
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

272 | P a g e
www.ijacsa.thesai.org

Optimized Strategy for Inter-Service Communication
in Microservices
Sidath Weerasinghe, Indika Perera

Department of Computer Science & Engineering, University of Moratuwa, Sri Lanka

Abstract—In the last decade, many enterprises have moved
their software deployments to the cloud. As a result of this
transmission, the cloud providers stepped ahead and introduced
various new technologies for their offerings. People cannot gain
the expected advantages from cloud-based solutions merely by
transferring monolithic architecture-based software to the cloud
since the cloud is natively designed for lightweight artifacts.
Nowadays, the end user requirements rapidly change. Hence, the
software should accommodate those accordingly. On the
contrary, with Monolithic architecture, meeting that requirement
change based on extensibility, scalability, and modern software
quality attributes is quite challenging. The software industry
introduced microservice architecture to overcome such
challenges. Therefore, most backend systems are designed using
this architectural pattern. Microservices are designed as small
services, and those services are deployed in the distributed
environment. The main drawback of this architecture is
introducing additional latency when communicating with the
inter-services in the distributed environment. In this research, we
have developed a solution to reduce the interservice
communication latency and enhance the overall application
performance in terms of throughput and response time. The
developed solution uses an asynchronous communication pattern
using the Redis Stream data structure to enable pub-sub
communication between the services. This solution proved that
the most straightforward implementation could enhance the
overall application performance.

Keywords—Microservices; software architecture; inter-service
communication; performance; streams

I. INTRODUCTION
Recently, cloud computing has become considerably

popular in the software industry, ultimately making businesses
consider migrating their workloads to the cloud environment
from their on-premise servers, as managing on-premise server
farms is more costly and requires extra effort and maintenance.
Based on the particular requirement, the consumers can choose
the cloud services such as Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), software as a Service (SaaS), and
Function as a service (FaaS). The main advantages of using the
cloud are that consumers can gain whatever service they
require according to their budget. The cloud provider fully
manages the environment, and consumers no longer have the
hassle of worrying about maintenance. Higher availability and
easy vertical and horizontal scalability are some of the
advantages of using cloud resources.

In the early days, requirements were very bounded, less
volatile, and limited. Therefore, maintaining monolithic
architecture software was easy. However, in modern society,

user requirements are complex and subject to constant change,
making it cumbersome to make adequate changes to
monolithic systems. In the monolithic architecture, all the data
access layers, data store layer, logic layer, and user interface
layer are tightly coupled into one single package. As a result,
changing the code, adapting to the new technology, and testing
the product have become problematic. Therefore, people
invented Service Oriented Architecture (SOA) to design
loosely coupled services. In modern SOA implementations, all
the services are orchestrated by the Enterprise Service Bus
(ESB). The main disadvantage of this architecture is that all the
service calls are routed through this ESB, which is a single
point of failure. The performance also tends to get impacted
because of that [1].

Cloud services are designed for the light weighted small-
scale artifacts like microservices. Hence, people cannot get the
complete advantage of migrating their monolithic system into
the cloud. Due to this cause, people are trying to reengineer
their existing products into microservices architecture by
separating the services and making them individual
microservices [2]. There are many strategies to decompose the
monolithic service into services, such as decomposing by the
domains and subdomains, decomposing by the business
capabilities, decomposing by the system responsibilities, and
decomposing by the resources [3]. After converting monolithic
applications into microservices architecture, people can gain
many advantages such as improving code maintainability,
adapting to new technologies, efficiently scaling only the
required service, improving resilience, gaining more business
agility, being easy to understand, etc. [4].

Some systems still have not moved their software to the
microservice architecture because of certain performance
issues related to response time and the application's throughput.
Microservice design is an independent service; such services
need to communicate with each other to provide the user
requirements. Those services deployed in the distributed
environment and for the communication services must send
and receive the data packets through the network, adding extra
latency compared to the monolithic architecture software.
Synchronous and Asynchronous communication styles are the
two communication styles that are used for microservices
interservice communication [5]. Synchronous type still mainly
uses the request/response-based behavior, and the request waits
until the response reaches. Most people use HTTP or gRPC
communication protocols due to inter-service communication
in the microservices. Asynchronous communication styles use
message brokers to exchange messages to the relevant
microservices. They are mainly using the Pub/Sub mechanism,

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

273 | P a g e
www.ijacsa.thesai.org

which means that requests are not waiting for a response, and
there are blocking threads associated with the communication.
Researchers invert the broker less asynchronous methods, but
there is no guarantee of the exact message delivery [6]. Most
programming languages support microservice development,
and they also develop the framework in conformance to that.
Java language based Spring boot [7] and VertX [8], Node.Js
programming language based Molecular [9], and Golang
programming language based GoMicro are fine examples of
such instances [10].

