
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

563 | P a g e

www.ijacsa.thesai.org

Compiler Optimization Prediction with New

Self-Improved Optimization Model

Chaitali Shewale
1
, Sagar B. Shinde

2
, Yogesh B. Gurav

3
, Rupesh J. Partil

4
,

Sandeep U. Kadam

5

Vishwakarma Institute of Information Technology, Pune
1

Dr. D. Y. Patil Institute of Technology, Pimpri, Pune
2

Navsahyadri College of Engineering, Pune
3, 4

Anantrao Pawar College of Engineering & Research, Pune
5

Abstract—Users may now choose from a vast range of

compiler optimizations. These optimizations interact in a variety

of sophisticated ways with one another and with the source code.

The order in which optimization steps are applied can have a

considerable influence on the performance obtained. As a result,

we created a revolutionary compiler optimization prediction

model. Our model comprises three operational phases: model

training, feature extraction, as well as model exploitation. The

model training step includes initialization as well as the

formation of candidate sample sets. The inputs were then sent to

the feature extraction phase, which retrieved static, dynamic, and

improved entropy features. These extracted features were then

optimized by the feature exploitation phase, which employs an

improved hunger games search algorithm to choose the best

features. In this work, we used a Convolutional Neural Network

to predict compiler optimization based on these selected

characteristics, and the findings show that our innovative

compiler optimization model surpasses previous approaches.

Keywords—Compiler optimization prediction; feature

extraction; feature exploitation; improved hunger games search

algorithm; convolutional neural network

I. INTRODUCTION

As per Moore's Law, the density of transistors doubles
every 2 years. Compilers, on the other hand, progress at a pace
of a couple percent of year. Compilers were vital tools for
connecting written software to destination hardware. In the
field of compilers, there's several unresolved research issues
[1].Compilers play a crucial role in software development. Its
core objective is to boost software productivity [2].

Compilers were liable for two tasks: translation as well as
optimization. They must first effectively convert programmes
into binary. Secondly, they must discover the most cost-
effective translation. There are numerous valid translations,
each of which performs distinctively. The great majority of
studies and technological activities are centered on this second
performance objective, which has been referred to as
optimization. The objective was mislabeled because, until
recently, most people rejected obtaining an ideal translation as
a difficult and impractical task [3].Compilers are now being
improved so that every code block in a programmed may be
transformed into an efficient application [4]. Traditional
compiler optimization seems to be a difficult process with no
assurances of producing the most effective and quickest target
code [5].A compiler enables a multitude of code optimizations
that could be activated or disabled via a compilation flag in

order to enhance the throughput of compiled applications.
Nevertheless, because the influence of compiler optimizations
largely dependent on programme features (e.g., programme
structures), the identical optimizations may not surely result in
the identical runtime speed boost when implemented to various
programmes [6].

Furthermore, there's an infinite range of flag combos owing
to the enormous count of optimization flags. Users may find it
difficult to comprehend all of the flags including their combos,
and to correctly decide which flags should be activated or
disabled in attempt for built programmes to attain the desired
runtime performance [7].Compilers for machine learning (ML)
tackle a lot of optimization issues in order to convert an ML
programmed, which is often expressed as a tensor
computational graph, into an efficiently executable for a
hardware destination [8]. Prior efforts [9] – [14] have permitted
optimizations that are implemented at the very same point in
the compilation pipeline, notably the loop conversion phase.
However, since compiler modifications are arranged as passes
to minimize complication and also have rigorous ordering
limitations, this is unfeasible in production compilers.

With a compiler's optimization capabilities influencing so
many parts of product development, understanding and
evaluating a compiler's optimization technology is more critical
than ever. In this work, an improved optimization prediction
model was created, which not only decreases computational
time but also enables the compilers with faster convergence,
more stable balance, and high-quality outcomes by selecting
appropriate optimization. Our work made the following
contributions:

 Several high-level characteristics may arise from the
coefficients as a result of improved entropy extraction,
which boosts the compiler optimization prediction.

 An Improved Hunger Game Search optimization was
proposed to provide a very competitive performance to
the compiler with less computational time.

The following is the flow of this article: Section II covers
some previous relevant research, Section III gives a brief
presentation of our proposed compiler optimization prediction
model, Section IV gives the outcomes of our work, and
Section V contains the conclusion, while the following section
includes the references for this work.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

564 | P a g e

www.ijacsa.thesai.org

II. RELATED WORKS AND REVIEW

Some of the researches presented by various researchers on
compiler optimization were reviewed here.

