation 

Due to the fact that time-varying signals are required to 
recognize the types of driving maneuvers, it has been shown 
that pattern recognition or matching techniques, such as the 
DTW technique, are superior in this regard. DTW identifies the 
types of maneuvers by comparing input patterns against 
standard templates and calculating the similarity level between 
them. As a result of using the DTW method, incoming signals 
can be compared with a predefined standard template 
regardless of any differences in their amplitudes or durations. 
Therefore, it would be likely to have a set of standard templates 
to measure the similarity of maneuvers for different drivers 
[32-35]. It should be noted that the main disadvantage of the 
DTW approach is its extreme computational requirements, 
since it computes the similarity level between all the possible 
patterns in the input signals. In the case that multi-signal 
identification is required, this problem will become more 
complex. Furthermore, a considerable amount of work is 
required to select and compute the reference templates because 
it is very difficult to collect all possible templates that would 
cover all driving styles and behaviors of drivers [19]. 

Fig. 5 shows the basic structure of the DWT unit. The 
DTW technique utilizes discrete dynamic programming to 
determine the similarity between two signals, regardless of any 
difference in time, frequency, or deformation related effects to 
dynamic spatiotemporal differences. In a previous study [29], 
the recognition unit was implemented using (n × m) DTW 
units, where (n) represents the number of signals and (m) 
represents the number of standard patterns for each signal. As a 
consequence, for every detected event, i.e. driving maneuver, a 
(n × m) matrix containing warping cost is derived by 
comparing all the signals with all the stranded templates. This 
study has reduced the amount of computation required by the 
classical DTW technique by reducing the number of signals 
used to recognize driving maneuvers, as well as by utilizing 
energy activation units. In this study, the implementation of the 
DWT technique is based on two facts, which have been 
demonstrated in previous studies. The first is that there are only 
three signals, longitudinal acceleration, lateral acceleration, and 
yaw angle. The second fact is that the signals vary according to 
certain patterns, so their energy depends on these variations, 
see Table III. 

When using the DWT technique to identify the type of any 
signal, a set of standard signals, or templates, are required to 
compare the unknown input signal with them and measure the 
similarity level. The selection of these reference signals for 
each specific class is not a straight forward task since the set of 
the collected signals, for each maneuver class, have different 

time durations and amplitudes. There are three different 
approaches in electing a suitable reference signal from a set of 
measurements namely; the longest common sequence 
approach, the medoid sequence approach, and the average 
sequence approach. In this paper, for a specific DWT unit, the 
signal that has the minimum average of distances with all the 
signals in that set is extracted and elected to be the reference 
signal or template. The details of this novel methodology are 
given in [35]. 

 
Fig. 5. Maneuvers recognition unit. 

TABLE III.  TYPICAL SIGNALS’ PATTERNS FOR DIFFERENT MANEUVER 

Maneuver Type Longitudinal 
Acceleration 

Lateral 
Acceleration Yaw Angle 

Acceleration 
   

Break 
   

Left-Lane 
Change  

  

Right-Lane 
Change  

  

Exit 
 

  

Merge 
 

  

VI. EXPERIMENTS AND RESULTS 
In this work two different approaches were used to 

recognize and classify highway driving maneuvers. The first 
approach utilizes the classical machine techniques described in 
Section II, while in the second approach the DTW and the 
aforementioned techniques were integrated to create a hybrid 
system. With this system, the DTW method will be used for the 
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recognition process while classical machine learning 
techniques will be applied for the classification process. 

A. Experimental Data 
Before exploring the analysis and results, it is worth 

mentioning that the development of the system progressed 
through two levels, the development level and the naturalistic 
driving testing level. 

At the development level ten drivers with different types of 
vehicles and experience were volunteered to drive through a 
16km highway road segment that has different configurations 
and conditions as shown in Fig. 6. Each driver was asked to 
execute the driving maneuvers listed in Table I with different 
categories; i.e. Light, Normal and Hard. All of the vehicles 
were equipped with smartphones that were programmed to 
collect sensor data at a rate of 50Hz and four cameras that 
recorded the surrounding vehicles. Every class of driving 
maneuver was performed by each driver at least five times, so 
the total number of driving maneuvers gathered in this phase 
was 900 samples. This part of the dataset was then presented to 
experts to obtain their judgment and to build the knowledge 
base that is required for labeling the maneuvers. This initial 
dataset was used to train and test the two suggested systems. 

 
Fig. 6. The route used to collect initial dataset. 

The 5-fold cross-validation technique was used from which 
60% of the initial dataset were utilized to generate and extract 
the data and the features that are required in the computation of 
the DTW reference templates, define the lower and upper 
limits that define the range of values of each cluster, i.e. class 
and statistical features vectors for training the systems. 

