
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

432 | P a g e
www.ijacsa.thesai.org

A Fuzzy Logic based Solution for Network Traffic
Problems in Migrating Parallel Crawlers

Mohammed Faizan Farooqui1, Mohammad Muqeem2, Sultan Ahmad3*, Jabeen Nazeer4, Hikmat A. M. Abdeljaber5
Department of Computer Application, Integral University, Lucknow, India1, 2

Department of Computer Science-College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University,
Al-Kharj, 11942, Saudi Arabia3*, 4

University Center for Research & Development (UCRD)-Department of Computer Science and Engineering, Chandigarh
University, Gharuan, Mohali 140413, Punjab, India3

Department of Computer Science-Faculty of Information Technology, Applied Science Private University, Amman, Jordan5

Abstract—Search engines are the instruments for website
navigation and search, because the Internet is big and has
expanded greatly. By continuously downloading web pages for
processing, search engines provide search facilities and maintain
indices for web documents. Online crawling is the term for this
process of downloading web pages. This paper proposes solution
to network traffic problem in migrating parallel web crawler.
The primary benefit of a parallel web crawler is that it does local
analysis at the data's residence rather than inside the web search
engine repository. As a result, network load and traffic are
greatly reduced, which enhances the performance, efficacy, and
efficiency of the crawling process. Another benefit of moving to a
parallel crawler is that as the web gets bigger, it becomes
important to parallelize crawling operations in order to retrieve
web pages more quickly. A web crawler will produce pages of
excellent quality. When the crawling process moves to a host or
server with a specific domain, it begins downloading pages from
that domain. Incremental crawling will maintain the quality of
downloaded pages and keep the pages in the local database
updated. Java is used to implement the crawler. The model that
was put into practice supports all aspects of a three-tier, real-
time architecture. An implementation of a parallel web crawler
migration is shown in this paper. The method for efficient
parallel web migration detects changes in the content and
structure using neural network-based change detection
techniques in parallel web migration. This will produce high-
quality pages and detection for changes will always download
new pages. Either of the following strategies is used to carry out
the crawling process: either crawlers are given generous
permission to speak with one another, or they are not given
permission to communicate with one another at all. Both
strategies increase network traffic. Here, a fuzzy logic-based
system that predicts the load at a specific node and the path of
network traffic is presented and implemented in MATLAB using
the fuzzy logic toolbox.

Keywords—Web crawler; incremental crawling; fuzzy logic-
based system; fuzzy logic toolbox

I. INTRODUCTION
The Internet's numerous data sources, dynamic page

production, and quick rate of change present a number of
challenges for web crawling. All web crawlers are constructed
using common components and must be scalable, reliable, and
able to utilize available bandwidth effectively. When building a
web crawler, politeness is a crucial issue that needs to be taken

into consideration [1]. Crawlers should refrain from overtaxing
a web server by making numerous page requests quickly [2].
Web crawlers should adhere to the guidelines set forth by
website administrators and should self-identify while seeking
pages. The crawlers note a delay between two requests being
sent to a web server simultaneously. Request Intervals are the
name given to this waiting period [3]. Typically, 30 seconds
elapses between downloads. A queue shuffling mechanism is
used to enforce this waiting period; the queue is shuffled into a
random order and distributed evenly among URLs coming
from the same web server. The other crawler, similar to
Mercator, implements their URL queue as a group of sub-
queues, with a queue for each domain [4]. Each search engine
keeps a central database of web pages on hand. In response to
the query of user, search engine creates indexes for the
repository. A web crawler, sometimes known as a spider,
robot, or web pot, is a program that searches the Internet and
collects web pages. Beginning with the seed URLs, the web
crawler downloads the web document for those URLs. It takes
new links from these downloaded documents and extracts
them. Next, it is determined whether or not the extracted URLs
have already been downloaded. URLs are redistributed to
crawlers for additional downloading if it is confirmed that the
documents have not already been downloaded. Up until there
are no more URLs available for download, the process is
repeated. Every day, a crawler downloads millions of online
pages. The scheduler, multi-threaded downloader, queue for
URLs and storage for text and metadata are all components of
a web crawler. The search engine database must be updated
often, and such updates must be incorporated by the web
crawling system. To get over the processing bottleneck,
multiple instances of this component operate simultaneously
connected with very high bandwidth [5]. The HTTP protocol is
used by web crawlers to download and process web pages from
the internet. The downloader and the processor are the two
components that make up the web crawling system. The
processor receives the web pages that were downloaded by the
downloader and processes them further. The HTTP protocol is
used throughout this operation to download online pages. To
download web pages, the downloader sends HTTP-GET
queries. The pages are subsequently sent to the processor for
additional processing and database integration. In order to
download online pages from web servers, downloader adheres
to a number of best practices. TCP Connection reusability,

*Corresponding Author.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

433 | P a g e
www.ijacsa.thesai.org

Compression, Conditional GETs, varying refresh frequency,
and DNS caching are a few of the optimization strategies used
on downloader to get around network constraints [6].