Hui et al. [15] presented the ALIC iterative compiler
optimization parameters estimation model, which has minimal
overheads. Firstly, the target programmes were defined using
static-dynamic characteristics format depending on feature
significance, as well as an early optimization prediction model
was built using the classifier. Subsequently, for every sample, a
dynamic amount of sample observation methodology was
being used. The most beneficial test from the collection of
candidate samples typically the chosen and labeled with each
mark increase the count of sample data. The optimization
prognosis system is then built by using intermediate prediction
network, which actively learns candidate samples.

Tiago et al. [16] suggested a new exploration approach to
determine a compiler optimization strategy. This hybrid
methodology utilizes previously created sequences for a series
of training programmes in order to uncover optimizations as
well as their deployment order. A clustering method selects
optimizations during the first stage, and then a metaheuristic
algorithm determines the order wherein the compiler would
execute every optimization in the latter. The LLVM compilers
as well as an I7 processor have been used to assess this
strategy.

Supun et al. [17] developed HUMMINGBIRD, a unique
prototype scoring technique that incorporates featurization
operators with classic ML designs (e.g., decision trees) into a
limited collection of tensor operational processes. This method
decreases infrastructure overhead by using current investments
in Neural Net compilers but also runtimes to produce efficient
calculations for both CPU as well as hardware accelerators.
The findings indicate that HUMMINGBIRD performs
compatible.

Mircea et al. [18] introduced MLGO1, a methodology for
comprehensively incorporating machine learning methods into
an industrial compiler— LLVM. It's the first time ML has been
fully integrated in a sophisticated compiler run in a real-world
context. It's in the LLVM main repository. As contrasted to the
state-of-the-art LLVM -Oz, we apply two alternative ML
techniques to train the inlining-for-size method: Policy
Gradient as well as Evolutionary Algorithms.

Aleksandar et al. [19] presented a revolutionary JIT
compiler inlining approach that gradually investigates a
program's call network and switches between inlining as well
as optimizations. Three new heuristics have been developed to
steer this inliner. Graal, a dynamic JIT compiler for the
HotSpot JVM, was used to create this technique. Benchmarks
such as Java DaCapo, Scalabench, and others were utilized to
test the suggested algorithm.

Conventional systems to prediction model creation
frequently employ a random selection search strategy, which
can often lead to information redundancy. Moreover, the
sample program gets exposed to a fixed number of repetitive
measurements due to the influence of run-time disturbances.
Unfortunately, if there are few sounds, the recurrent
measurements will lead to a significant loss of iterative

compilation time overheads. Decreasing iterative compilation
overheads and predicting an appropriate compiler optimization
with less computational time and increased compiler
performance was still challenging.

III. PROPOSED COMPILER OPTIMIZATION PREDICTION

MODEL

This proposed compiler optimization model comprises
three working phases: model training, feature extraction [24,
25], as well as model exploitation (feature selection). First, the
inputs were fed into the model training phase, which tries to
match the right weights as well as bias to a learning algorithm
[26, 27] in order to minimize a loss function throughout the
validation range. The retrieved characteristics, such as static,
dynamic, as well as improved entropy, were then transferred to
the model exploitation phase [21], where the optimal features
were chosen utilizing the improved chaos game optimization.
These optimized features were given to Convolutional Neural
Network for prediction of compiler optimization. The
architecture of our improved compiler optimization prediction
model is given in Fig. 1.

Fig. 1. Proposed improved compiler optimization prediction model

architecture.

A. Model Training Phase

The initialization and candidate sample set generation takes
place in the model training phase. The initialization model will
be built in the training set with some labeled samples. The
initialization model will be used as the intermediate prediction
model later. The candidate samples set include both the
unlabeled samples in the training set and the labeled samples
with the number of observations.

Model Training Input

Feature extraction

Satic Features

Dynamic features

Improved entropy

features

Model exploitation

Feature selection

using Improved

Hunger Games Search

(IHGS) Algorithm

Prediction

Convolutional Neural

Network

Phase 1

Phase 2

Phase 3

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

565 | P a g e

www.ijacsa.thesai.org

B. Feature Extraction

Outputs from model training phase were given to the
feature extraction phase to extract the static, dynamic and
improved entropy features [26, 27].

1) Static features: The values of static features do not vary

over time and are set for every sample. The lists of the static

features extracted in this work were shown in Fig. 2.

2) Dynamic features: The values of dynamic features

fluctuate over time and are not constant. Fig. 3 depicts the

dynamic characteristics retrieved in this work.