This research focuses on the main performance issue of the
microservice architecture, which is caused by the inter-service
communication in the microservice architecture. As a result of
the research, the solution was proposed to reduce the
communication latency when communicating on microservice.
The researcher has brought REST-based behavior to the top of
the Redis Streams data structure for distributed
communications. The network layer used the TCP-based
socket connection and the serialized data packets to reduce the
network latency while transferring the data. The rest of the
paper discusses the implementation and the evaluation of this
research outcome.

II. LITERATURE REVIEW

A. Microservices
Previous research publications showed that microservices

research contributions started around the 2000 decade. After 15
years, Microservice research is drastically getting published in
various academic journals and conferences [11]. Before the
emergence of Microservice architecture, most engineers used
Service Oriented Architecture (SOA) to build enterprise
software. But, researchers have proven that they are faced with
capacity issues and scaling issues with the SOA applications
[12]. AI-Debagy and Martinek conducted a comparative
review regarding the monolithic and microservice architecture.
The experimental results of that research showed that
monolithic applications perform 6% more on the throughput
when compared to microservice-based applications [13].
Nevertheless, researchers have failed to elaborate on the
underlying reason for the performance issue. The National
Polytechnic School researched the challenges and problems
faced during the system migration from monolithic to
microservices architecture [14]. Finding suitable tools for
migration, reorganizing the engineering team to work with the
microservices, identifying the correct microservice design,
guaranteeing consistency, and learning about the new
framework are the challenges/problem they have highlighted in
their research article. Lithuanian researchers reviewed the
monolithic to microservice architecture, microservices methods
and techniques [4]. One of the methods is to identify all
subsystems associated with the monolithic architecture and
create a dependency graph. Then architects can determine the
services that need to be created as a microservice from the
monolithic system. Another method is to identify the business
logic from the dataflow diagram and decide what
microservices can be created based on the independent
business logic. As a best practice of the migration process, it is
better to identify the minor steps and execute them one by one.
With that, they have a guarantee on the path of restoration. The

software engineering department of Tashkent University
published the mechanism to decompose the monolithic
architecture system to microservice-based architecture with
less development effort [15]. The process started with
analyzing the monolithic system, then extracting micro
functions, refactoring the service catalog, and finally,
orchestrating the services. However, the researchers have not
shown the proposed mechanism's real-world application.
Florian Auer and team conducted the assignment to find out
the facts that companies consider when migrating their system
to microservice architecture [16]. Scalability, maintainability,
complexity, reusability, modularity, deploy-ability, reliability
and testability quality attributes of the Microservice are
considered in their study. They have also figured out that most
of the companies do not measure the process, product and the
quality attribute in depth before the migration. Only after the
migration that the companies realize the implications it has.
This is caused because there is no standard framework and tech
stack that engineer can use when developing the microservices.

B. Inter-Service Communication
Presently, a lot of programming languages and

microservice frameworks have emerged to develop
microservices. When developing the Microservice, engineers
use a tech stack solely based on their area of expertise. In most
scenarios, they do not consider the application’s nature. There
are ample ways to perform service-to-service communication,
which is the most crucial part of the microservice architecture.
But, there is no clear-cut approach to identifying the most
suitable and efficient method. Christy Pachikkal researched the
microservices communication styles as synchronous
communication and asynchronous messaging [5]. According to
that research, developers need to intensely go through the
system's functional / non-functional requirements and choose
the correct communication style. Most developers use the
REST protocol because of the ubiquity of the protocol, which
makes them architecturally understand how this protocol works
[17]. REST protocol mainly uses JSON format. But in certain
instances, it uses the XML-based format for message passing.
Those message formats take massive amounts of time to
message parsing because of the weight of the message. As a
solution, REST is supported for the binary JSON (BSON),
which also has overhead with the field names within the data
structure [18]. Google invented the Remote Procedure
Call(RPC) framework-based protocol to get more performance
than the REST over HTTP [19]. Abram Perdanaputra
conducted research related to the microservice, which is
deployed on the Kubernetes environment. In addition to that,
all the communication is done by the gRPC protocol. They
have decoded the request and the responses for transparent
tracing, but that can be achieved in the passive mode. HTTP/2
was introduced in 2015. It is considered a binary protocol,
which gives more efficient bandwidth usage and header
compression [20]. Researchers have enabled the multiplexing
for HTTP/2 protocol so that the clients can send multiple
requests via the same TCP connection before the response is
received by the client. This implies that if people can use the
same TCP connection to send and receive messages, then they
can reduce the latency in message passing. Google has
invented a new protocol named Quick UDP Internet
Connection (QUIC), which uses the User Datagram Protocol