A. Reusability of TCP connections
To conserve time and network traffic, downloader maintain

one TCP connection open for each IP address and utilize it
repeatedly until the server's entire contents have been
downloaded [7]. Web servers compress web pages before
transmitting them to the requesting client in order to save
network traffic [8]. Downloader use conditional GETs, which
are defined in the HTTP protocol. Conditional GETs download
the page if it changes after a certain date [9]. Different websites
have different refresh rates; some are updated every few
minutes, while others don't change for a year. More crucial
than others are certain pages. Because of this, search engines
sift through pages that are significant and likely to see frequent
updates.

B. DNS Caching
DNS resolves and URL downloads are two factors that

contribute to network congestion. Additional DNS server
bottlenecks could occur, which would impact performance.
DNS cache is used by the downloader or site crawling
component to boost performance. When the size of the web
expands, centralized web crawling techniques become
inefficient. Only a very small portion of the web is crawled by
search engines, and they frequently ignore significant pages.
Because of this, simultaneous web crawlers are employed to
reduce network and other bottlenecks.

The task of the processor is to gather, process, and store the
downloaded web documents in the database of the search
engine. It is responsible for collecting information from online
documents and putting it in the database. The method involves
taking keywords from a web page and ranking them. The
database stores the frequency and position of keywords. In
order to extract information, the processing component
processes strings.

The remainder of this article is arranged accordingly.
Section II reviews the related works. Section III gives a case
study of crawler load, Section IV details about FIS and Fuzzy
Logic. Section V gives the proposed solution, including the
components. Section VI is having result discussion. Lastly,
Section VII concludes the work.

II. RELATED WORK
An illustration of a distributed publication system is the

Web. Based on how they handle requests, the two models are
centralized and distributed. In a distributed architecture, a
central location generates the query, which is subsequently sent
to a few distant locations for processing. The distant stations
then relay their findings to the central location. The combined
results are displayed to the searcher at a central location. Under
contrast, one system in the centralized approach maintains the
entire index there. The single central index is then used to test
the searcher's query. When using a distributed design, the
difficulty of searching each database is decreased because the
index collection is spread across a number of databases.
NetFind, WAIS, and Harvest are examples of the distributed

model. The authors of [10] introduced NetFind, a system that
addressed the problem of finding information about people on
the Web by employing a distributed search technique. WAIS
employed a distributed set of indexes and a vector-space
retrieval paradigm. WAIS struggled with its dearth of content.

According to the developers of [11], a Digest should only
be used to convey queries to servers that have answers to such
queries. Each server in the system creates a digest, which is
then sent to a central site, containing a portion of the content
that is available there. Archie, Veronica, and all search engines
on the Internet are examples of the centralized paradigm. A
number of existing extensively used documents (FTP files)
were indexed by Archie [11]. The Gopher system could be
searched thanks to Veronica [12]. Content from participating
Gopher sites was downloaded and indexed at a single location.
Publishing and accessing materials became simple thanks to
the web. Additionally, it made following links easier [13]. The
WWW Virtual Library is a method for finding resources on the
Internet. A hierarchy was used to arrange the Virtual Library.
Its quality was not exceptional because it was made by humans
[14]. Three searchable indexes—the RBSE index, the WWW
Worm, and Jumpstation—became well-known later in 1993.
Each offered a searchable interface to a database of Web sites
that was created automatically. Search engines like Lycos,
InfoSeek, Yahoo, AltaVista, and Excite are a few examples. To
fulfill a single searcher's request, the Meta search does
numerous remote search engine queries. SavvySearch and
MetaCrawler are two examples. These Meta engines use
servers with content duplication. Because each search engine
has a few unique documents in its index, meta-search is
preferred. Additionally, as each search engine refreshes pages
at a different rate, certain search engines will have current web
content. Better results may be obtained via Meta search
engines. Meta-search engines' disadvantage is a performance
slowdown. AltaVista, Fast, and Google are a few examples of
search engines.

A distributed system can scale by adding components,
duplicate or distribute services so they are always available,
and choose its components carefully to lower overall costs
[15]. Three areas of distributed systems research are load
balancing, resource allocation, and the overall design of
distributed systems [16]. The goal of distributed system
research is to create platforms that are consistent, dependable,
and available. Locus, V Distributed System, and Eden are early
distributed system models. Amoeba and Emerald are modern
examples of distributed systems. The Coign system's creators
claim that their system is capable of performing the kinds of
optimizations that programmers often perform. Parallel
searches are carried out simultaneously on all servers,
integrated, ranked, and provided to the searcher. Ninja offers a
platform for creating easily configurable, scalable Web
services. The objective of Ninja is to reduce the administrative
burden involved in managing a sizable cluster of systems [17].
Both distributed systems at the node level and parallel systems
at the processor level require load balancing. The authors of
[18] proposed a number of methods for assigning labour as
well as detailed models for doing so. [19], which investigated
load balancing in Amoeba, found that centralized decision-
making outperforms distributed techniques. The Domain Name

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

434 | P a g e
www.ijacsa.thesai.org

System (DNS) has been used to disperse queries among several
servers by having name servers answer with a list of addresses
for a certain name. The authors of [20] suggested a mechanism
for monitoring the load of the constituent systems.