3) Improved entropy feature extraction: The count of

coefficients is generally so large that it is challenging to utilize

them directly as features for categorization or prediction. As a

result, several high-level features might emerge from these

coefficients for improved prediction. Entropy seems to be a

tool for measuring the uncertainty of data content in specific

mechanisms, and it is frequently employed in signal analysis,

pattern recognition, pattern matching, and other fields. . Some

kinds of entropy include Shannon entropy (SE), log energy

entropy (LEE), Renyi entropy (RE), as well as Tsallis entropy

(TE). Renyi entropy is utilized to retrieve features from input

data in this work. Entropy may be estimated via energy.

Wavelet energy, described as Eq. (1), will be used to assess the

data of the coefficient a of the b-th node at the c-th level.
2

, , , ,a b c a b cE d
 (1)

The total energy for the b-th node at the c-th level may then
be determined utilizing Eq. (2)

, , ,

1

M

a b a b c

c

E E

 (2)

Where M indicates the number of node matching
coefficients Eq. (3) may be used to compute the probability of
the c-th coefficient at its associated node:

, , , , ,a b c a b c a bE E
 (3)

Where the sum of
, ,a b c equals 1.

Renyi Entropy of order q(q ≥ 0 and q 6= 1) gets described
as

1

1
log

1

M
q

a

a

RE s

 (4)

The parameter of q in RE should be optimized to provide
better results. In our work, the improved entropy features were
extracted using the eq. (5)

1

1

1
() log

1

M

a a

a

RE

 (5)

Fig. 2. Extracted static features.

Fig. 3. Extracted dynamic features.

Here a denotes the weight, which is calculated by

1

a
a m

b

b

 (6)

Following the calculation of the entropy of each terminal
node, the entropies of all terminal nodes are concatenated to
form a feature vector. These features were sent to the model
exploitation phase for feature selection.

STATIC

FEATURES

 - Method's count of fundamental blocks"

 - Number of basic blocks that have just one successor

 - Number of fundamental blocks having two successors

 - Number of fundamental blocks that have two predecessors

 - The count of fundamental blocks that have more than two predecessors

 - Number of fundamental blocks having two successors as well as two

predecessors

 - The count of fundamental blocks that have more than two successors as

well as more than two predecessors.

 - Number of fundamental blocks which have more than two successors

 - Number of fundamental blocks that have just one predecessor

 -The number of fundamental blocks that have only one predecessor & one
successor

 - Count of basic blocks that have just one predecessor as well as two

successors

 - Count of fundamental blocks having two predecessors as well as one
successor

 - Count of basic blocks with fewer than 15 instructions

 - Count of basic blocks containing instructions in the range [15, 500]

 - Number of fundamental blocks with more than 500 instructions

 -Count of control flow graph edges

 - The count of critical edges in a control flow graph.

 -Number of control flow graph's abnormal edges

 - The count of direct calls in the technique

 - The method's conditional branch count

 - The method's count of assignment instructions

 - The method's count of binary integer operations

 - The method's count of binary floating point operations

 - The method's instruction count

 - Number of instructions in basic blocks on average

 - The average of phi-node arguments

 - The average number of phi-nodes at the starting of a basic block

 - The count of basic blocks with phi nodes between [0, 3]

 - The number of basic blocks that have no phi nodes

Cache line access CA-CLN, CA-ITV, CA-SHR

L1-DCA, L1-DCH, L1-DCM, L1-ICA, L1-ICH,L1-

ICM, L1-LDM, L1-STM, L1- TCA, L1-TCM

Level 1 cache

Branch related

Floating point DP/FP/

SP-OPS

Interrupt/stall

TLB

Total cycle/insts.

Load/store insts.

SIMD insts.

Level 2 and 3 cache
L2-DCA, L2-DCM, L2-DCR, L2-DCW, L2-ICA, L2-

ICH, L2-ICM, L2-LDM, L2-STM, L2-TCH, L2-
TCR, L2-TCW, L2/L3-TCA, L2/L3-TCM

BR-CN, BR-INS, BR-MSP, BR-NTK, BR-PRC, BR-

TKN, BR-UCN

FDV/FML/FP-INS

HW-INT, RES-STL

TLB-DM, TLB-IM, TLB-SD, TLB-TL

TOT-CYC, TOT-IIS, TOT-INS

LD-INS, SR-INS

VEC-DP, VEC-INS, VEC-SP”

DYNAMIC

FEATURES

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

566 | P a g e

www.ijacsa.thesai.org

C. Model Exploitation

The feature selection procedure is taking place during this
model exploitation phase. When creating forecasting models,
feature selection is the technique of minimizing the count of
input variables. It is preferable to limit the count of input
variables in order to reduce modeling computational costs and,
in certain situations, increase model performance. For that
reason we used an improved HGS Optimization.

