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Abstract—Since farming is becoming increasingly more 

expensive, efficient farming entails doing so without suffering 

any losses, which is what the current situation desires. Weeds are 

a key issue in agriculture since they contribute significantly to 

agricultural losses. To control the weed, pesticides are now 

evenly applied across the entire area. This approach not only 

costs a lot of money but also harms the environment and people's 

health. Therefore, spot spray requires an automatic system. 

When a deep learning embedded system is used to operate a 

drone, herbicides can be sprayed in the desired location. With the 

continuous advancement of object identification technology, the 

YOLO family of algorithms with extremely high precision and 

speed has been applied in a variety of scene detection 

applications. We propose a YOLOv7-based object detection 

approach for creating a weed detection system. Finally, we used 

the YOLOv7 model with different parameters for training and 

testing analyzed on the early crop weed dataset and 4weed 

dataset. Experimental results revealed that the YOLOv7 model 

achieved the mAP@0.50, f1score, Precision, and Recall values for 

the bounding boxes as 99.6,97.6, 99.8, and 95.5 respectively on 

the early crop weed dataset and 78.53, 79.83, 86.34, and 74.24 on 

4weed dataset. The Agriculture business can benefit from using 

the suggested YOLOv7 model with high accuracy in terms of 

productivity, efficiency, and time.  

Keywords—Weed detection; YOLOv7; early crop weed; deep 

learning 

I. INTRODUCTION 

As of right now, losses from pests, diseases, and weeds can 
account for up to 40% of annual crop yields worldwide. In the 
years to come, this proportion is anticipated to rise sharply. 
Currently, the principal method of weeding in fields is to spray 
herbicides across a huge region. Leaving pesticide residues in 
the soil, this practice not only wastes resources but also 
pollutes the environment. As a consequence, precision spraying 
[1][2] effectively controls the growth of weeds in a field while 
using less pesticide, improving utilization, and avoiding 
chemical residue. 

Quick and accurate weed detection in crop fields is crucial 
because it may serve as a foundation for the development of 
precision spraying systems. Many researches have been done 
so far on image-based techniques for the automated 
identification and categorization of weeds. For the purpose of 
enhancing weed detection accuracy in rice fields, [3] retrieved 
101-dimensional characteristics from a picture of a weed, 
including color, shape, and texture.  They achieved a 
recognition rate of 91.13 percent using deep belief networks 

with fusion features. Two different classification techniques are 
presented by [4] to identify weed density in photos. Based on 
the grey level co-occurrence matrix (GLCM), the first 
approach used a Support Vector Machine (SVM) to get an 
accuracy of 73 percent, while the second method combined a 
Random Forest classifier with invariant scale and rotation 
moment features to achieve an accuracy of 86 percent.  These 
methods have the drawback of not being effective against 
sedges and wide-leaf weeds.  The artificial neural network 
(ANN) employed by [5] to identify various types of weeds was 
optimized using the bee algorithm (BA), and the ANN-BA 
attained an accuracy of 88.74 percent for the right channel and 
87.96 percent for the left channel.  The techniques utilized in 
the aforementioned research were aimed at enhancing 
recognition in conventional machine vision. Due to the 
minimal hardware requirements for operation, they are well-
suited for practical deployment. However, the majority of these 
techniques only tested the effectiveness on low-density 
samples. The difficulties of opacity, clumping, light change 
and other natural environment characteristics are challenging to 
overcome. 

Deep learning has been used to address weed detection 
issues in agriculture. Researchers have had success using 
various deep learning models for this task. In [6], employed the 
small YOLO-v3 for real-time application in a field of 
strawberry and tomato plants and succeeded in detecting goose 
grass with an accuracy of 82 percent. With the use of pre-
trained Faster R-CNN, [7] achieved 65 percent accuracy, 68 
recall, 66 F1 score, and 0.21 s inference time in recognizing 
late-season weed in soybean fields. The author [8] used 
Inception-ResNet-v2 as the basis and achieved F1 scores of 
72.7 percent (at IoUall) and 96.9 percent for identifying 
agricultural plants and weeds (at IoU0.5). The study [9] used 
the Mask R-CNN to accurately extract weed from the 
"cranesbill seedling dataset." In [10] the author categorized the 
weed Rumex obtusifolius with a VGG-16 classification 
accuracy of 92.1%. The research [11] discovered that VGG-19, 
which had been tweaked to generate binary output, had the 
greatest classification accuracy of 98.7 percent for detecting 
volunteer potatoes in sugar beet in a comparison of Inception-
v3 with AlexNet, VGG-19, GoogLeNet, ResNet-50, and 
ResNet-101. 