B. Models Evaluation  
To assess the validation of the two approaches the 

remaining 40% of the initial dataset has been used to validate 
their performance. 

The first assessment of the system was to test its capability 
to detect driving maneuvers, i.e. recording the starting and 
ending time. Fig. 7 shows a portion of a short trip conducted to 
cover some of the basic maneuvers. As shown in Fig. 7, these 
are the raw data that were captured directly from the calibrated 
smartphone’s sensors. Fig. 8 illustrates the pre-processed 
signals, i.e. after smoothing the signals of Fig. 7. As shown in 
the figure, the red rectangles represent the output of the 
maneuver detection unit. As it can be seen, the unit effectively 
detects the beginning and the end of any variation in the input 
signals. According to the testing of maneuver detection unit 
with manually registered maneuvers, the detection rate was 
more than 96%. 

 
Fig. 7. Raw data captured from the smartphone’s sensors. 

 
Fig. 8. Signals after filtration and maneuver detection. 

Three evaluation metrics namely Precision (PR), Recall 
(RC), and F1-score (F1) have been used for evaluating the 
performance of each system in addition to the confusion 
matrix. Precision is generally defined as the probability that a 
certain class of maneuvers is correctly classified in either 
recognition or classification results. In contrast, recall is the 
probability that all maneuvers in a particular maneuver class 
are correctly identified. Finally, the F1-score is determined 
based on both precision and recall, as shown in Eq. (11), where 
a high F1-score indicates the system's overall performance 
quality. 

𝐹1 = 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

= 2𝑇𝑃
2𝑇𝑃+𝐹𝑃+𝐹𝑁

  (11) 

Where TP is true positive, FP is false positive and FN is 
false negative. All these three values can be found using the 
confusion matrix. 

In the first approach, namely the three classical machine 
learning models, all the statistical features listed in Table III 
were obtained for each segmented maneuver. It should be 
noted that the models are performing both the recognition and 
classification processes. The confusion matrix for the RF 
model is shown in Fig. 9, and Table IV presents a comparison 
for each maneuver of the three models in terms of PR, RC and 
F1. 

As it can be seen from Table IV, the performance of the RF 
model is the highest, where the average precision of the model 
is 0.84, the recall is 0.833 and the F1 score is 0.835. For the 
SVM the parameters are (PR = 0.783, RC = 0.772, F1 = 0.775) 
and for the KNN they are (PR = 0.749, RC = 0.736, F1 = 0.74). 
It is not an easy task to dig for the actual factors behind the low 
performance of the models when compared with the RF. 
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However, both SVM and KNN are not efficient algorithms 
when they deal with large data sets, and they do not function 
well when the target classes are overlapped. The RF model is 
able to handle large datasets because it is based on the bagging 
algorithm which generates as many trees as possible based on 
the testing data and generates an output combining the tree 
outputs. Therefore, the RF techniques can be considered as an 
ensemble learning approach, hence it would reduce the 
overfitting problem in decision trees, reduces the variance and 
improves the accuracy. 

 
Fig. 9. Confusion matrix for the classical RF implementation. 