1) Improved Hunger Game Search (IHGS) Optimization:

The HGSO technique is influenced by normal animal

behaviors including terror of being eaten by predators as well

as hunger. The mathematical modelling of the HGSO strategy

is explained in this portion of the publication. The modelling is

based on social selection and hunger-driven behaviour.

This section quantitatively models the approaching
behaviour of hunger. Eq. (7), which explains the foraging
hunger as well as individual supportive communication
activities, contains the game instructions. The contraction
mode is imitated by the mathematical formula in Eq. (7).

1 2

1 2

().(1 (1)), 1

(1) . . . () , 1 , 2

. . . () , 1 , 2

d d

d d

Z t randn r l

Z t W Z R W Z Z t r l r H

W Z R W Z Z t r l r H

 (7)

where ()Z t signifies the location of all individuals, dZ

indicates the position of the best individual, 1.W and 2W

seem to be hunger weights of hunger, R

 is between [-a, a],

r1 and r2 seem to be random numbers between [0, 1], randn(1)
denotes a normal distributed random number, and t seems to be
the count of current iterations. The parameter l represents the
HGSO algorithm's control variable that governs the algorithm's
sensitivity. H stands for variation control for all locations.

2) Opposite behavior learning: Amongst the most

effective instructional procedures, opposition-based learning

(OBL), has been extensively embraced as an excellent learning

phase to improve the searching capabilities of algorithms.

When assessing a solution Y to a given issue, a novel

opportunity will be gained that brings the candidate solution

closer to the optimal solution if the opposing solution of Y is

estimated at the same time. The opposing number as well as

opposite point notions were described as follows.

OBL is a learning approach that is centered on the inverse

number
oY . Y is described as a real number, Y ∈ [e, f].

oY 's
opposite may be defined as (8), where e, f are the bounds.

oY e f Y
 (8)

When seems to be a point in a D-

dimensional space,
jY ,...,

DY . je as well as
jf represent the

current population's low and high borders, which vary with

each iteration. An opposing point in several dimensions has
been described as

 (9)

In our work, to generate chaotic opposite solution we have
used the following equation

 (10)

Here rand was generated using the sine map.

 1 sin 0,4
4

u k

e
z z e

 (11)

Variation control for all positions H stated in eq. (12)

 sech ()H F i BF
 (12)

where F(i) represents the cost function value of every
population, I = 1, 2,..., n, BF represents the best cost function
value acquired during the latest incarnation, and Sech
represents the hyperbolic function and thus is equal to

.

In our work, we used the reciprocal of the hyperbolic
function Csch,which is expressed in eqn.,(13)

 (13)

Here

Eqn.,(14) gives the expression for R

.

2R h r h

 (14)

Where iterMax denotes the maximum number of iterations

and rand denotes a random number between [0, 1]

3) Hunger role: This portion quantitatively models the

hunger behavior of all individuals during the search. The

formula for 1W is given in Eq. (15).

1

(). 4, 3
^ ()

1 3

N
hungry k ra ra l

SHungryW k

ra l

 (15)

The expression for 2W is presented in Eq. (16).

 2^ () 1 exp () 5 2W k hungry k SHungry ra
 (16)

where N represents population size, hungry means
population starvation, SHungry represents the total of
population starvation, i.e., sum(hungry), as well as ra3, ra4, and
ra5 signify random values between [0, 1]. Each population's
starving is quantitatively represented in Eq. (17).

0 ()
()

() , ()new

AllFitness k BF
hungry k

hungry k H AllFitness k BF

 (17)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

567 | P a g e

www.ijacsa.thesai.org

whereAllFitness(k) would be the present iteration's cost
function value for every population Depending on the real

starving, a new starvation newH H is added. The equation

represents the formula for newH .

(1)

,
new

LH ra TH LH
H

TH TH LH

 (18)

()
6 2 ()

F k BF
TH ra UB LB

WF BF

 (19)

where
newH has been constrained to a lower bound LH, ra

would be a random number among [0, 1], WF as well as BF
seem to be the worst best fitness acquired during the latest
iteration, respectively, F (k) has become the fitness of every
population, ra6 would be a random number between [0, 1], and
LB as well as UB are indeed the lower and upper boundaries of
the dimensions, respectively. The selected features were sent to
the CNN for compiler optimization prediction.

D. Prediction using CNN

Convolutional networks were deep training strategies that
extract information from input pictures by convolving them
with filters or kernels. Convolution of a GCG picture with a

S Sf Cf filter learns the same characteristic on the whole picture.