Convolutional neural networks have been used by some 
researchers in recent years to try to detect weeds in rice fields. 
Fully convolutional networks were utilized by [12] to classify 
pixels in high resolution unmanned aerial vehicle (UAV) 
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imagery taken from a rice field (FCN).  Their method had an 
accuracy rate of 91.96 percent and an average mean 
intersection over union (mean) of 84.73 percent. Using a 
semantic segmentation model called SegNet, IoU. In [13], 
detected the pixels in the image that corresponded to rice 
seedlings, weeds, and the backdrop. They can address the 
category imbalance by finding the class weight coefficients. 
Their approach has a greater accuracy of 92.7 percent when 
compared to FCN and U-Net. 

However, the bulk of important research has only been able 
to recognize the leaves of certain plants, rather than actual 
photographs with intricate backgrounds in real settings. The 
techniques have poor stability and accuracy when applied to 
identify weeds in rice fields [15]. 

Large-scale weed picture collections must be carefully 
curated to create high-performing weed identification 
algorithms. Images of weed may be captured on a variety of 
platforms [16], incorporating field robots [18], portable camera 
sensors, and unmanned aerial vehicles (UAV) [17]. 
DeepWeeds [19], Early crop weed dataset [21], Open Plant 
Phenotype Database [22], and Dataset of food crops and weeds 
[23] are only a few examples from a recent assessment of 19 
publicly accessible datasets for weed identification and plant 
recognition, published in [20]. These datasets are all made up 
of RGB (red-green-blue) photos. Currently, a large number of 
researches have demonstrated the effectiveness of deep 
learning object detectors in weed identification. These studies 
include those using the YOLO series, Faster R-CNN, Mask R-
CNN, RetinaNet, and EfficientDet. 

The YOLOv7 approach had been used in this study to 
address this issue and significantly enhance the performance 
for weed detection in the early weed dataset [21] and to assess 
the performance of a newly formed 4weed dataset [14] that has 
had no machine learning models applied to it up to this point . 
Finally, studies show that the YOLOv7 proposed in this study 
may successfully handle the problems related to weed 
identification in crops, achieving high accuracy and 
outstanding efficiency. 

II. METHODOLOGY 

To build a framework for weed identification, we must 
finish data collection, model training, and multi-class plant 
species classification. Two main datasets were used in this 
study: The Early Crop Weeds dataset and the 4weed dataset. 
The dataset contains photos with varied resolutions that were 
translated into the same dimensions using the deep learning 
model input layer. After creating a suitable dataset, the 
gathered data is separated into 90% training and 10% testing 
sets. YOLOv7 is then trained for agricultural weed detection 
utilizing those data. The performance of the trained model is 
evaluated using multiple parameters. Fig. 1 depicts the 
proposed approach used for weed identification. 

A. Dataset 

The early crop weed detection dataset contains 308 images 
that are taken from the early crop weed classification dataset 
[21] and the objects of interest are annotated with bounding 
boxes. This dataset contains 308 RGB images of four species at 
early growth stages. It includes images of 25 cotton, 67 velvet, 

121 tomato, and 95 nightshade. Fig. 2 shows sample instances 
of the early crop weed detection dataset images. 

The 4Weed [14] collection includes 618 RGB photos in 
total, which were collected at Purdue University under 
challenging field circumstances. The collection includes photos 
of four weed species that are often seen in corn and soybean 
production systems: Giant Ragweed, Foxtail, Cocklebur, and 
Redroot Pigweed Fig. 3. 

The final dataset included 150 Giant Ragweed photos, 170 
Redroot Pigweed images, 35 Cocklebur images, and 73 Foxtail 
images. You may get the dataset at https://osf.io/w9v3j/. 

