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Abstract—One of the most studied machine learning 

challenges that recent studies have shown the susceptibility of 

deep neural networks to is the class imbalance problem. While 

concerted research efforts in this direction have been notable in 

recent years, findings have shown that the canonical learning 

objective, empirical risk minimization (ERM), is unable to 

achieve optimal imbalance learning in deep neural networks 

given its bias to the majority class. An alternative learning 

objective, group distributionally robust optimization (gDRO), is 

investigated in this study for imbalance learning, focusing on 

tabular imbalanced data as against image data that has 

dominated deep imbalance learning research. Contrary to 

minimizing average per instance loss as in ERM, gDRO seeks to 

minimize the worst group loss over the training data. 

Experimental findings in comparison with ERM and classical 

imbalance methods using four popularly used evaluation metrics 

in imbalance learning across several benchmark imbalance 

binary tabular data of varying imbalance ratios reveal 

impressive performance of gDRO, outperforming other 

compared methods in terms of g-mean and roc-auc. 

Keywords—Class imbalance; deep neural networks; tabular 

data; empirical risk minimization; group distributionally robust 

optimization 

I. INTRODUCTION 

Owing to increased data availability, novel learning 
architectures and accessibility to commodity computational 
hardware devices, deep neural networks (DNNs) have become 
the de facto tool for a wide range of machine learning (ML) 
tasks in recent times; leading to state-of-the-art performance in 
several computer vision, natural language processing and 
speech recognition tasks. DNNs are characterized by several 
layers of hidden units that enable learning of useful 
representations of a given data for improved model 
performance [1, 2]. This alleviates the need for domain experts 
and hand-engineered features, a common prerequisite for 
traditional ML methods. 

A pervasive problem that has plagued traditional ML 
methods in the last couple of decades which DNNs are not 
immune to is the class imbalance problem [3-6]. This problem, 
also termed long-tailed data distribution problem in computer 
vision, occurs when the distribution of the constituent classes 

of a training data is highly disproportionate such that one or 
more classes have significantly larger number of training 
samples (majority class(es)) than other(s) (minority class(es)). 
Given that most ML methods are built to minimize the overall 
classification error with the assumption that each sample 
contributes equally, the learning algorithms tend to be bias 
towards the majority class; thus, resulting in partial or total 
disregard of the discriminative information of the minority 
classes by the learning algorithm. What makes this problem 
even more interesting is that, in most cases, the minority 
classes are often the classes of interest. Several manifestations 
of this problem abound in many real-life application domains 
of ML like medical diagnosis [7, 8], fraud detection [9-11], 
flight delay prediction [12, 13] amongst others. 

The knowledge that learning from imbalance data 
negatively impacts the performance of DNN has resulted a 
marked increase in research on deep learning-based approaches 
to tackle the problem in recent years, with findings showing 
that traditional approaches to addressing imbalance problems 
can be successfully extended to DNN [3, 5]. Thus, many deep 
learning studies have addressed the imbalance problem at the 
data level mainly by data resampling [14-16] while some have 
done so at the classifier level, largely through cost sensitive 
learning approaches [17-22]. Oversampling and undersampling 
are two common data resampling approaches used in DNN. 
However, the susceptibility of the former to noise and 
overfitting due to added samples [23]  as well as the 
characteristic loss of valuable information peculiar with the 
latter [3] remain major drawbacks of this category of 
imbalance methods. On the other hand, the core idea behind 
the cost sensitive methods is to assign different 
misclassification cost/weights to the training samples to scale 
up/down the misclassification errors depending on the class 
they belong [17, 24]. While there are several implementations 
of this method, the most commonly used cost sensitive 
approach in imbalanced deep learning research is reweighting 
[20, 25], where weights are assigned to different class samples 
based on either the inverse of the class frequencies [20, 26, 27]  
or their square root [28]. Despite its widespread adoption in 
DNN, reweighting methods have been found to be unstable in 
severely imbalanced cases; yielding poor performance that 
compromise the performance of the majority class [20, 23, 29, 
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30]. Inspired by the drawbacks of the commonly used methods, 
this study seeks to address the imbalance problem from a 
different perspective, through the learning objective. 