After each action, the window moves, and the feature maps
learn the characteristics. The feature maps record the image's
local receptive area and operate with mutual weights as well as
biases. Equation (20) depicts the output matrix size without
padding, whereas Equation (21) depicts the convolution
procedure. Padding has been utilized to keep the size of the
given picture constant. The output picture size is the same as
the input image size in a 'SAME' padding, and there is no
padding in a "VALID" padding. Equation depicts the output
matrix size with padding (22).

1S SGCG f Cf G F
 (20)

 2 2

, ,0 0 v q v m qv q
o m w

(21)

 (22)

Here, O is the output, P is the padding, S is the stride, m is
the bias, σ is the sigmoidal activation function, w is a 3x3

weight matrix of shared weights and
1, 2p p is the input

activation at position p1,p2. The output O provides the
prediction results.

IV. RESULTS AND DISCUSSION

A. Simulation Setup

The unique methodology for compiler optimization
utilizing IHGS was implemented in Python. The standard
performance evaluation group created the SPEC CPU2006
training set to evaluate general-purpose CPU performance [20].

The input scale of the SPEC2006 benchmark may be split into
test, train, as well as reference scales; we utilize the reference
scale to test." In this case, analysis was performed for multiple
measures such as accuracy [22,23] and error metrics such as
MSE, MSLE, and so on. In addition, IGHS outperformed the
HGS, PRO, CMBO, ARCHOA, DO, as well as GOA models.

B. Performance Analysis

The research on diverse metrics including accuracy,
sensitivity, specificity as well as precision was detailed here.
Here, the analysis was done for LPs (Learning Percentages) of
60, 70, 80 and 90 over HGS, PRO, CMBO, ARCHOA, DO,
GOA models which is shown in Fig. 4. For 60 LP, CMBO and
HGS achieve the accuracy rate of 0.69 and 0.76 whereas our
proposed IHGS model achieves the accuracy rate of 0.84. At
80 and 90 LPs our proposed IHGS achieves the accuracy rate
of 0.9 and 0.94 which is higher than other models. When our
proposed IHGS achieves the precision value of 0.9, ARCHOA,
CMBO models achieves only 0.8 and 0.81 for 60 LP which
proves the superiority of proposed IHGS model. For 80 and 90
LPs, PRO model attain the sensitivity and specificity values of
0.83, 0.85 and 0.83, 0.85 while our proposed IHGS method
achieves the values of 0.85, 0.93 and 0.89, 0.94 which proves
that our proposed IHGS method achieves high performance for
the compiler optimization identification than other
conventional models.

The most often employed KPIs to estimate forecast
accuracy were MAPE, MAE, RMSE(MSE), as well as MSLE
which were analyzed for the models such as HGS, PRO,
CMBO, ARCHOA, DO and GOA for 60, 70, 80 and 90 LPs
which is compared with our proposed IHGS model that is
shown in Fig. 5. "MAE is indeed a metric of error between
matched observations reflecting the same phenomena in
statistics." The MAE should be less to increase forecast
accuracy. Our proposed IHGS method obtain the MAE value
of 0.48, 0.45, 0.42 and 0.4 for 60, 70, 80 and 90 LPs which is
lower than other conventional methods. MSLE may be
regarded of as a measurement of the ratio between true as well
as forecasted values. When HGS method achieves the high
MAPE values of 2.3, 1.5, 0.7 and 2.0 for 60, 70, 80,90 LPs, our
proposed IHGS method obtain the values of 0.5, 0.4, 0.3 and
0.2.Unlike MAE, RMSE doesn't really handle every error in
the same way. It prioritises the most critical errors. That
implies that a single large mistake might result in a very bad
RMSE. Our proposed IHGS approach yields MSE values of
0.49, 0.46, 0.43, as well as 0.42 for all LPs, which is lower than
other standard approaches. In statistics, the MAPE, also
referred as the MAPD, is specified as "a metric of prognosis
accuracy of a forecasting technique". "The MSE or MSD of an
estimator in statistics estimates the average of the squares of
the errors, or the average squared difference between the
predicted as well as real values." For optimized prediction, the
MSE and MAPE must be lower. When the CMBO approach
produces MSLE values of 0.27, 0.22, 0.23, 0.26, our proposed
IHGS method achieves lower values of 0.23, 0.22, 0.21, 0.20,
demonstrating that our proposed IHGS method can outperform
other standard compiler optimization forecasting models.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

568 | P a g e

www.ijacsa.thesai.org

(a) (b)

(c) (d)

Fig. 4. Comparison of performance matrices such as (a)Accuracy, (b)Precision, (c) Sensitivity, (d) Specificity.