 
Fig. 1. Weed detection model flow chart for dataset, training, and detection 

process. 

 
Fig. 2. Sample images of early crop weed detection dataset. 

 

Fig. 3. Sample images of the 4weed dataset. 
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B. You Only Look Only Once (YOLOv7) 

In this research, a computer vision-based recognition and 
detection technique is provided for object detection. The most 
recent Yolov7 model was used. Yolov7 is a single-stage object 
detection technique. You Only Look Once Yolov7's network 
structure diagram is depicted in Fig. 4 [25]. Overall, the 
YOLO-V7 technique resizes the input picture to 640x640 
before feeding it into the backbone network, producing three 
layers of feature maps of varying sizes via the head network, 
and then outputting the prediction result using RepConv [24].  
RepConv is utilized to build a planned reparametrized 
convolution architecture with increased gradient variation for 
various feature maps [24]. The soft labels generated by the 

optimization process are used by the lead head and auxiliary 
head learning processes, together with the introduction of the 
auxiliary detecting head. In order to acquire more accurate 
findings, the soft labels that were produced from it ought to 
more faithfully represent the distribution and relationship 
between the source data and the object [26]. Silu activation 
function, ELAN structures, and MP structures make up the 
YOLOv7 backbone, by managing gradient pathways and 
deeper networks, the ELAN structure can effectively learn and 
converge. Fig. 4 depicts the ELAN and E-ELAN network 
structures. Down sampling is performed using the MP structure 
as shown in Fig. 4. 

 
Fig. 4. YOLOv7 architecture. 
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III. RESULTS AND DISCUSSION 

A. Performance Metrics 

The most often used metric to evaluate object identification 
systems are mean average precision (mAP).  Comparing the 
detected box to the corresponding ground truth box allows the 
mAP to determine its score. The connection between the 
predicted bounding box coordinates and the actual bounding 
box is characterized by intersection over union. The projected 
bounding box coordinates and the truth values should match 
more closely, according to higher IoU values. 

     
               

             
  (1) 

The proportion of true positives to all correctly predicted 
outcomes is referred to as precision. Precision evaluates how 
accurately a model category a sample as positive. 

           
              

                                   
  (2) 

The proportion of true positives to all the predictions is 
known as recall. Recall gauges the accuracy with which a 
model can find positive samples. The most positive samples 
are discovered when recall is higher. 

Recall = 
              

                            
 (3) 

The average area of the precision-recall curve below a 
given IoU threshold is known as the average precision at IoU 
(AP

IOU
). AP

IOU
 is a performance indicator for a certain class or 

category. To indicate the overall detecting performance, mean 
average precision at a threshold IoU (m AP

IOU
) is calculated 

and denoted as follows: = 

       
 

 
    

     (4) 
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One of the often-employed measures for assessing the 
effectiveness of machine learning algorithms is the F1 score. 
F1 scores are calculated using the harmonic mean of recall and 
accuracy. The F1 score value is an indicator of how well 
categorization systems can anticipate outcomes. 

           
                 

                  
 (5) 

B. Performance Evaluation 

The model was trained and tested using the cloud-based 
Google Colab environment, which has access to the NVIDIA 
Tesla T4 GPU. The YOLOv7 model's training process was 
started using pre-trained weights derived from the COCO 
dataset rather than starting from scratch. 

We evaluate the effectiveness of the YOLOv7 model 
developed using the early crop weed dataset and 4Weed 
dataset. This model trained over 50 epochs. YOLOv7 provides 
superior mAP than prior trained models, as shown in Table I. 

The YOLOv7 model was evaluated using random testing 
pictures, and the results are displayed in Fig. 5 and Fig. 6. The 
collected findings suggest that the model can successfully 
identify agricultural weeds. 

TABLE I. COMPARISION OF WEED DETECTION MAP 

Model Dataset mAP 

RetinaNet 
R101 -FPN[27] 

Three weed dataset(Cotton, Carpetweed, 
Morningglory weed, and Palmer Amaranth 
weed.) 

79.98% 

YOLOv5n[27] 
Three weed dataset(Cotton, Carpetweed, 
Morningglory weed, and Palmer Amaranth 
weed.) 