TABLE IV.  COMPARISON OF THE MODELS FIRST APPROACH 

 RF SVM KNN 

Class PR RC F1 PR RC F1 PR RC F1 

AL 0.85 0.85 0.85 0.89 0.80 0.84 0.83 0.75 0.79 

AN 0.81 0.85 0.83 0.76 0.80 0.78 0.71 0.75 0.73 

AH 0.94 0.85 0.89 0.85 0.85 0.85 0.84 0.80 0.82 

BL 0.89 0.85 0.87 0.89 0.80 0.84 0.88 0.75 0.81 

BN 0.77 0.85 0.81 0.76 0.80 0.78 0.71 0.75 0.73 

BH 0.95 0.90 0.92 0.94 0.85 0.89 0.88 0.75 0.81 

LL 0.89 0.85 0.87 0.88 0.75 0.81 0.83 0.75 0.79 

LN 0.84 0.80 0.82 0.68 0.75 0.71 0.67 0.70 0.68 

LH 0.89 0.85 0.87 0.79 0.75 0.77 0.78 0.70 0.74 

RL 0.89 0.80 0.84 0.88 0.75 0.81 0.83 0.75 0.79 

RN 0.76 0.80 0.78 0.65 0.75 0.70 0.68 0.75 0.71 

RH 0.89 0.80 0.84 0.88 0.75 0.81 0.82 0.70 0.76 

EL 0.81 0.85 0.83 0.68 0.75 0.71 0.70 0.70 0.70 

EN 0.67 0.80 0.73 0.60 0.75 0.67 0.54 0.75 0.63 

EH 0.89 0.80 0.84 0.79 0.75 0.77 0.70 0.70 0.70 

ML 0.85 0.85 0.85 0.79 0.75 0.77 0.79 0.75 0.77 

MN 0.70 0.80 0.74 0.63 0.75 0.68 0.56 0.70 0.62 

MH 0.81 0.85 0.83 0.75 0.75 0.75 0.71 0.75 0.73 

It should be mentioned here that a thorough analysis has 
been conducted in this study to identify the overlap in the 
target classes. It was found that there are two groups of 
maneuvers which could have a high similarity rate between 
their classes. The first group contains the Acceleration, Left-
Lane change and the Merging maneuvers and the second group 
contains the other three maneuver classes. Fig. 10(a) illustrates 
a signal that was manually recorded as a left-lane change, 
while the system recognized it as a merging maneuver. On the 
other hand, Fig. 10(b) shows a break maneuver but has been 
recognized by the system as an exit maneuver. From the point 
of view of the author, this noise in the dataset needs careful 
analysis, hence it will be left to a future investigation. 

In the second approach the same 5-fold cross-validation 
method was used to extract the DTW reference templates and 
again to train and validate the same models but for a specific 
maneuver type. As mentioned previously in this approach the 
DTW unit is acting as a recognition unit while the three 
classical machine learning models are acting as classifiers. 

The performance of the DTW was first tested and it was 
found that the structure of the unit needs some modification to 
overcome the problem of overlapping classes. A simple two-
hidden layers neural network was integrated into the unit, 
where the three measured distances obtained from each DTW 
are fed as an input to this neural network. Fig. 11 shows the 
confusion matrix for the predicted maneuvers. All the 
performance measures, precision, recall and F1-score were 
calculated for the recognition unit and they are equal to 0.95, 
which indicates an excellent validity of the recognition unit. 

 
(a): LLC recognized merge. 

 
(b): Break recognized exit. 

Fig. 10. Examples for misrecognized classes. 

 
Fig. 11. Confusion matrix for the recognition unit. 
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Table V presents a comparison between the three models 
that perform a classification process for each maneuver 
separately. Fig. 12 shows samples of the confusion matrix for 
different cases. Again the performance of the RF model is the 
highest when compared with the others and still the KNN 
model has the lowest performance. The average precision of 
the RF model is 0.908, the recall is 0.905 and the F1 score is 
0.91. These newly obtained results indicate an enhancement of 
9% is achieved when using the second approach. Similar 
improvements were also noticed in the other models, where for 
the SVM the performance indicators are PR = 0.875, RC = 
0.871, F1 = 0.87 and an average enhancement of 12.25%, 
while the performance indicators for the KNN model are PR = 
0.838, RC=0.835, F1 = 0.84 and an average enhancement of 
13.5%. 

 
(a): RF braking. 

 
(b): SVM right-lane change. 

 
(c): KNN merge. 

Fig. 12. Confusion matrices samples for hybrid system initial dataset. 

TABLE V.  COMPARISON OF THE MODELS SECOND APPROACH 

 RF SVM KNN 
Class PR RC F1 Class PR RC F1 Class PR 

AL 0.95 0.90 0.92 0.89 0.89 0.89 0.85 0.89 0.87 
AN 0.86 0.90 0.88 0.81 0.85 0.83 0.80 0.80 0.80 
AH 0.95 0.95 0.95 0.95 0.90 0.92 0.89 0.85 0.87 
BL 0.95 0.95 0.95 0.90 0.90 0.90 0.86 0.90 0.88 
BN 0.90 0.90 0.90 0.81 0.85 0.83 0.80 0.80 0.80 
BH 0.95 0.95 0.95 0.95 0.90 0.92 0.89 0.85 0.87 
LL 0.95 0.90 0.92 0.90 0.90 0.90 0.85 0.85 0.85 
LN 0.82 0.90 0.86 0.81 0.85 0.83 0.80 0.80 0.80 
LH 0.95 0.90 0.92 0.89 0.85 0.87 0.85 0.85 0.85 
RL 0.95 0.95 0.95 0.90 0.90 0.90 0.85 0.85 0.85 
RN 0.86 0.90 0.88 0.81 0.85 0.83 0.76 0.80 0.78 
RH 0.95 0.90 0.92 0.89 0.85 0.87 0.89 0.85 0.87 
EL 0.90 0.90 0.90 0.89 0.85 0.87 0.84 0.80 0.82 
EN 0.81 0.85 0.83 0.74 0.85 0.79 0.70 0.80 0.74 
EH 0.95 0.90 0.92 0.94 0.85 0.89 0.89 0.80 0.84 
ML 0.95 0.90 0.92 0.90 0.90 0.90 0.85 0.85 0.85 
MN 0.78 0.90 0.84 0.81 0.85 0.83 0.81 0.85 0.83 
MH 0.94 0.85 0.89 0.95 0.90 0.92 0.89 0.85 0.87 

C. Naturalistic Driving Testing 
In the second stage of this study, a comprehensive dataset 

was collected by installing only the data collection app onto the 
smartphones of 25 drivers who drove frequently to and from 
various locations and the University of Nizwa, as shown in Fig. 
13. Data collected in this phase is real naturalistic driving data 
based on different routes that are very dynamic and include 
many different types of roads. 