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

274 | P a g e
www.ijacsa.thesai.org

(UDP) instead of the TCP connections, and behaves as a
transport protocol for HTTP/2 [21]. Norwegian University
researchers argue in other works that QUIC protocol
performance degrades when the messages payload size gets
larger than the HTTP/1.1 [22]. Gaetano Carlucci et al.
conducted research on the QUIC and showed how QUIC and
TCP protocols behave when the network is congested. Their
experimental results have proven that TCP is able to provide
better response time when compared to the QUIC protocol
when a network packet loses.

A group of researchers in Indonesia has implemented
asynchronous communication for the microservice architecture
with the help of RabbitMQ message broker [23]. Seven
Microservices were developed and deployed in an environment
that could easily scale down. Communication between the
services is done in an asynchronous event-driven manner
which led to speed up the application because there was no
waiting as request/response architecture. They proposed
durable topics which can send the events to the subscriber, i.e.,
microservices when available. With this concept, they
guarantee the message delivery to the client. Sanjana et al.
researched the highly resilient inter-process communication
service for the microservice architecture [24]. In their
implementation, they have used the Kafka message broker and
have enabled the pub/sub messaging style to do the inter-
service communication. Researchers have used the Camel
routes, which are capable of message transformations and
validation when doing message routing. With that function,
they have proven that inter-service communication can be done
without changing the existing architecture of the microservice
implementations. Therefore, they argue that provided solution
is highly resilient and lightweight for inter-service
communication. This non-functional requirement is brought up
because they have implemented the solution over the existing
framework.

III. METHODOLOGY
This research focuses on implementing a solution for the

inter-service communication method to improve the overall
performance in a microservice architecture. When
implementing the solution, the researcher has considered
asynchronous communication as a communication style
according to the facts found in the literature review part. The
proposed system uses the Redis with Streams data structure,
combined with Pub/Sub communication pattern for message
passing in the underlying implementation.

A. Redis
Redis is an open-source solution that people can use as an

in-memory data structure store. The advantage of the Redis is
that it gives high read/write speed with high concurrency [25].
Redis is, by default, a support for easy scaling with the cluster
concept. It also brings high availability and fault tolerance with
the concept of virtual hash slots. Redis uses its own
communication protocol to engage with clients as RESP (Redis
Serialization Protocol), and it is also a binary safe protocol
[26]. Since it is a Serialization communication protocol with
binary safety, transporting the payloads will take less
bandwidth. All the clients are connected to the Redis using the

TCP connection. In this proposed method, the stream-oriented
connection, which is similar to Unix sockets is used.

B. Redis Streams
Redis streams are introduced from Redis 5.0, which can

publish the message to the stream, and consumers who
subscribe to that stream can receive them. Redis streams differ
from Kafka because the stream is an append-only data structure
that helps with real-time messaging. The main advantage over
the pub/sub model is that Redis streams persist the messages.
Hence, it can guarantee the exact message delivery. Message
reliability is the most important part of microservice inter-
service communication, and can be achieved from this model.

C. Component Architecture
Fig. 1 depicts the system architecture of the proposed

solution. Microservice A, B, and C are independent
microservices that are deployed in the distributed environment.
In order to produce the functional requirements in the software,
each microservice needs to communicate with one another. In
the proposed solution, communication is enabled through the
Redis Streams as Pub/Sub communication style. Every
microservices creates a Unix-based socket connection from the
microservice to the Redis server via TCP 6379 port. All the
messages are passed through that TCP connection over the
RESP protocol. Every time the microservice does not create
and close the connection, when the microservice starts, the
TCP connection creates and will live until it shuts down. Thus,
network creation and closing time can be reduced with this
approach. Using this mechanism developed, the Java-based
library enables efficient communication between the
microservices and brings all attributes of the HTTP protocol to
the developed library. Programmers can use this without
changing the existing architecture of their system.