The canonical training objective in DNN is the empirical 
risk minimization (ERM) which entails minimizing the average 
per sample training loss over the entire training data [31]. This 
training objective has the capacity to fit a given training data 
perfectly and still produce impressive accuracy on an unseen 
test data [32]. However, training a DNN using such objective 
on an imbalanced data has been shown to be bias to the 
majority class samples despite fitting the training data perfectly 
in most cases [32, 33]. The trained DNN is unable to generalize 
the learnt representations to the minority class samples at 
inference/test phase. In contrast to ERM, this study explores 
minimizing the maximum between the majority and minority 
class losses for improved imbalance learning.  This is 
analogous to distributionally robust optimization (DRO) which 
seeks to minimize the expected loss over possible test 
distributions that the model is expected to perform well on [34, 
35]. Specifically, group DRO (gDRO) proposed in [32] is 
investigated in this study in the context of classical class 
imbalance problem in DNN where the training and test data are 
similarly imbalanced. Rather than seeking reduction in the 
generalization gap between the training and test accuracies of 
the worst group, the performance of gDRO on binary 
imbalance datasets of varying imbalance ratios is investigated 
in comparison to popular imbalance methods in DNN. The 
performance of these methods is compared using four popular 
evaluation metrics in imbalance learning. 

The rest of this article is outlined as follows: Section II 
provides the requisite background on ERM and gDRO 
followed by Section III which contains the methodology as it 
relates to the benchmark datasets, selected imbalance methods, 
DNN architecture and other experimental settings. The 
experimental results and discussions are presented and 
discussed in Section IV and Section V respectively before 
concluding in Section VI. 

II. THEORETICAL BACKGROUND ON ERM AND GDRO 

Given a training data     *(     )+   
 , where     and 

    represent the target labels and the input features 
respectively,    is a prediction function parameterized by   that 

learns to correctly map each input feature    to the 

corresponding output label  
 
. The aim is to find the set of 

parameters   that minimize the risk in (1). 

     (   )    , (    ( ))- (1) 

where   and   ( ) stand for the loss function and predicted 
output respectively. Equation (1) is approximated using the 
training set,     as in (2). This training objective is known as 
empirical risk minimization (ERM). In other words, the ERM 
aims to minimize the average per instance training loss. 

        
 

 
∑  (   *  (  )+   

 ) 
    (2) 

A popular   used in deep learning is the cross-entropy loss: 

 (   *  (  )+   
 )       (       ) 

     (
   (  (  ))

∑    (  (  ))
 
   

) (3) 

The pseudocode for ERM is shown in Algorithm 1 below. 
In a classification problem, each output label    belongs to one 
of   classes and the aim of   ( ) is to ensure that each input    
is classified to the correct class   *     +. 

Algorithm 1: Empirical Risk Minimization Training 

Input: Training Data    *(     )+   
   no of Epochs, E; Batch 

size, b; Learning rate   

Output: Trained Model 

Initialise model parameters    

for t = 1, 2…., E do 

 randomly split    into   equal-sized minibatches;       

for     {1…, n} do 

 perform forward pass for model    

    (  )   
 

   
∑    (     (  ))
 
    #Compute loss and 

perform gradient step 

                (  )   #Update model parameters in 

backward pass 

end  

end 

Unlike ERM, where the average per sample loss over the 
entire training data is minimized, gDRO minimizes the worst 
group error. Thus, gDRO presumes group annotations over the 
training data i.e., every training sample is a triplet 
*(        )   (        )+ where the    stands for the group 
annotation of the     sample. On the contrary, no group 
annotations based on spurious correlations are assumed in this 
study. Rather, a typical case of class imbalance where samples 
belonging to the minority class are fewer than those of the 
majority class is the focus of this study. Thus, number of 
samples belonging to each class is denoted as   . Hence, 
instead of (2), (4) is used to update the DNN in gDRO in this 

study; where 
 

√  
 is for the group adjustment as in [32]. 