 
Fig. 13. The routes used for collecting the naturalistic dataset. 

After performing the necessary preprocessing for the data 
of each driver, the captured signals were analyzed by an off-
line Matlab code to detect and extract driving actions by using 
the adaptive sliding window described in Section V. Table VI 
provides a list of the number of driving events obtained in this 
phase. 

TABLE VI.  COMPARISON OF THE MODELS SECOND APPROACH 

Type of Maneuver # Type of Maneuver # 
Acceleration 680 Right-Lane Change 495 

Breaking 595 Exit 256 

Left-Lane Change 508 Merge 255 

As a result of the high number of maneuvers obtained from 
smartphone sensors, a separate module was developed to label 
the maneuvers in addition to the suggested system. The module 
uses a semi-supervised labeling system based on the DTW 
technique. The module is similar to the DTW recognition unit 
with the exception that it was specifically designed to identify 
maneuver classes. The only difference between the two 
systems is that there are nine DTW units and each one is 
devoted to a single class of a certain maneuver. A detailed 
explanation of the implementation of this technique can be 
found in [36]. The distance between two time series signals is 
given by: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴,𝐵) = 𝐷𝑇𝑊(𝐴,𝐵)
𝐸𝐷(𝐴,𝐵)+𝛿

         (12) 

Where A is a standard reference signal, or template used by 
the DTW and Euclidian distance calculation, B is the signal 
that needs to be classified, DTW(A, B) is the distance 
measured by the classical constrained DTW algorithm, ED(A, 
B) is the classical Euclidian distance and d is an extremely 
small positive quantity used to avoid divide-by-zero error. 
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(a): RF exit. 

 
(b): SVM break. 

 
(c): KNN left-lane change. 

Fig. 14. Confusion matrices samples for hybrid system naturalistic dataset. 

Fig. 14 shows the confusion matrix for different cases. As it 
has been expected the RF model has the highest performance 
with respect to the SVM and KNN, while the KNN model is 
still showing the lowest performance. The average precision, 
recall and F1-score are all approximately 0.9, those for the 
SVM are 0.87 and finally those for the KNN are 0.834.  As it 
can be seen, the results are almost the same for both datasets 
and this gives a positive indication that the suggested approach 
is stable and reliable. 

VII. CONCLUSIONS 
Two different approaches are presented in this paper for the 

recognition and classification of highway driving maneuvers 
using smartphone sensors. Raw data captured through 
smartphone’s IMUs sensors are first pre-processed by 
transforming sensors’ data from the smartphone’s coordinates 
system to the actual vehicle coordinates system, then these data 
were smoothed by using the LOSS filter and finally, the 
longitudinal and lateral acceleration and the yaw angle are 
deduced from these data. Three parameters were found to be 
sufficient to recognize and classify driving maneuvers. 

The first approach investigated in this paper utilizes three 
different classical machine learning techniques, namely RF, 
SVM and KNN techniques. Results obtained from this 
approach showed that RF had the highest performance when 
compared to SVM and KNN. This superiority of the RF model 
can be attributed to the fact that the RF model can handle large 
datasets efficiently. It's based on the bagging algorithm and 
uses the Ensemble Learning technique. Nevertheless, it was 
found that the classical implementation of machine learning 
techniques suffers from a serious problem in dealing with noisy 
data, i.e. overlapping in the target classes. It was found that 
there are two groups of maneuvers which could have a high 
similarity rate between their classes. The first group contains 
the Acceleration, Left-Lane change and the Merging 
maneuvers and the second group contains the other three 
maneuver classes. 

In this paper, a hybrid technique is used to overcome the 
overlapping between the classes. The recognition unit of this 

approach utilizes a novel DTW unit that demonstrates an 
excellent recognition rate with F1-Score of 0.95. The maneuver 
classifications are then obtained by machine learning 
techniques. When compared to the classical approach, the 
performance of the novel approach was significantly improved. 

A large dataset was collected from naturalistic driving for 
25 drivers on different highways. About 2800 maneuvers were 
obtained from this dataset. With such a high number of 
maneuvers a semi-supervised labeling system based on the 
DTW technique was used. The module is similar to the DTW 
recognition unit but was trained solely for labeling maneuver 
classes. The second approach was tested on the second dataset. 
Results obtained show a high rate of recognition and 
classification, nearly the same as that obtained with the first 
dataset. 
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