(a) (b)

(c) (d)

Fig. 5. Comparison of performance such as (a) MAE, (b) MAPE, (c) MSE, (c) MSLE.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

569 | P a g e

www.ijacsa.thesai.org

(a) (b)

Fig. 6. Comparison of MSC and Cost function values for different LPs.

The cost function for 0-50 iterations was evaluated in this
work, to assess the performance of our proposed IHGS model
which is shown in Fig. 6(a). When cost function of CMBO is
1.074, our proposed method obtains the value of 1.052 for
iteration 0 whereas 1.058 and 1.062 for GOA method which
states that IHGS method has the lowest cost function for all
five iterations. A more trustworthy statistical rate known as the
Matthews correlation coefficient (MCC) was evaluated, which
yields a high score only if the prediction performed well in all
the confusion matrix classes which are given in Fig. 6(b). MCC
values of all the LPs were 0.67, 0.68, 0.7 and 0.9 for our
proposed IHGS method which proves our prediction was
performed well with good results.

The F-measure is derived as the harmonic mean of
accuracy as well as recall, with equal weighting for each. It

enables a system to be assessed utilizing a single score that
accounts for both accuracy and recall that is useful for
reporting system performance as well as comparing models.
With F1 measure, fnr, fpr, as well as npv values were also
estimated and compared with conventional models which is
shown in Fig. 7. In comparison to the CMBO as well as
ARCHOA approaches, our proposed IHGS method achieves f1
measure values of 0.9, 0.92, 0.93, and 0.95 for all LPs. The
IHGS approach produces anpv value of 0.92 for 90 LP,
whereas the CMBO and ARCHOA methods yield relatively
low values such as 0.6 and 0.68. Our proposed IHGS technique
achieves fpr values of 0.13, 0.12, 0.11, and 0.05, and assessed
fnr values of 0.13, 0.12, 0.11, and 0.04, which are lower than
other traditional methods, demonstrating that IHGS method
achieves superior performance than other methods.

(a) (b)

(c) (d)

Fig. 7. Comparison of performance matrices (a) F1 measure, (b) fnr, (c) fpr, (d) npv values.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

570 | P a g e

www.ijacsa.thesai.org

The computation time for each method which is compared
with our proposed IGHS method is shown in Table I which
shows that IGHS method have low computational time of
55.64. Accuracy and error matrices also compared with
without optimization, to evaluate the performance of our
proposed IGHS method which is given in Tables II and III.
Without optimization our proposed method achieves only 88%
accuracy whereas, with optimization it achieves 95% accuracy.

TABLE I. COMPUTATIONAL TIME COMPARISON FOR CONVENTIONAL

AND PROPOSED APPROACHES

Methods Computation time

HGS 76.2114

PRO 200.538

CMBO 537.269

ARCHOA 139.731

DO 95.0285

GOA 111.956

IHGS 55.6467

TABLE II. PERFORMANCE MATRICES OF THE PROPOSED IGHS METHOD

(ACCURACY MATRICES) WITH AND WITHOUT OPTIMIZATION

Accuracy matrices
Proposed with

Optimization

Proposed without

Optimization

sensitivity 0.955614 0.882424

specificity 0.949348 0.765633

accuracy 0.933705 0.843407

precision 0.955031 0.882424

F -measure 0.936337 0.882424

mcc 0.892841 0.648057

npv 0.903579 0.765633

fpr 0.050652 0.234367

fnr 0.044386 0.117576

TABLE III. PERFORMANCE MATRICES OF THE PROPOSED IGHS METHOD

(ERROR MATRICES) WITH AND WITHOUT OPTIMIZATION

Error matrices
Proposed with

Optimization

Proposed without

Optimization

MSE 0.388571 0.515957

MAE 0.388571 0.515957

MSLE 0.185908 0.247893

MAPE 1.43E+14 2.32E+15

Table IV Shows the RMSE values obtained for distinct
datasets and statistical tests such as Wilcoxon and chi-square
were conducted for conventional and proposed methods and
the p, statistic values were tabulated in Tables V and VI which
proves the effectiveness of our proposed compiler optimization
prediction approach.