Fig. 1. High-level system architecture

IV. IMPLEMENTATION
This section briefly describes the implementation of the

proposed solution. Java programming language and Spring
boot microservice framework have been used to implement the
proposed solution according to the literature review the
researcher has conducted. The researcher has implemented the
request/response-based stateless client like HTTP Client, but
beneath, it works on the pub/sub communication style. As a

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

275 | P a g e
www.ijacsa.thesai.org

communication medium, the researcher has used the Redis
Streams. Spring Boot provides a spring-boot-starter-data-redis
library, which can be used to build the solution [27]. That gives
high-level and low-level abstractions for integrating with the
Redis server.

Fig. 2. High-level component architecture

The researcher has segregated one microservice into four
main categories (see Fig. 2). The main category is the API
interface, the programming component that the microservice
communicates with external parties. In this implementation, the
interface is neither touched nor changed because the external
parties use that and cannot adhere to the implementations by
changing their applications. Other categories are the business
logic part and the data access layer. Business logic is the main
part that contains the functionalities of the microservices. Most
of the microservices are segregated from these business
functions. Another category is the data layer, the part that
communicates with the data sources, such as the database. We
have developed the communication layer with three sub-
programming components: publisher, stream subscription, and
consumer.

1) Publisher: Responsible for sending the message to the
correct microservice.

2) Stream subscription: Decides the destinations of the
messages.

3) Consumer: Responsible for receiving messages.

A. Request Handling in Microservices
3rd party client sends the HTTP request by invoking the

API exposed from the microservice A, as per Fig. 3. The
researcher has used Spring Boot REST Controller to expose the
API, which gives the developer the to enable restful web
services. When the microservice starts, it establishes the Unix
socket-based connection to the Redis server using the TCP port

with the configured IP and the port. After that, create the
subscription using the stream keys, which are also configured
in the properties file. Stream keys belong to the other
microservices that microservice A needs to send the messages.
After receiving the request from the 3rd party client,
microservice A starts processing that request and makes the
EventStructure object using the request details and processed
details. EventStructure is the object sent as a message to
microservice B to get more details. That object contains all the
HTTP message details such as HTTP method, parameters,
headers, body, client details, publisher details, etc. After
processing the HTTP request, the microservice decides which
microservice needs to be called to provide the client's correct
response. Based on that, microservice A chooses the correct
stream key and publishes the message. When publishing the
EventStructure object, it is serialized and passed as a byte
buffer record. Because of this mechanism, network
consumption can be vastly reduced when transferring data.
Each published event has a unique event ID. Afterward, that ID
and EventStructure object will be stored as a callback reference
in a HashMap to process the response.

Fig. 3. How request serve

B. Response Handling in Microservices
After processing, the business logic response can be set to

the EventStructure object. Publisher and reply stream key data
can be retrieved from the EventStructure object and can
publish the response using those data. Consumers placed in the
microservice A can identify the client data by receiving the
stream event and mapping the response data with the HashMap
data, which is stored earlier. After processing, the response API
controller can send the response back to the client using the
HTTP protocol as per Fig. 4.

Fig. 4. How response serve

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

276 | P a g e
www.ijacsa.thesai.org

C. Quality Attributes
Quality attributes are the most vital in Microservice

architecture. Most people transition to microservice
architecture considering scalability, performance,
maintainability, traceability, and availability [28]. When
implementing the new solution, the quality attributes are
preserved and improved.

1) Scalability: Proposed solution can be horizontally
(scaling out) and vertically (scaling up) scalable. If this
solution is deployed in the cloud-based VM, the VM
specification can be increased at any given time and ultimately
support vertical scaling. Thus, JVM has more resources to
execute computations, and there is no barrier to the
implantation. By performing horizontal scaling, people can add
more microservice instances based on business needs. When
adding the new application, it creates the subscription using the
stream key. Redis server is responsible for delivering the
messages solely to one subscriber, which means that the
request is received only by one microservice. The Redis
service covers service discovery and load balancing. Therefore,
the developer does not need to ponder on it when scaling the
applications. Hence, message duplication is not happening with
this implementation, guaranteeing the exact message's delivery.