In [21], the authors suggested DNS-based approaches that
return server addresses in accordance with a model of the
communication cost between the client and server. These
methods address the issue of availability by limiting the
addresses that name servers can distribute to servers that are
known to be responsive. Very few significant pages are
concealed within a big number of unimportant pages. How to
get a good sample is the fundamental issue in web
characterization? Pages containing scant or insignificant
information should be excluded. It's important to gauge a
website's importance. Web pages can be sampled using either
vertical sampling or horizontal sampling. Web pages are
gathered via vertical sampling, which is based on domain
names. At many levels of the hierarchy, vertical sampling is
possible. Vertical sampling at the highest level chooses nations
with top-level domains like .in, .it, .au, etc. When vertical
sampling is carried out at the second level, pages created by
participants in the same institution or organization are collected
(e.g. integraluniversity.ac.in).

A horizontal sample is the gathering of web pages based on
selection criteria other than domain names. There are two ways
to gather data: first, by employing a log of transactions in a
major organization's proxy; and second, by using a web
crawler. It is simple to locate popular pages when using a
proxy, but the revisit duration cannot be adjusted because it
depends on people. When using a web crawler, the popularity
of the page must be approximated, but the revisit period may
be adjusted.

III. CASE STUDY OF CRAWLER LOAD
The quality of the data gathered during a crawl can always

be enhanced. The sort of web graph search is determined by
the ordering of the URL queue. By considering the pages' in-
link factors, the queue can be sorted. The breadth first search
can enhance the caliber of pages that are downloaded [22]. On
the Internet, there are a lot of spam sites and indefinitely
branching crawler traps whose pages are dynamically produced
and made to have a very high in-link factor [23]. The various
network metrics, including geographic distance and latency,
are covered in this section.

A. Definition 1: Geographic Distance
On the Internet, there are resources that give a mapping

between IP addresses and geographical data. Longitude and
latitude are extracted from registrar address data by the existing
Internet service [24]. Two hosts are controlled by the same ISP
if their latitude and longitude are identical [25]. A pair of
Internet hosts' latitude and longitude can be found, and their
geographic separation can be determined by utilizing the
spherical coordinates of the earth.

B. Definition 2: Latency
There are numerous methods for calculating the Round

Trip Time between two Internet hosts. The UNIX Ping utility
is used in the first technique, and the Trace route utility is used

in the second way [26]. The ICMP ECHO queries used by the
Ping program are occasionally restricted or altered by ISPs.
Some routers may prevent the TTL-restricted UDP packets that
Trace route transmits [27].

C. Definition 3: Correlation between Metrics
Geographic distance and latency are strongly correlated

[28]. The association between distance and RTT is stronger
since the observations have lower linear distance values. A
minimum end-to-end RTT is implied by linear distance along a
path [29]. RTT and linear distance have a stronger correlation
than RTT and end-to-end distance.

The client throughput in a conventional and active network
was shown in Fig. 1. The X -axis indicates throughput, bits
received by the clients at each simulated time, and Y- axis
displays client’s requests arrival rate [30]. Crawler throughput
is proportional to client throughput for active indexing with 0%
overhead. This establishes the comparability of the remaining
samples. The throughput rapidly declines as the systems get
saturated when both simulations reach a similar throughput of
roughly 222 bits per tick. 140 bits per tick remain the
consistent throughput at that point [30].

The throughput of a typical network crawler was shown in
Fig. 2. The X- axis shows the overall arrival request rate, and
the Y-axis shows the bits amount per simulated time unit that
Web crawlers are receiving. The requests are started by both
crawlers and actual customers. The typical client request delay
for active indexing is shown in Fig. 3. The Y- axis indicates the
delay in normal client response, and the X- axis reflects the rate
at which requests are created by human clients. In traditional
networks with 20 or 40 percent crawler traffic, the typical
client delay is higher [30].

The relationship between request delay of crawler and the
overall request arrival rate is seen in Fig. 4. As shown in the
Fig. 3 and Fig. 4 the two curves are comparable, suggesting
that the increased crawler load has no effect on the delay
experienced by crawler sites [30].

The percentage of client requests that are always fulfilled is
shown in Fig. 5. When the request arrival rate is low, all
requests are nevertheless completed. The completion rates of
customer requests have significantly decreased, as evidenced
by the 20 percent and 40 percent crawler cases [30].

Fig. 1. Throughput of client in all cases [30].

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

435 | P a g e
www.ijacsa.thesai.org

Fig. 2. Throughput of crawler.

Fig. 3. Average client request delay in all cases [30].

Fig. 4. Total request arrival time vs. average crawler request delay [30].

Fig. 5. Completed client request rates in all cases [30].