76.58% 

Proposed-YOLOv7 
Early weed dataset (cotton, velvet weed, 
tomato, and  nightshade weed) 

99.6% 

Proposed-YOLOv7 
4Weed dataset (Giant Ragweed, Foxtail, 
Cocklebur, and Redroot Pigweed) 

78.53% 

 
Fig. 5. Early crop weed detection results of YOLOv7. 

 
Fig. 6. 4Weed detection results of YOLOv7. 

Three different types of losses were produced throughout 
the YOLOv7 training and validation process: bounding box 
loss, objectiveness loss, Classification loss, precision, recall, 
mAP@0.5, and mAP@0.5:0.95. Fig. 7 and Fig. 8 show that 
throughout training, every loss value displayed a decreasing 
trend, and the model did not exhibit any overfitting. While the 
validation loss converged near the conclusion of the training, 
the training loss did so early on. The minimal value in the 
training and validation loss curves was attained after 50 
training epochs with batch size 16. 

The Normalized confusion matrix evaluated on test images 
using YOLOv7 Trained model is plotted as shown in Fig. 9 
and Fig. 10. 

 

Fig. 7. Performance measures of YOLOv7 on early crop weed dataset. 
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Fig. 8. Performance measures of YOLOv7 on the 4weed dataset. 

 
Fig. 9. Confusion matrix of YOLOv7 on early crop weed dataset. 

 

Fig. 10. Confusion matrix of YOLOv7 on 4weed dataset. 

The performance of the YOLOv7 model on Early Crop 
Weed dataset is evaluated using performance metrics mAP, 
F1score, Precision, Recall, and Precision-Recall. The mAP, 

F1score, Precision, and Recall of YOLOv7 on early crop weed 
dataset after training for 50 epochs are 99.6,97.6, 99.8, and 
95.5. The graphs of these metrics as shown below in Fig. 11 to 
14. 

 
Fig. 11. F1 score of early crop weed dataset. 

 

Fig. 12. Precision of early crop weed dataset. 

 

Fig. 13. Recall of early crop weed dataset. 
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Fig. 14. Precision-recall graph of early crop weed dataset. 

The performance of the YOLOv7 model on 4Weed dataset 
is evaluated using performance metrics mAP, F1score, 
Precision, Recall, and Precision-Recall. The mAP, F1score, 
Precision, and Recall of YOLOv7 on the 4weed dataset after 
training for 50 epochs are 78.53, 79.83, 86.34,74.24. The 
graphs of these metrics as shown below in Fig. 15 to 18. 

 

Fig. 15. F1 score of 4weed dataset. 

 
Fig. 16. Precision of 4weed dataset. 

 
Fig. 17. Recall of 4weed dataset. 

 

Fig. 18. Precision-recall graph of of 4weed dataset. 

The YOLOv7 model have inherent limitations that  affect 
its accuracy for plant weed detection, such as difficulty in 
detecting small or occluded weeds, or misclassifying non-weed 
objects as weeds. This study used a limited dataset for training 
and testing the YOLOv7 model, which could affect the 
accuracy and generalizability of the results. 

IV. CONCLUSION 

Weeds increase agricultural cultivation costs and lower 
crop yields. Machine vision plays a significant part in precision 
agriculture by helping to locate weeds on agricultural land. For 
the purpose of weed detection using machine vision in this 
work, we use the early crop weed dataset and the 4weed 
dataset. On the datasets, the one-stage object detector 
YOLOv7, which is based on deep learning, was tested for 
weed detection. The mAP@0.5 detection accuracy for the early 
crop weed dataset is 99.6 while the mAP@0.5 detection 
accuracy for the 4weed dataset is 78.53. Because of its quicker 
inference speed, YOLOv7 has strong promise for real-time 
applications. By enhancing model training and data 
augmentation methods, increasing the dataset, and improving 
the model, further research is still required to increase the 
accuracy of weed detection. Additionally, field experiments 
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and demonstrations using trained models deployed on a 
machine vision system with onboard computer hardware in 
real-world field settings are required for further model 
assessment and updating. 
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