             
   

{
 

  
∑  (     (  ))
  
    

 

√  
} (4) 

The pseudocode for group DRO training is presented in 
Algorithm 2. 

III. MATERIALS AND METHODS 

A. Benchmark Datasets 

Nineteen (19) carefully selected binary class benchmark 
imbalanced datasets from Keel

1
 and UCI

2
 data repositories are 

used in this study. Details such as the sample size, number of 
features, fraction of majority and minority samples in 
percentage are presented in Table I. The degree of imbalance in 
each dataset is indicated by the imbalance ratio (IR) which is 
the ratio of the majority to minority samples size. Likewise, the 
degree of complexity of each dataset is shown using mean 
silhouette coefficient of its samples (S.Coeff) [36]. The S.Coeff 
values ranges between -1 and +1. Values around zero indicate 
overlapping class clusters, whereas values close to +1 and -1 

                                                           
1 https://sci2s.ugr.es/keel/index.php 
2 https://archive.ics.uci.edu/ml/datasets.php 
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indicate well separated and highly overlapped class clusters 
respectively. 

Algorithm 2: Group Distributionally Robust Optimization Training 

Input: Training Data    *(     )+   
   classes,   *     +; no 

of Epochs, E; Batch size, b 

Output: Trained Model 

Initialize parameters of model    

for t = 1, 2…., E do 

 randomly split    into   equal-sized minibatches;       

 for     {1…, n} do 

  perform forward pass for model    

  for c = {1…, C} do 

   
  (  )  

 

  
∑  (     (  ))  
  
   

 

√  
  # compute loss for 

each class 

  end 

  
   (  )     *   (  (  )   

 )+  # perform gradient step 

with worst group    

  
               (  )                # update model parameters 

in backward pass 

 end 

end 

B. Methods for Handling Class Imbalance 

In addition to ERM and gDRO, experiments were also 
carried out using four classical imbalance methods and 
compared. These methods were chosen to cover commonly 
used imbalanced methods in DNN research and their hybrid. 

 Random Oversampling (ROS) 

 Random Undersampling (RUS) 

 Cost sensitive reweighting (COST): The weights 
assigned to majority and minority class samples are 
determined by the inverse of   ; where    is the 
number of samples belonging to class  . 

 Hybrid of random undersampling and oversampling 
(RUSROS): This involves initially randomly 
undersampling the majority class by 50% before 
randomly oversampling the minority class samples till it 
equals the majority class size. 

Overall, the performance of six methods (ERM, gDRO, 
ROS, RUS, COST and RUSROS) on the imbalance datasets 
are compared in this study. 

C. DNN Architecture 

Unlike convolutional neural networks (CNN), where a wide 
range of benchmark architectures are available [37], 
determining an appropriate DNN architecture for tabular data 
is nontrivial due to the sparsity of representative works 
addressing pertinent issues such as the ideal network depth and 
width as well as the best activation functions for this class of 
models. While in recent years several novel architectures have 
been proposed in representative studies [38-41], no single 
method provides a reliable performance across multiple tasks. 
Hence, deep fully connected otherwise known as deep  
multilayer perceptron remains the quintessential baseline 
architecture for modelling structured data [41] and thus, used in 
this study. Besides, deep fully connected neural networks are 

natural fit for imbalanced data with capability of yielding 
impressive results when the hyperparameters are optimized 
[42]. 