IV. FIS AND FUZZY LOGIC
A FIS makes inferences from a knowledge base using a

fuzzy inference engine (FIE). The FIE, represents the methods
required for formalizing results and reasoning with the data in
the knowledge database, is comparable to the brain of expert
systems[31]. Boolean algebra's adaptation to deal with
insufficient truth is fuzzy logic. Fuzzy logic illustrates the
degree of truth of propositional logic. Everything in Boolean
algebra may be stated in terms of binary numbers, or zero and
one. Boolean algebraic values are replaced with the degree of
truth in fuzzy logic.

The erroneous patterns of thinking are recorded using the
level of truth. In an environment of ambiguity and uncertainty,
this method of thinking is crucial to how humans make
decisions. The membership function in fuzzy sets is
comparable to the indicator function in classical set theory.
Curves represent membership functions. According to member
functions, every input space point is translated to a value lies
between 0 and 1. A membership function has a triangular, bell-
shaped, and trapezoidal shape. The universe of discourse is the
name of the input space.

A fuzzy inference system is simpler to construct and has a
very simple conceptual foundation. Three steps make up a
fuzzy inference system: the input stage, the output stage, and
the processing stage [32]. Input is translated into membership
functions in the input step. At the processing stage, the
appropriate rule is triggered, and each rule's result is generated
before being combined. The output stage next transforms the
outcome into output. The inference engine is the level of
processing. The foundation of an inference engine is a set of
IF-THEN logic rules. The THEN sub-statement is
"consequent" if the IF sub-statement is "antecedent." A
knowledge database contains n number of rules that are
specific to fuzzy inference subsystems. The steps of the FIS are
as follows:

• Fuzzification.

• Application of Fuzzy operators.

• Implication.

• Output Aggregation.

• Defuzzification.

Fuzzification of inputs is the process of assessing an input's
degree of membership in its fuzzy sets using membership
functions [33]. Fuzzy sets are used as the input and crisp values
are produced during the defuzzification process. In fuzzy
systems, there are two popular inference techniques. Ebrahim
Mamdani proposed the first approach, the Mamdani fuzzy
inference method, in 1975. Takagi-Sugeno-Kang proposed the
second method, the Takagi-Sugeno-Kang fuzzy inference
method, in 1985[34]. Numerous aspects of these approaches
are comparable, such as the fuzzying of the inputs and fuzzy
operators. While Mamdani's inference uses fuzzy sets as its
output membership functions. Sugeno's approach is
computationally effective and functions well with adaptive and
optimization strategies and uses output membership functions

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

436 | P a g e
www.ijacsa.thesai.org

that are linear and constant. It also functions well when
analysed mathematically.

The crawling procedure keeps the quality up. The web
crawling is carried out using one of the two methods listed
below: either the web crawlers are permitted to communicate
with one another or they are not. Both methods add to the load
on the network [35]. Here, a fuzzy logic-based method that
predicts the load at a specific node and the path of network
traffic is presented and implemented in MATLAB using the
fuzzy logic toolbox.

V. PROPOSED SOLUTION
These are the major steps of the proposed solution.

a) Using a Fuzzy Inference System to Fix the Network
Traffic Issue with Parallel Crawler Migration.

b) Using the membership function editor.
c) Using the Rule Editor to specify rules for a fuzzy

inference system.
d) Rule Evaluation.
e) Adding up the results of the rule.
f) Removing fuzziness from the output value.

1) FIS to Solve Network Traffic problem in migrating
parallel Crawlers.

The fuzzy set is the foundation of fuzzy logic theory. Every
point in the input space is assigned a membership value
between 0 and 1 that is defined by the curve known as the
membership function. A fuzzy set is one that lacks a definite
crisp border. Fuzzy Logic Toolbox includes the following tools
for creating and customizing fuzzy inference systems:

a) Fuzzy Inference System (FIS) Editor.
b) Membership Function Editor.
c) Rule Editor.
d) Rule Viewer.
e) Surface Viewer.

The Mamdani method is employed since it is well-liked for
gathering knowledge. It enables us to speak more humanely
when describing the expertise [36].

2) Defining FIS variables and fuzzification of the input
variables using membership function editor.

a) gaussmf: The built-in membership function for the
Gaussian curve in the fuzzy toolbox is known as gaussmf. y =
gaussmf(x,[sig c])[37] gives the syntax (Fig. 6). The fuzzy
toolbox's symmetric Gaussian function is dependent on the two
parameters and as stated by.

𝑓(𝑥;𝜎, 𝑐) = 𝑒
−(𝑥−𝑐)2
2𝜎2

For example if y=gaussmf(x,[2 5]).

plot(x,y).

xlabel('gaussmf, P=[2 5]').