2) Maintainability: There is no impact on the overall
maintainability of this implementation. Developers can use this
implementation for internal communication instead of HTTP
Clients. There’s no requirement for maintenance in the internal
load balancer for inter-service communication.

3) Traceability: This is the most important quality attribute
in relation to technical support, as the troubleshooting support
engineers need to know what has happened to the request and
the response. The developed implementation supports end-to-
end request/response tracing via the Redis server. If there’s a
need to trace the request and the response, the Redis GUI client
can be installed after connecting to the Redis server of that
client.

4) Availability: With this implementation, exact message
delivery is guaranteed from the Redis Streams. Hence,
availability can be achieved through this.

V. RESULTS AND DISCUSSION
By critically reviewing the microservice architecture, the

researcher analyzed that the impact of inter-service
communication on performance is very high as a result of all
the microservices deployed in the distrusted environment,
making it mandatory to call each other over the network to
produce the results. In this research, the researcher has
proposed and implemented a solution that can be used to
improve inter-service communication, ultimately bringing in
overall application performance in terms of response time and
throughput. HTTP inter-service communication and
implemented solution have been deployed in a cloud VM-
based environment to test and evaluate the application response
time and throughput.

Fig. 5. Testing architecture

The Fig. 5 depicts the high-level system architecture of the
load-testing environment. To generate the load, the researcher
has used Apache JMeter, which is the most famous and vastly
used tool in the industry, as well as in academic research [29].
Well-known cloud provider AWS (Amazon Web Services) has
been used to deploy the systems [30]. Most enterprise software
companies and enterprise-grade software are developed in the
AWS cloud. Numerous scientific types of research are also
conducted recently from the AWS cloud. Hence, the AWS
platform is chosen in this instance as well to evaluate the
system [31]. AWS EC2 is a virtual machine infrastructure as a
service that contains the Intel Xeon processors with burstable
for high frequency and a balanced memory/network and IO
resources.

The T2 instance type has been chosen as it is a low-cost
general-purpose instance category that provides better CPU
performance for microservices and low-latency interactive
applications [32]. T2.Medium EC2 instance type has been used
to deploy the two microservices and JMeter, which has two
virtual CPUs and 4GB memory on each. T2. A small instance
type is used to deploy the Redis server, which contains one
virtual CPU and 2GB of memory. All the VMs are provisioned
in one virtual private network (VPN) and the same subnet
under one security group. This network architecture can
minimize network latency by calling the application through
the same subnet and improves security by using the same
security group.

In Fig. 6, straight arrows are the path that conducts the test
for the common standard HTTP communication. The dotted
arrows depict the newly implemented solution load test path.

The test is executed in two different methodologies,

1) Scenario A: Controlled the application’s overall
throughput and the request/response size and then measured
the inter-service communication turnaround time.

2) Scenario B: Controlled only the request/response size
and measured the throughput, overall application response
time, and inter-service communication turnaround time.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

277 | P a g e
www.ijacsa.thesai.org

Fig. 6. Deployment architecture

A. Scenario A
Based on the studies conducted, the researcher has chosen

different testing scopes to evaluate the system with existing
systems. The researcher started with different throughput
values and payload sizes. For each constant throughput value,
the payload size has been changed as below, and traffic has
been generated from the JMeter.

• Call the HTTP GET method from the microservice,
and the backend microservice returns the 200 OK
HTTP response code with the empty body.

Call the HTTP POST method with a 1KB size JSON
payload, and the backend microservice returns the 200 OK
HTTP response with a 1KB JSON format response.

Using the above test scenarios (Table I), the researcher has
evaluated the HTTP communication method, inter-service
communication turnaround time, and the newly implemented
solution for inter-service communication turnaround time.
Each test scenario was run for a time period of 1 hour and
repeated three times, generating an average value of the inter-
service communication.