TABLE I.  BENCHMARK DATASETS 

Data 

# 

Sample

s 

# 

Feature

s 

% 

Maj 

Clas

s 

% 

Min 

Clas

s 

IR 
S.Coef

f 

abalone19 4174 8 99.2

3 
0.77 129.4

4 
-0.021 

protein_hom

o 

145751 74 99.1

1 
0.89 111.4

6 
0.556 

mamography 11183 6 97.6

8 
2.32 42.01 0.45 

ozone_level 2536 72 97.1

2 
2.88 33.74 -0.049 

wine_quality 4898 11 96.2

6 
3.74 25.77 0.146 

oil 937 49 95.6

2 
4.38 21.85 0.084 

abalone 731 8 94.2

5 
5.75 16.4 0.107 

glass4 214 9 93.9

3 
6.07 15.46 0.363 

covertype 38501 54 92.8

7 
7.13 13.02 0.114 

vowel0 988 13 90.8

9 
9.11 9.98 0.166 

satimage 6435 36 90.2

7 
9.73 9.28 -0.134 

page-blocks0 5472 10 89.7

8 
10.2 8.79 0.505 

ecoli3 336 7 89.5

8 
10.4 8.6 0.126 

segment0 2308 19 85.7

5 

14.3 6.02 -0.063 

yeast4 1484 8 83.5

6 
16.4 5.08 0.037 

vehicle0 846 18 76.4

8 
23.5 3.25 0.065 

haberman 306 3 73.5

3 
26.5 2.78 0.069 

phoneme 5404 5 70.6

5 
29.4 2.41 0.087 

pima 768 8 65.1 34.9 1.87 0.092 

ReLU activation function is widely used in deep learning 
class imbalance research [14, 43], hence the same is adopted in 
the DNN model used in this study. Batch normalization and 0.5 
dropout rate are applied after each ReLU activation of each 
hidden layer to avoid overfitting. Likewise, to optimize a DNN 
model for each dataset, representative imbalance studies have 
often resulted to grid search for hyperparameters optimization 
[14, 44, 45].  Similarly, 80% of each imbalanced data was used 
for hyperparameter optimization via grid search. Only the 
depth and width of each DNN model are optimized as in [14]. 
A network width of 50 neurons per hidden layer was found to 
be sufficient for the models to overfit the data after 
experimenting with widths of 512, 300, 100, 50 and 32 neurons 
respectively. The depth of these models was optimized starting 
with a depth of two (i.e., 2-hidden layers) and varying it up to 
six. The optimal DNN architecture for each imbalanced dataset 
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was determined via the best mean AUC over 5-fold cross 
validation [42]. The AUC results for optimal number of layers 
and architecture for each dataset is presented in Table IV of the 
appendix. 

D. Experimental Setup 

10-fold cross validation approach was employed for model 
training and validation for each combination of dataset, model 
and imbalance method. All DNN models were trained to stop 
early if there are no improvement in the validation error after 
10 successive epochs. Adam stochastic optimization with 
learning rate of 0.001 was used in model training. Each model 
weights were randomly initialized with uniform distribution 
and Xavier variance [46] with zero bias before training with 
batch stochastic gradient descent. The minibatch sizes were set 
to range from 1/32 to 1/100 of each respective dataset sample 
sizes. The training procedure is illustrated in Fig. 1. 

 

Fig. 1. Training procedure 

To further ensure credibility of our findings and handle 
associated inconsistencies resulting from randomization and 
stochastic nature of the training process, the experiment for 
each combination was repeated five times with varying random 
seeds; resulting in different initial parameters for each 
repetition [47]. The mean validation results across the 
repetitions are reported. In all, 5,700 experiments were 
conducted. Given the large number of models that is required 
to be trained, a commodity hardware GPU, Nvidia Geforce 
GTX 960M, on a core i5 Dell Inspiron 7559 machine was 
leveraged to speed up the experiments. All experiments were 
implemented in Pytorch deep learning framework [48]. 

E. Evaluation Metrics 

The inadequacy of accuracy and error rate as measures of 
classification performance of imbalance datasets is well 
documented in the literature [49]. Thus, four complementary 
evaluation metrics that have been used in imbalance learning 
research have been adopted in the study. Each of this metrics is 
described in what follows. Note that FP, FN, TP and TN are 
false positive, false negative, true positive and true negative 
respectively. 

 Receiver Operating Characteristic Area Under the 
Curve (ROC-AUC): The ROC is a plot of the true 

positive rate (
  

     
) against the false positive rate 

(
  

     
) across all possible discrimination thresholds. 

From this plot, the AUC which is the area under the 
receiver operating characteristic (ROC) curve can be 
calculated and used as a performance measure of 
classification model. 