Fig. 6. Gaussmf Curve.

b) Trimf: In the fuzzy toolbox, trimf is the built-in
membership function with a triangular shape (Fig. 7). The
triangular curve is a function of a vector x and depends on
three parameters when the syntax is y = trimf(x,params); if y =
trimf(x,[a b c]):

𝑓(𝑥; 𝑎, 𝑏, 𝑐) =

⎩
⎪
⎨

⎪
⎧

0, 𝑥 ≤ 𝑎
𝑥 − 𝑎
𝑏 − 𝑎

, 𝑎 ≤ 𝑥 ≤ 𝑏
𝑐 − 𝑥
𝑐 − 𝑏

, 𝑏 ≤ 𝑥 ≤ 𝑐

0, 𝑐 ≤ 𝑥

Or,

𝑓(𝑥; 𝑎, 𝑏, 𝑐) = max �𝑚𝑖𝑛 �
𝑥 − 𝑎
𝑏 − 𝑎

,
𝑐 − 𝑥
𝑐 − 𝑏

),0��

The triangle's base is indicated by first parameter a and
third parameter c, while the triangle's peak is shown by second
parameter b [38]. For example:

x=0:0.1:10;

y=trimf(x,[3 6 8]);

plot(x,y)

xlabel('trimf, P=[3 6 8]')

Fig. 7. Trimf function.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

437 | P a g e
www.ijacsa.thesai.org

Fig. 8. FIS editor for network traffic problem.

Fig. 9. FIS variable communication.

Fig. 10. FIS variable bandwidth.

Fig. 11. FIS variable noise.

Fig. 12. FIS output variable network traffic.

The FIS editor for the Network Traffic Problem is shown in
Fig. 8. The FIS variable Communication is shown in Fig. 9.
The FIS variable Bandwidth is shown as a Fig. 10. The FIS
variable Noise is shown in Fig. 11. The FIS output variable
Network Traffic is shown in Fig. 12.

Lemma 1. When n is the total number of network nodes,
the technique has a worst-case time complexity of O(n).

Proof. Steps 1 and 3 of the method take a fixed amount of
time. In the worst case situation, a node may have m number of
gateways within its communication range, hence Step 2 can be
finished in O(m) time. The node selects a CH in Step 4 in O(n)
time and O(m) processing time after resetting its backup set
(Step 4.2) in Step 4. (Step 4). The worst-case execution time
for Step 4 is O(m) + O(n), or O, if n > m. (n). Step 4 shows that
the worst-case processing time of the algorithm is O (n).

Lemma 2. The algorithm's worst-case message exchange
complexity is O(1) per node or O(n) across the network's n
nodes.

Proof. During the cluster creation phase, a node calculates
the cost values of the CHs within its communication range and

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

438 | P a g e
www.ijacsa.thesai.org

sends a join request to the selected CH. Nodes that cannot
communicate with any CHs, however, broadcast a HELP
request message (step 4.1). It will send a join request message
to join the cluster using multi-hop communication if it finds a
node that can help. Therefore, in the worst scenario, a node
only needs to send two messages for the cluster to form. As a
result, each node's message complexity, O, is constant (1). The
network's overall message exchange complexity is O as a result
(n).

3) Using the Rule Editor to specify rules for a fuzzy
inference system to solve the network traffic issue when
migrating parallel crawlers.

Fig. 13. Rules editor for network traffic problem.

TABLE I. RULES IN FIS (WHERE L=LOW, M=MEDIUM, H=HIGH)

Communication Bandwidth Noise Network Traffic

L L L L

L L M L

L L H L

L M L L

L M M M

L M H M

L H L M

L H M M

L H H H

M L L L

M L M M

M L H M

M M L M

M M M M

M M H M

M H L M

M H M M

M H H H

H L L M

H L M M

H L H M

H M L M

H M M M

H M H H

H H L M

H H M H

H H H H

4) Rule evaluation, rule output aggregate, and output value
defuzzification.

Fig. 14. Rule evaluation aggregation of the rule output.

Fig. 15. Surface viewer for network traffic problem.

The FIS rules are in Table I. The Rules Editor for Network
Traffic Problem is shown in Fig. 13. The Rule Evaluation
Aggregation of the rule output is shown in Fig. 14. The Surface
Viewer for Network Traffic Problem is shown in Fig. 15.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

439 | P a g e
www.ijacsa.thesai.org

VI. RESULT AND DISCUSSION
The algorithm is integrated with the aforementioned

module. The MATLAB Compiler is used to generate the code.
The Implementation is tested against current web crawlers and
designed to function on active websites.

TABLE II. LOAD CAUSED USING CONVENTIONAL CRAWLER

 Page 1 Page 2 Page 3 Total Load (KB)

visit 1 185 185 185 555

visit 2 193 196 195

visit 3 188 189 199

visit 4 200 201 205

visit 5 188 199 188

load caused 954 970 972 2896

visit 6 188 189 188

visit 7 198 198 189

visit 8 178 176 189

visit 9 189 187 189

visit 10 199 189 198

load caused 1906 1906 1925 5740

Fig. 16. Load caused using conventional crawler.

TABLE III. LOAD CAUSED USING SINGLE THREADED CRAWLER

 Page 1 Page 2 Page 3 Total Load (KB)

visit 1 78 87 98 263

visit 2 87 89 98

visit 3 76 98 98

visit 4 87 98 87

visit 5 87 998 89

load caused 415 470 470 1355

visit 6 87 89 87

visit 7 78 98 98

visit 8 98 76 98

visit 9 87 97 98

visit 10 78 98 87

load caused 843 928 938 2709

Fig. 17. Load caused using Single threaded crawler.