Fig. 7 reflects the difference between the turnaround time
on the proposed solution and the HTTP protocol
implementations. When the throughput gets high, both the
proposed solution and the HTTP protocol solution’s turnaround
time increase; when considering the payload size, it can be
comprehended that both perform the same behavior. But in the
all-test scenarios, the proposed solution’s turnaround time is
getting much lower than HTTP protocol implementation. In the
HTTP protocol, a socket connection needs to be created for
each connection to close the connection once the response is
received. Furthermore, the network packets are neither in a
binary method nor fully serialized. Therefore, when
transferring the data packet through the network consumes
considerable time. In the new implementation, Microservices
has established a TCP socket-based connection with the Redis
server. Hence, when Microservices starts, it acts as part of the
particular Microservice. When sending data to other
Microservices, it needs to be serialized and passed as a byte
buffer record to reduce the usage of network resources. Due to

that, the implemented solution turnaround time is less than the
standard HTTP communication method.

B. Scenario B
In this scenario, only the payload sizes have been

controlled and evaluated for the application’s overall response
time and the Microservice’s inter-service communication
turnaround time. The researcher has conducted this test
scenario in the same cloud environment, and for the payload
size, only 1KB sized JSON payload, 5KB sized JSON payload,
and URL were chosen. To capture the overall application
response time, JMeter listeners are being added. The inter-
service communication turnaround time has been calculated by
processing the logs. Each test scenario was run for 1h and
continued three times to get the average value of the inter-
service communication turnaround time, overall application
response time, and application throughput.

TABLE I. TEST SCENARIOS

Number Test Case Scenario

1 Controlled the throughput to 10TPS and send HTTP GET
request

2 Controlled the throughput to 10TPS and send HTTP POST
request

3 Controlled the throughput to 100TPS and send HTTP GET
request

4 Controlled the throughput to 100TPS and send HTTP
POST request

Fig. 7. Turnaround time comparison chart

Fig. 8. TPS / response time / turnaround time comparison chart

0

0.5

1

1.5

2

2.5

3

Proposed Solution HTTP

Ti
m

e(
m

s)

Turnaround Time Comparison

URL Only URL Only 1KB 1KB

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

278 | P a g e
www.ijacsa.thesai.org

As in Fig. 8 it can be observed that with the increase of the
payload size, throughput is getting deceased. It is a typical
network behavior that, when packets get heavy, will decrease
the overall network performance. Hence, the response time
also increases when the payload size increases. By comparing
the implemented solution and the generic HTTP interservice
communication method, it can be seen that in all the cases,
response time gets better in implemented solution compared to
the HTTP communication method.

Critically evaluating the above diagram, it can be
concluded that;

Inter − service communication turnaround time
∝ Application response time

Inter-service communication turnaround directly impacting
to the whole application response time. This means that if some
systems took more time to communicate between services, then
overall response time will become high on that system due to
inter-service communication.

Payload size ∝ 1/Throughput

Request and response payload size impacting to the system
throughput because transferring large network packets will take
some considerable time between services. Hence response time
will be getting increased. With the results of that, overall
system throughput will be getting decreased.

VI. CONCLUSION AND FUTURE WORK
In Microservice architecture, all the services are deployed

as independent services in a distributed environment. However,
unlike in monolithic software, the data must be derived through
the network call to share the data between services. As a result
of that, additional latency will be added to the overall
application response time. Most software companies are faced
with issues related to performance in terms of response time
and throughput when migrating their monolithic architecture to
microservice-based architecture. However, there is a capacity-
wise and cost-wise advantage by scaling required services
when necessary.

This research focuses on finding a solution to reduce the
inter-service communication time between services. The initial
studies found that most of the existing protocols take time for
connection establishment and connection closure when sending
and receiving the response. Besides, sending massive payloads
will cause additional latencies. We have implemented the
solution by addressing the above-mentioned problems and
reducing latency when communicating between the services.
We have used the Redis Stream data structure and built the
request/response-based message-passing solution for inter-
service communication. A TCP-based socket connection is
created when the microservice starts. When sending the
payload, it will be serialized and sent as a protocol buffer.
Redis server is responsible for the exact message delivery
based on the subscription and the stream key. The test
scenarios are conducted by deploying the implemented solution
in the AWS cloud-based VMs, and the system is evaluated
against the Spring Boot standard implementation. Test results
depict that the implemented solution performs well in terms of
application response time and throughput. This research will

continue to find a cloud-native solution to gain more
performance and maintainability.

REFERENCES
[1] S. Weerasinghe and I. Perera, “An exploratory evaluation of replacing

ESB with microservices in service oriented architecture,” presented at
the International Research Conference on Smart Computing and
Systems Engineering, Sep. 2021.