 Precision-Recall AUC curve (PR-AUC), perhaps 
inspired by the ROC-AUC, is a plot of precision on the 

y-axis (
  

     
) against recall (

  

     
) on the x-axis. The 

area under the PR-curve is also used as a measure of the 
performance of binary classification models. The AUC 
implementation used in this work is calculated using the 
trapezoidal rule. 

 F1-Measure, a widely used evaluation metric, is 
another measure of evaluation used in this study. It is 
the harmonic mean of precision and recall (i.e., 
(    )                 

                   
). The beta ( ) parameter shows 

the trade-off between precision and recall. Our interest 
is to detect both majority and minority classes with 
equal preference, hence, the   parameter is set to 1. 

 Geometric mean (g-mean) is the final evaluation metric 
used to evaluate the models. In case of binary 
classification, g-mean is the squared-root of the product 
of recall and true negative rate (TNR) 

(√
  

     
 

  

     
). 

Additionally, the Friedman test [50] is also used in this 
study to detect differences in the experimental results across 
multiple attempts, when the normality assumption may not 
hold. Thus, this test is used to reject the null hypothesis that the 
compared methods produce similar performance across the 
different datasets and DNNs in comparison to their mean 
rankings. Then, as recommended in [51], pairwise posthoc 
analysis using Wilcoxon signed-rank test [52] with Holm’s 
alpha (0.05) correction [53] was used for comparison. A 
visualization of the comparison is presented using a critical 
difference diagram [54]. 

IV. RESULTS 

Multiple benchmark datasets enabled a fair comparative 
analysis of ERM, gDRO and the imbalance methods across a 
wide range of imbalance ratios. The mean (±standard 
deviation) of the validation performance of each method across 
the respective evaluation metrics for each dataset over five 
repetitions of the experiment (as shown in Fig. 1) are presented 
in Fig 2. The overall average performance of each method in 
addition to the number of times each method ranks first for 
each evaluation metric is also presented in Table II. Similarly, 
a bar plot showing the average ranking of each method per 
dataset is presented in Fig. 3. 
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Fig. 2. Mean (±standard deviation) results of comparative methods 

 
Fig. 3. Mean ranking of the experimental results (lower the better) 

A. Results based on F1-Score 

As, depicted in Fig. 2, the performance of gDRO in 
comparison to ERM regarding the top six imbalanced 
benchmarks (IR of 129.44 to 21.85) shows that gDRO mostly 
produces better average f1-score for those with overlapping 
classes (abalone19, ozone level, wine_quality and oil) i.e., 

gDRO identifies minority samples better on complex 
imbalanced datasets- whereas ERM performed better on those 
with better class separability (protein homo and 
mammography). The general f1-score on the abalone19 
benchmark is notably very poor across the compared methods, 
a likely explanation for this is lack of data/information (given a 
meagre minority sample size of 32) worsened by class overlap. 
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Likewise, the superior performance of gDRO over ERM on 
this benchmark suggests the suitability of the former in 
extreme imbalance cases where data is lacking. As for the 
remaining datasets in decreasing order of imbalance ratio, 
ERM produced better average f1-score than gDRO in all but 
glass4, ecoli3 and haberman datasets; the three smallest 
datasets in the benchmarks and of varying degree of overlap. In 
comparison to the classical imbalance methods, while mostly 
outperforming RUS on mammography, page-block0 and pima, 
gDRO mostly produced lower average f1-score than, at least, 
one of ROS, COST or RUSROS except on abalone19 and 
glass4 datasets where gDRO outperformed other methods. As 
shown in Table II, ROS produced the best average overall f1-
score across the benchmarks, producing the best score seven 
times in the process. On the other hand, RUS produced the 
lowest overall f1-score and only managed to produce the best 
score once (which was jointly with ROS on the least imbalance 
dataset, pima). 