TABLE IV. LOAD CAUSED USING AGENT BASED CRAWLER

 Page 1 Page 2 Page 3 Total Load (KB)

visit 1 35 35 37 107

visit 2 36 37 37

visit 3 43 36 45

visit 4 34 45 57

visit 5 34 43 43

load caused 182 196 219 597

visit 6 43 53 43

visit 7 43 34 34

visit 8 45 54 43

visit 9 34 43 45

visit 10 34 34 45

load caused 381 414 429 1224

Fig. 18. Load caused using agent based crawler.

The load produced by a conventional crawler is shown in
Table II. The load produced by a single threaded crawler is
shown in Table III. The load produced by an agent-based
crawler is seen in Table IV. The load created by migrating
parallel web crawlers is shown in Table V. The graph in Fig.

160

170

180

190

200

210

Vi
sit

 1
Vi

sit
 2

Vi
sit

 3
Vi

sit
 4

Vi
sit

 5
Vi

sit
 6

Vi
sit

 7
Vi

sit
 8

Vi
sit

 9
Vi

sit
 1

0

Page 1

Page 2

Page 3

0

20

40

60

80

100

120

Vi
sit

 1
Vi

sit
 2

Vi
sit

 3
Vi

sit
 4

Vi
sit

 5
Vi

sit
 6

Vi
sit

 7
Vi

sit
 8

Vi
sit

 9
Vi

sit
 1

0

Page 1

Page 2

Page 3

0

10

20

30

40

50

60

Vi
sit

 1
Vi

sit
 2

Vi
sit

 3
Vi

sit
 4

Vi
sit

 5
Vi

sit
 6

Vi
sit

 7
Vi

sit
 8

Vi
sit

 9
Vi

sit
 1

0

Page 1

Page 2

Page 3

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

440 | P a g e
www.ijacsa.thesai.org

16 to Fig. 19 depict the network load created by various
methods. Three websites are used in the analysis and
comparison of the methods. Since an HTML page typically
weighed 205 KB, the network traffic produced by the
conventional centralised crawling strategy was 555 KB. While
in our method, the pages were compressed on the server, and
the traffic load that was discovered was 70 KB. As seen in the
above Fig. 20, the load incurred after five visits to the pages
was 2896 KB, 1355 KB, 597 KB, and 379 KB, respectively,
and after 10 visits, the load was 5740 KB, 2709 KB, 1224 KB,
and 774 KB, respectively. Additionally, this resulted in less
network traffic.

TABLE V. LOAD CAUSED USING MIGRATING PARALLEL WEB CRAWLER

 Page 1 Page 2 Page 3 Total Load (KB)
visit 1 23 23 24 70
visit 2 24 24 24
visit 3 24 28 27
visit 4 27 26 27
visit 5 24 27 27
load caused 122 128 129 379
visit 6 27 27 27
visit 7 26 26 26
visit 8 26 26 27
visit 9 27 25 27
visit 10 25 26 29
load caused 253 258 263 774

Fig. 19. Load caused using migrating parallel web crawler.

Fig. 20. Graph showing network load caused in various approaches.

VII. CONCLUSION
This paper discusses the crawling process using one of the

two following approaches: either allowing crawlers to
communicate among themselves freely or forbidding them
from doing so altogether. Both approaches increase network
traffic. Here, a fuzzy logic-based method that predicts the load
at a specific node and the path of network traffic is presented
and implemented in MATLAB using the fuzzy logic toolbox.
The experimental findings demonstrate that the network
demand is decreased when a parallel web crawler is migrated.

ACKNOWLEDGMENT
We thank the Deanship of Scientific Research, Prince

Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia for
help and support.

REFERENCES
[1] M. Haleem, M. F. Farooqui, and M. Faisal, “Tackling Requirements

Uncertainty in Software Projects: A Cognitive Approach,” Int. J. Cogn.
Comput. Eng., vol. 2, pp. 180–190, 2021.

[2] S. Khalil and M. Fakir, “RCrawler: An R package for parallel web
crawling and scraping,” SoftwareX, vol. 6, pp. 98–106, 2017.

[3] Jha S, Sultan A, Alharbi M, Alouffi B, Sebastian S. Secured and
provisioned access authentication using subscribed user identity in
federated clouds. International Journal of Advanced Computer Science
and Applications. 2021;12(11).

[4] S. Singh and N. Tyjagi, “A Novel Architecture of Mercator: A Scalable,
Extensible Web Crawler with Focused Web Crawler,” Int. J. Comput.
Sci. Mob. Comput., vol. 2, no. 6, pp. 244–250, 2013.

[5] Gopi R, Mathapati M, Prasad B, Ahmad S, Al-Wesabi FN, Abdullah
Alohali M, Mustafa Hilal A. Intelligent DoS attack detection with
congestion control technique for vanets. Computers, Materials &
Continua. 2022;72(1):141-56.