[2] A. Makris, K. Tserpes, and T. Varvarigou, “Transition from monolithic
to microservice-based applications. Challenges from the developer
perspective,” Open Res. Eur., vol. 2, p. 24, Feb. 2022, doi:
10.12688/openreseurope.14505.1.

[3] Chris Richardson, Microservices patterns. Manning Publications, 2018.
[4] J. Kazanavicius and D. Mazeika, “Migrating Legacy Software to

Microservices Architecture,” in 2019 Open Conference of Electrical,
Electronic and Information Sciences (eStream), Vilnius, Lithuania, Apr.
2019, pp. 1–5. doi: 10.1109/eStream.2019.8732170.

[5] Christy Sibi Pachikkal, “Interservice Communication in Microservices,”
Int. J. Adv. Res. Sci. Commun. Technol.

[6] S. Raje, “Performance Comparison of Message Queue Methods”, doi:
10.34917/16076287.

[7] “Spring Boot.” https://spring.io/projects/spring-boot.
[8] “Eclipse Vert.x.” https://vertx.io/.
[9] “Moleculer - Progressive microservices framework for Node.js,”

Moleculer - Progressive microservices framework for Node.js.
https://moleculer.services/index.html.

[10] A. Aslam, “Go Micro.” [Online]. Available: https://github.com/asim/go-
micro.

[11] Sidath Weerasinghe and Indika Perera, “Taxonomical Classification and
Systematic Review on Microservices,” Int. J. Eng. Trends Technol. -
IJETT, Accessed: Jul. 30, 2022. [Online]. Available:
https://ijettjournal.org/archive/ijett-v70i3p225.

[12] L. D. S. B. Weerasinghe and I. Perera, “An exploratory evaluation of
replacing ESB with microservices in service-oriented architecture,” in
2021 International Research Conference on Smart Computing and
Systems Engineering (SCSE), Sep. 2021, vol. 4, pp. 137–144. doi:
10.1109/SCSE53661.2021.9568289.

[13] O. Al-Debagy and P. Martinek, “A Comparative Review of
Microservices and Monolithic Architectures,” in 2018 IEEE 18th
International Symposium on Computational Intelligence and Informatics
(CINTI), Budapest, Hungary, Nov. 2018, pp. 000149–000154. doi:
10.1109/CINTI.2018.8928192.

[14] V. Velepucha and P. Flores, “Monoliths to microservices - Migration
Problems and Challenges: A SMS,” in 2021 Second International
Conference on Information Systems and Software Technologies
(ICI2ST), Quito, Ecuador, Mar. 2021, pp. 135–142. doi:
10.1109/ICI2ST51859.2021.00027.

[15] D. Kuryazov, D. Jabborov, and B. Khujamuratov, “Towards
Decomposing Monolithic Applications into Microservices,” in 2020
IEEE 14th International Conference on Application of Information and
Communication Technologies (AICT), Tashkent, Uzbekistan, Oct. 2020,
pp. 1–4. doi: 10.1109/AICT50176.2020.9368571.

[16] F. Auer, V. Lenarduzzi, M. Felderer, and D. Taibi, “From monolithic
systems to Microservices: An assessment framework,” Inf. Softw.
Technol., vol. 137, p. 106600, Sep. 2021, doi:
10.1016/j.infsof.2021.106600.

[17] O. Zimmermann, “Microservices tenets: Agile approach to service
development and deployment,” Comput. Sci. - Res. Dev., vol. 32, no. 3–
4, pp. 301–310, Jul. 2017, doi: 10.1007/s00450-016-0337-0.

[18] M. Ya. Afanasev, Y. V. Fedosov, A. A. Krylova, and S. A. Shorokhov,
“Performance evaluation of the message queue protocols to transfer
binary JSON in a distributed CNC system,” in 2017 IEEE 15th
International Conference on Industrial Informatics (INDIN), Jul. 2017,
pp. 357–362. doi: 10.1109/INDIN.2017.8104798.