TABLE IV. RMSE FOR EACH BENCHMARK IN THE DATASET

Bench mark RMSE

400.perlbench 0.701

401.bzip2 0.707107

403.gcc 0.701

429.mcf 6.61E-01

445.gobmk 0.809156

456.hmmer 0.75

458.sjeng 0.75

462.libquantum 0.707107

464.h264ref 0.661438

471.omnetpp 0.696107

473.astar 0.612372

483.xalancbmk 0.644378

TABLE V. COMPARISON OF WILCOXAN TEST RESULTS FOR PROPOSED

AND CONVENTIONAL METHODS

Methods P value Statistic

HGS 1.36E-06 253

PRO 6.48E-18 2701

CMBO 2.54E-29 7475

ARCHOA 6.97E-29 7.63E+03

DO 3.55E-12 1128

GOA 2.54E-29 7475

IHGS 2.54E-29 7875

TABLE VI. CHI-SQUARE TEST RESULTS FOR PROPOSED AND TRADITIONAL

TECHNIQUES

Methods P value Statistic

HGS 5.83E-03 45

PRO 8.83E-05 59

CMBO 5.83E-03 45

ARCHOA 5.83E-03 4.50E+01

DO 4.37E-06 68

GOA 5.83E-03 45

IHGS 1.54E-06 71

V. CONCLUSION

Selecting the optimal, or even a good, combination of
optimizations for an unpredictable programmed on an arbitrary
design is a task so tough that traditional manual analysis
approaches are impractical. For that reason, a novel
optimization prediction model with improved optimization was
developed in this work, which has three working phases
including model training, feature selection as well as feature
exploitation phase. First, the inputs are being sent to the model

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

571 | P a g e

www.ijacsa.thesai.org

training phase that aims to link the appropriate weights as well
as bias to a learning algorithm in order to minimize a loss
function throughout the validation range. The retrieved
characteristics, including static, dynamic, and enhanced
entropy, were then transferred to the model exploitation phase,
where the best features was determined using the improved
chaos game optimization. These improved characteristics were
fed into a Convolutional Neural Network to predict the
appropriate compiler optimization.

REFERENCES

[1] Ashouri, A.H., Killian, W., Cavazos, J., Palermo, G. and Silvano, C.,
2018. A survey on compiler autotuning using machine learning. ACM
Computing Surveys (CSUR), 51(5), pp.1-42.

[2] Georgiou, K., Chamski, Z., Amaya Garcia, A., May, D. and Eder, K.,
2022. Lost in translation: Exposing hidden compiler optimization
opportunities. The Computer Journal, 65(3), pp.718-735.

[3] Wang, Z. and O’Boyle, M., 2018. Machine learning in compiler
optimization. Proceedings of the IEEE, 106(11), pp.1879-1901.

[4] Tağtekin, B., Höke, B., Sezer, M.K. and Öztürk, M.U., 2021, August.
FOGA: Flag Optimization with Genetic Algorithm. In 2021
International Conference on INnovations in Intelligent SysTems and
Applications (INISTA) (pp. 1-6). IEEE.

[5] Gong, Z., Chen, Z., Szaday, J., Wong, D., Sura, Z., Watkinson, N.,
Maleki, S., Padua, D., Veidenbaum, A., Nicolau, A. and Torrellas, J.,
2018. An empirical study of the effect of source-level loop
transformations on compiler stability. Proceedings of the ACM on
Programming Languages, 2(OOPSLA), pp.1-29.

[6] Chen, J., Xu, N., Chen, P. and Zhang, H., 2021, May. Efficient compiler
autotuning via bayesian optimization. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE) (pp. 1198-
1209). IEEE.

[7] L. P. Cáceres, F. Pagnozzi, A. Franzin, and T. Stützle, ―Automatic
configuration of gcc using irace,‖ in International Conference on
Artificial Evolution (Evolution Artificielle). Springer, 2017, pp. 202–
216.

[8] Phothilimthana, P.M., Sabne, A., Sarda, N., Murthy, K.S., Zhou, Y.,
Angermueller, C., Burrows, M., Roy, S., Mandke, K., Farahani, R. and
Wang, Y.E., 2021, September. A Flexible Approach to Autotuning
Multi-Pass Machine Learning Compilers. In 2021 30th International
Conference on Parallel Architectures and Compilation Techniques
(PACT) (pp. 1-16). IEEE.

[9] Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen, H., Cowan,
M., Wang, L., Hu, Y., Ceze, L. and Guestrin, C., 2018. {TVM}: An
Automated {End-to-End} Optimizing Compiler for Deep Learning. In
13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18) (pp. 578-594).

[10] Steiner, B., Cummins, C., He, H. and Leather, H., 2021. Value learning
for throughput optimization of deep learning workloads. Proceedings of
Machine Learning and Systems, 3, pp.323-334.

[11] Zheng, L., Jia, C., Sun, M., Wu, Z., Yu, C.H., Haj-Ali, A., Wang, Y.,
Yang, J., Zhuo, D., Sen, K. and Gonzalez, J.E., 2020. Ansor: Generating
{High-Performance} Tensor Programs for Deep Learning. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20) (pp. 863-879).