B. Results based on G-Mean 

As shown in Fig. 2, gDRO produced better average g-mean 
scores than ERM across all but the segment0, vehicle0 and 
vowel0 datasets where they both performed similarly or 
marginally better performance by ERM. It should be noted that 
the performance of the model on these datasets is generally 
better than the remaining datasets. In comparison to the 
selected imbalance methods in terms of the top six imbalanced 
datasets (abalone19, protein homo, mammography ozone level, 
wine_quality and oil), gDRO yielded the best average g-mean 
on all but the mammography and oil datasets where ROS and 
RUS as well as COST respectively produced better 
performance. On the remaining datasets, as the imbalance ratio 
reduces and the minority to majority ratio increases, the 
performance of the classical imbalance methods generally 
become more comparable to gDRO which was only able to 
produce the best average g-mean on the glass4, satimage, page-
block0 and yeast4 datasets.  Table II shows that gDRO 
produced the best average overall g-mean of 84.28% across the 
benchmarks, while achieving the best score 8 times in the 
process. The implication of the impressive performance of 
gDRO in terms of g-mean is that it detects the minority 
samples with lower false positive and false negative rates. On 
the other hand, an overall average g-mean score of 67.74% 
achieved by ERM makes it the least performing method in this 
regard. 

C. Results based on PR-AUC 

As shown in Fig. 2, ERM outperforms gDRO and other 
classical imbalance methods based on average pr-auc on all but 
the ecoli3, glass4, haberman and pima datasets. Three of these 
datasets (ecoli3, glass4 and haberman) have the least number 
of samples while the relatively larger pima dataset is the least 
imbalance amongst the considered benchmarks. Despite 
achieving better average pr-auc than ERM on these datasets, 
the performance of gDRO still remains inferior to at least one 
of ROS, RUS, COST or RUSROS. Table II further shows that 
ERM produced the best overall average pr-auc of 73.07%, 
achieving the best performance 14 times across the different 
benchmarks. In contrast, RUS showed the lowest performance 
in this regard despite producing the best result once (jointly 
with ROS on the pima dataset). 

TABLE II.  AVERAGE PERFORMANCE ACROSS ALL DATASETS (AND THE 

NUMBER OF TIMES EACH METHOD RANKS FIRST) 

Metric ERM GDRO ROS RUS COST ROSRUS 

F1-SCORE 
61.85 

(6) 

60.57 

(2) 

65.07 

(7) 

51.54 

(1) 

64.37 

(5) 
63.19 (2) 

G-MEAN 
67.74 

(0) 

84.28 

(8) 

80.36 

(6) 

77.23 

(2) 

81.68 

(5) 
80.12 (0) 

PR-AUC 
73.07 

(14) 

68.16 

(1) 

68.41 

(3) 

62.83 

(1) 

68.95 

(3) 
66.92 (0) 

ROC-AUC 
77.86 

(0) 

85.55 

(8) 

83.80 

(4) 

81.10 

(0) 

84.28 

(0) 
83.58 (1) 

D. Results based on ROC-AUC 

The performance of gDRO as illustrated in Fig. 2 relative to 
ERM in terms of average roc-auc is similar to findings based 
on average g-mean as gDRO shows better average roc-auc 
scores than ERM across all but the segment0, vehicle0 and 
vowel0 datasets where they both performed similarly or ERM 
is marginally better. Comparison based on the top six 
imbalanced benchmarks also shows similar trend as gDRO 
produced the best average roc-auc on all but the mammography 
(where ROS, RUS, COST and RUSROS were better) and oil 
(where COST was better) datasets. Datasets with lower IR 
produced improved results that are comparable or relatively 
better than gDRO with these methods. However, gDRO 
produced the best average roc-auc on the glass4, satimage, 
page-block0 and yeast4 datasets. Further, Table II shows that 
gDRO produced the highest overall average roc-auc (85.55%), 
producing the results eight times across the datasets. On the 
other hand, ERM produced the lowest overall average 
performance based on ROC-AUC. 