[19] L. N. T. Thanh, “SIP-MBA: A Secure IoT Platform with Brokerless and
Micro-service Architecture,” Int. J. Adv. Comput. Sci. Appl., vol. 12,
no. 7, p. 8, 2021.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

279 | P a g e
www.ijacsa.thesai.org

[20] R. Corbel, E. Stephan, and N. Omnes, “HTTP/1.1 pipelining vs HTTP2
in-the-clear: Performance comparison,” in 2016 13th International
Conference on New Technologies for Distributed Systems (NOTERE),
Jul. 2016, pp. 1–6. doi: 10.1109/NOTERE.2016.7745823.

[21] H. Bakri, C. Allison, A. Miller, and I. Oliver, “HTTP/2 and QUIC for
Virtual Worlds and the 3D Web?,” Procedia Comput. Sci., vol. 56, pp.
242–251, Jan. 2015, doi: 10.1016/j.procs.2015.07.204.

[22] M. S. Nyfløtt, “Optimizing Inter-Service Communication Between
Microservices,” p. 103.

[23] S. A. Asri, I. N. G. A. Astawa, I. G. A. M. Sunaya, I. M. R. Adi
Nugroho, and W. Setiawan, “Implementation of Asynchronous
Microservices Architecture on Smart Village Application,” Int. J. Adv.
Sci. Eng. Inf. Technol., vol. 12, no. 3, p. 1236, Jun. 2022, doi:
10.18517/ijaseit.12.3.13897.

[24] S. G. B. and G. R. S. N. S., “High Resilient Messaging Service for
Microservice Architecture,” Int. J. Appl. Eng. Res., vol. 16, no. 5, p.
357, May 2021, doi: 10.37622/IJAER/16.5.2021.357-361.

[25] X. Chen, F. Wang, J. Xu, D. Zhu, P. Tan, and J. Ma, “A distributed
cache system based on Redis for high-speed railway catenary monitoring

system,” in 2020 Chinese Automation Congress (CAC), Shanghai,
China, Nov. 2020, pp. 2048–2053. doi:
10.1109/CAC51589.2020.9326531.

[26] “RESP protocol spec,” Redis. https://redis.io/docs/reference/protocol-
spec/.

[27] “Spring Data Redis.” https://spring.io/projects/spring-data-redis.
[28] T. Schirgi, “Architectural Quality Attributes for the Microservices of

CaRE,” p. 46.
[29] R. B. Khan, “Comparative Study of Performance Testing Tools: Apache

JMeter and HP LoadRunner,” p. 57.
[30] “AWS Lambda – Serverless Compute - Amazon Web Services,”

Amazon Web Services, Inc. https://aws.amazon.com/lambda/.
[31] “Security and Safety in Amazon EC2 Service – A Research on EC2

Service AMIs,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 6S4, pp.
736–738, Jul. 2019, doi: 10.35940/ijitee.F1149.0486S419.

[32] “Amazon EC2 T2 Instances – Amazon Web Services (AWS).”
https://aws.amazon.com/ec2/instance-types/t2/.

	I. Introduction
	II. Literature Review
	A. Microservices
	B. Inter-Service Communication

	III. Methodology
	A. Redis
	B. Redis Streams
	C. Component Architecture

	IV. Implementation
	1) Publisher: Responsible for sending the message to the correct microservice.
	2) Stream subscription: Decides the destinations of the messages.
	3) Consumer: Responsible for receiving messages.
	A. Request Handling in Microservices
	B. Response Handling in Microservices
	C. Quality Attributes
	1) Scalability: Proposed solution can be horizontally (scaling out) and vertically (scaling up) scalable. If this solution is deployed in the cloud-based VM, the VM specification can be increased at any given time and ultimately support vertical scaling. T�
	2) Maintainability: There is no impact on the overall maintainability of this implementation. Developers can use this implementation for internal communication instead of HTTP Clients. There’s no requirement for maintenance in the internal load balancer fo�
	3) Traceability: This is the most important quality attribute in relation to technical support, as the troubleshooting support engineers need to know what has happened to the request and the response. The developed implementation supports end-to-end reques�
	4) Availability: With this implementation, exact message delivery is guaranteed from the Redis Streams. Hence, availability can be achieved through this.

	V. Results and Discussion
	1) Scenario A: Controlled the application’s overall throughput and the request/response size and then measured the inter-service communication turnaround time.
	2) Scenario B: Controlled only the request/response size and measured the throughput, overall application response time, and inter-service communication turnaround time.
	A. Scenario A
	B. Scenario B

	VI. Conclusion and Future Work