[6] Ahmad S, Jha S, Alam A, Alharbi M, Nazeer J. Analysis of Intrusion
Detection Approaches for Network Traffic Anomalies with Comparative
Analysis on Botnets (2008–2020). Security and Communication
Networks. 2022 May 12;2022.

[7] J. Kim, H. Kim, and J. Rexford, “Analyzing traffic by domain name in
the data plane,” in Proceedings of the ACM SIGCOMM Symposium on
SDN Research (SOSR), 2021, pp. 1–12.

[8] R. Palacios, A. F. Fernández-Portillo, E. F. Sánchez-Úbeda, and P.
García-De-Zúñiga, “HTB: A Very Effective Method to Protect Web
Servers Against BREACH Attack to HTTPS,” IEEE Access, vol. 10, pp.
40381–40390, 2022.

[9] R. P. Kasturi et al., “Mistrust Plugins You Must: A Large-Scale Study
Of Malicious Plugins In WordPress Marketplaces,” in 31st USENIX
Security Symposium (USENIX Security 22), 2022, pp. 10–12.

[10] M. F. Schwartz and C. Pu, “Applying an information gathering
architecture to Netfind: a white pages tool for a changing and growing
Internet,” IEEE/ACM Trans. Netw., vol. 2, no. 5, pp. 426–439, 1994.

[11] M. Li et al., “Bringing Decentralized Search to Decentralized Services,”
in 15th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 21), 2021, pp. 331–347.

[12] B. E. É. R. Oliveira, “Web Search Engines-A study on the evolution of
user interfaces,” 2021.

[13] E. F. Pettersen et al., “UCSF ChimeraX: Structure visualization for
researchers, educators, and developers,” Protein Sci., vol. 30, no. 1, pp.
70–82, 2021.

[14] L. Heng, G. Yin, and X. Zhao, “Energy aware cloud‐edge service
placement approaches in the Internet of Things communications,” Int.
J. Commun. Syst., vol. 35, no. 1, p. e4899, 2022.

[15] Uddin M. Y, Ahmad S. A review on edge to cloud: paradigm shift from
large data centers to small centers of data everywhere. In2020
International Conference on Inventive Computation Technologies
(ICICT) 2020 Feb 26 (pp. 318-322). IEEE.

0
5

10
15
20
25
30

Vi
sit

 1

Vi
sit

 2

Vi
sit

 3

Vi
sit

 4

Vi
sit

 5

Vi
sit

 6

Vi
sit

 7

Vi
sit

 8

Vi
sit

 9

Vi
sit

 1
0

Page 1

Page 2

Page 3

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

441 | P a g e
www.ijacsa.thesai.org

[16] I. K. Aksakalli, T. Çelik, A. B. Can, and B. Tekı̇nerdoğan, “Deployment
and communication patterns in microservice architectures: A systematic
literature review,” J. Syst. Softw., vol. 180, p. 111014, 2021.

[17] C. S. Long et al., “California Needs Clean Firm Power, and So Does the
Rest of the World: Three Detailed Models of the Future of California’s
Power System all show that California needs Carbon-Free Electricity
Sources that don’t Depend on the Weather,” Clean Air Task Force,
2021.

[18] A. M. Fathollahi-Fard, L. Woodward, and O. Akhrif, “Sustainable
distributed permutation flow-shop scheduling model based on a triple
bottom line concept,” J. Ind. Inf. Integr., vol. 24, p. 100233, 2021.

[19] K. Oshima, D. Yamamoto, A. Yumoto, S.-J. Kim, Y. Ito, and M.
Hasegawa, “Online machine learning algorithms to optimize
performances of complex wireless communication systems,” Math.
Biosci. Eng., vol. 19, no. 2, pp. 2056–2094, 2022.

[20] G. L. Golewski, “Evaluation of fracture processes under shear with the
use of DIC technique in fly ash concrete and accurate measurement of
crack path lengths with the use of a new crack tip tracking method,”
Measurement, vol. 181, p. 109632, 2021.

[21] L. Csikor, H. Singh, M. S. Kang, and D. M. Divakaran, “Privacy of
DNS-over-HTTPS: Requiem for a Dream?,” in 2021 IEEE European
Symposium on Security and Privacy (EuroS&P), 2021, pp. 252–271.

[22] A. Garg, K. Gupta, and A. Singh, “Survey of Web Crawler
Algorithms.,” Int. J. Adv. Res. Comput. Sci., vol. 8, no. 5, 2017.

[23] A. Goswami and A. Kumar, “Online Social Communities,” Digit. Bus.,
pp. 289–341, 2019.

[24] M. Mansoori and I. Welch, “How do they find us? A study of
geolocation tracking techniques of malicious web sites,” Comput.
Secur., vol. 97, p. 101948, 2020.

[25] X. Mi et al., “Resident evil: Understanding residential IP proxy as a dark
service,” in 2019 IEEE symposium on security and privacy (SP), 2019,
pp. 1185–1201.