[12] Jia, Z., Padon, O., Thomas, J., Warszawski, T., Zaharia, M. and Aiken,
A., 2019, October. TASO: optimizing deep learning computation with
automatic generation of graph substitutions. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles (pp. 47-62).

[13] Zheng, S., Liang, Y., Wang, S., Chen, R. and Sheng, K., 2020, March.
Flextensor: An automatic schedule exploration and optimization

framework for tensor computation on heterogeneous system. In
Proceedings of the Twenty-Fifth International Conference on Li, M.,
Zhang, M., Wang, C. and Li, M., 2020. Adatune: Adaptive tensor
program compilation made efficient. Advances in Neural Information
Processing Systems, 33, pp.14807-14819.

[14] Li, M., Zhang, M., Wang, C. and Li, M., 2020. Adatune: Adaptive
tensor program compilation made efficient. Advances in Neural
Information Processing Systems, 33, pp.14807-14819.

[15] Liu, H., Zhao, R., Wang, Q. and Li, Y., 2018. ALIC: A low overhead
compiler optimization prediction model. Wireless Personal
Communications, 103(1), pp.809-829.

[16] de Souza Xavier, T.C. and da Silva, A.F., 2018. Exploration of compiler
optimization sequences using a hybrid approach. Computing and
Informatics, 37(1), pp.165-185.

[17] Nakandala, S., Saur, K., Yu, G.I., Karanasos, K., Curino, C., Weimer,
M. and Interlandi, M., 2020. A tensor compiler for unified machine
learning prediction serving. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20) (pp. 899-917).

[18] Trofin, M., Qian, Y., Brevdo, E., Lin, Z., Choromanski, K. and Li, D.,
2021. Mlgo: a machine learning guided compiler optimizations
framework. arXiv preprint arXiv:2101.04808.

[19] Prokopec, A., Duboscq, G., Leopoldseder, D. and Wïrthinger, T., 2019,
February. An optimization-driven incremental inline substitution
algorithm for just-in-time compilers. In 2019 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO) (pp. 164-
179). IEEE Algorithm for just in time compilers. In 2019, IEEE/ACM
International Symposium on Code Generation and Optimization(CGO)(
pp.164-179).

[20] SPEC CPU2006: SPEC CPU2006 benchmark suite.
http://www.spec.org/cpu/.

[21] Sandeep U. Kadam, Sagar B. Shinde, Yogesh B. Gurav, Sunil B
Dambhare and Chaitali R Shewale, ―A Novel Prediction Model for
Compiler Optimization with Hybrid Meta-Heuristic Optimization
Algorithm‖ International Journal of Advanced Computer Science and
Applications(IJACSA), 13(10), 2022. http://dx.doi.org/10.14569/
IJACSA.2022.0131068.

[22] A. D. Sutar and S. B. Shinde, "ECU diagnostics validator using
CANUSB," 2017 International Conference on Inventive Computing and
Informatics (ICICI), Coimbatore, India, 2017, pp. 856-860, doi:
10.1109/ICICI.2017.8365257.

[23] A. D. Sutar and S. B. Shinde, "ECU Health Monitor Using
CANUSB," 2018 Second International Conference on Inventive
Communication and Computational Technologies (ICICCT),
Coimbatore, India, 2018, pp. 415-419, doi:
10.1109/ICICCT.2018.8473000.

[24] S. Shinde and R. B. Waghulade, "An improved algorithm for
recognizing mathematical equations by using machine learning approach
and hybrid feature extraction technique," 2017 IEEE International
Conference on Electrical, Instrumentation and Communication
Engineering (ICEICE), Karur, India, 2017, pp. 1-7, doi:
10.1109/ICEICE.2017.8191926.

[25] S. Shinde, R. B. Waghulade and D. S. Bormane, "A new neural network
based algorithm for identifying handwritten mathematical
equations," 2017 International Conference on Trends in Electronics and
Informatics (ICEI), Tirunelveli, India, 2017, pp. 204-209, doi:
10.1109/ICOEI.2017.8300916.

[26] Kalyani Wagh, K. Vasanth, Sagar Shinde , ―Emotion Recognition Based
On Eeg Features With Various Brain Regions‖, Indian Journal of
Computer Science and Engineering (IJCSE), Vol. 13 No. 1 Jan-Feb
2022, p-ISSN : 2231-3850, DOI : 10.21817/indjcse/2022/v13i1/
221301095.

[27] Khoje, s., Shinde, S. Evaluation of Ripplet Transform as a Texture
Characterization for Iris Recognition. J. Inst. Eng. India Ser. B (2023).
https://doi.org/10.1007/s40031-023-00863-6.

http://www.spec.org/cpu/