[26] I. Pelle, T. Lévai, F. Németh, and A. Gulyás, “One tool to rule them all:
A modular troubleshooting framework for SDN (and other) networks,”
in Proceedings of the 1st ACM SIGCOMM Symposium on Software
Defined Networking Research, 2015, pp. 1–7.

[27] I. D. Oladipo, M. AbdulRaheem, J. B. Awotunde, A. K. Bhoi, E. A.
Adeniyi, and M. K. Abiodun, “Machine Learning and Deep Learning

Algorithms for Smart Cities: A Start-of-the-Art Review,” IoT IoE
Driven Smart Cities, pp. 143–162, 2022.

[28] M. Haleem, M. F. Farooqui, and M. Faisal, “Cognitive impact validation
of requirement uncertainty in software project development,”
International Journal of Cognitive Computing in Engineering, vol. 2. pp.
1–11, 2021, doi: 10.1016/j.ijcce.2020.12.002.

[29] J. Jiang et al., “Via: Improving internet telephony call quality using
predictive relay selection,” in Proceedings of the 2016 ACM
SIGCOMM Conference, 2016, pp. 286–299.

[30] X. Yuan, M. H. MacGregor, and J. Harms, “An efficient scheme to
remove crawler traffic from the internet,” in Proceedings. Eleventh
International Conference on Computer Communications and Networks,
2002, pp. 90–95.

[31] S. Sweta and K. Lal, “Personalized adaptive learner model in e-learning
system using FCM and fuzzy inference system,” Int. J. Fuzzy Syst., vol.
19, no. 4, pp. 1249–1260, 2017.

[32] H. Uğuz, “Adaptive neuro-fuzzy inference system for diagnosis of the
heart valve diseases using wavelet transform with entropy,” Neural
Comput. Appl., vol. 21, no. 7, pp. 1617–1628, 2012.

[33] M. Taki and Y. Omid, “A new fuzzy based joint DF relay selection and
link adaptation,” in 2015 International Conference on Communications,
Signal Processing, and their Applications (ICCSPA’15), 2015, pp. 1–6.

[34] V. Jain and S. Raheja, “Improving the prediction rate of diabetes using
fuzzy expert system,” IJ Inf. Technol. Comput. Sci., vol. 7, no. 10, pp.
84–91, 2015.

[35] G. Sun, R. Liang, H. Qu, and Y. Wu, “Embedding spatio-temporal
information into maps by route-zooming,” IEEE Trans. Vis. Comput.
Graph., vol. 23, no. 5, pp. 1506–1519, 2016.

[36] G. Improta, V. Mazzella, D. Vecchione, S. Santini, and M. Triassi, “
Fuzzy logic–based clinical decision support system for the evaluation of
renal function in post‐Transplant Patients,” J. Eval. Clin. Pract., vol.
26, no. 4, pp. 1224–1234, 2020.

[37] A. Hajian and P. Styles, “Application of Neuro-Fuzzy Systems in
Geophysics,” in Application of Soft Computing and Intelligent Methods
in Geophysics, Springer, 2018, pp. 417–484.

[38] G. Robins, T. Snijders, P. Wang, M. Handcock, and P. Pattison, “Recent
developments in exponential random graph (p*) models for social
networks,” Soc. Networks, vol. 29, no. 2, pp. 192–215, 2007.

	I. Introduction
	A. Reusability of TCP connections
	B. DNS Caching

	II. Related Work
	III. Case Study of Crawler Load
	A. Definition 1: Geographic Distance
	B. Definition 2: Latency
	C. Definition 3: Correlation between Metrics

	IV. FIS and Fuzzy Logic
	V. Proposed Solution
	a) Using a Fuzzy Inference System to Fix the Network Traffic Issue with Parallel Crawler Migration.
	b) Using the membership function editor.
	c) Using the Rule Editor to specify rules for a fuzzy inference system.
	d) Rule Evaluation.
	e) Adding up the results of the rule.
	f) Removing fuzziness from the output value.
	1) FIS to Solve Network Traffic problem in migrating parallel Crawlers.
	a) Fuzzy Inference System (FIS) Editor.
	b) Membership Function Editor.
	c) Rule Editor.
	d) Rule Viewer.
	e) Surface Viewer.

	2) Defining FIS variables and fuzzification of the input variables using membership function editor.
	a) gaussmf: The built-in membership function for the Gaussian curve in the fuzzy toolbox is known as gaussmf. y = gaussmf(x,[sig c])[37] gives the syntax (Fig. 6). The fuzzy toolbox's symmetric Gaussian function is dependent on the two parameters and as st�
	b) Trimf: In the fuzzy toolbox, trimf is the built-in membership function with a triangular shape (Fig. 7). The triangular curve is a function of a vector x and depends on three parameters when the syntax is y = trimf(x,params); if y = trimf(x,[a b c]):

	3) Using the Rule Editor to specify rules for a fuzzy inference system to solve the network traffic issue when migrating parallel crawlers.
	4) Rule evaluation, rule output aggregate, and output value defuzzification.

	VI. Result and Discussion
	VII. Conclusion
	Acknowledgment
	References