E. Statistical Analysis 

The Friedman’s test results presented in Table III shows 
that the null hypothesis, namely, the imbalance methods 
produce similar performance across the different datasets is 
rejected. Hence, pairwise posthoc analysis using Wilcoxon 
signed-rank test is carried out to rank each method across the 
evaluation metrics as illustrated in Fig. 4. The figure shows a 
critical difference diagram of the imbalance methods for each 
evaluation metric where a thick horizontal line indicates group 
of imbalance methods (a clique) for which the difference in 
their performance is not statistically significant. For each 
metric, the mean performance of each method across the 
dataset is used for the statistical test. The figure shows that 
although for f1-score, g-mean, pr-auc and roc-auc, ROS, 
gDRO, ERM and gDRO respectively rank highest, each of 
these methods is not significantly better than at least two other 
methods. For instance, in terms of f1-score, ROS is not 
statistically different from COST and ERM whereas in term of 
pr-auc, no statistically significant difference exists between 
ERM, ROS, COST and gDRO. 

TABLE III.  RESULT OF FRIEDMAN’S TEST 

Metric  p-value 

F1-Score 0.00000 

G-Mean 0.00000 

PR-AUC 0.00000 

ROC-AUC 0.00000 
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Fig. 4. Critical difference diagram of pairwise statistical difference 

comparison between imbalance methods 

V. DISCUSSION 

The importance of this study cannot be overemphasized as 
it investigates gDRO for learning imbalance tabular data in 
DNN as against ERM which is the main learning objective in 
both balanced and imbalanced deep learning research. The 
empirical results of this study show that in terms of ROC-AUC 
which reflects a balanced assessment of the performance of the 
DNN models on both majority and minority samples across 
different thresholds, gDRO mostly outperforms ERM and most 
of the compared imbalance methods on benchmark datasets of 
varying imbalance ratios, sizes and complexities. This implies 
that deep imbalance learning via minimization of worst-case 
loss across classes can produce models that are more robust to 
both majority and minority class samples than ERM. Hence, 
gDRO is an ideal training objective in cases where both 
majority and minority classes of the imbalance data are equally 
important as it is known for its robustness to distributional 
shifts [32]. 

Following the generally held notion that ERM biases DNN 
models to the majority class when learning imbalance data 
[55], it would be expected that ERM perform poorly on the 
minority samples. However, it can be observed that ERM 
mostly outperform gDRO and other compared imbalance 
methods across the studied benchmarks in terms of pr-auc 
which mainly focuses on the performance of the DNN model 
on the minority samples under a range of thresholds. One likely 
explanation for this is that while ERM produced the best 

overall result on the minority samples over different thresholds, 
this does not necessarily mean it produced the best 
performance for a specific threshold value [56]. This explains 
why ERM is unable to replicate similar feat on metrics like f1-
score and g-mean that are computed for specific threshold 
value. 

Additionally, since pr-auc measures the area under the plot 
of precision against recall for different thresholds, another 
possible explanation could be that the pr-auc of ERM is 
dominated by precision. As hinted in Section E of IV, precision 
quantifies the number of correct positive (minority) predictions 
by dividing the number of correctly classified positive samples 
by the total number of correctly classified positive samples and 
negative (majority) samples that are incorrectly classified as 
positive. Compared to recall which quantifies the number of 
correct positive predictions from all positive samples, only a 
model that is bias to the majority samples is less likely to 
misclassify a majority sample as minority than misclassify a 
minority sample. In other words, ERM could produce the best 
pr-auc while being bias to the majority class samples if pr-auc 
is dominated by precision. The critical difference diagrams for 
precision and recall have been included in Fig. 4 to further 
elucidate this line of thought. See Fig. 5 and Fig. 6 of the 
appendix for more details of each method on each dataset in 
terms of precision and recall. 

In relation to the classical imbalance methods, COST and 
ROS tend to perform similarly and better than RUS in most 
cases with COST showing superior performance in highly 
imbalance cases. However, the performance gains in terms of 
minority sample detection for these methods tend to come at 
the expense of some majority class samples [20]. On the other 
hand, RUSROS does not appear to have any major advantage 
that its constituent methods have not exhibited. Generally, the 
inferior performance of the imbalance methods on the highly 
imbalance benchmarks with some degree of class overlap like 
abalone19 and ozone_level compared to similarly imbalance 
ones like protein homo and mamography with more minority 
samples and better class separability underlines the impact of 
size and complexity of data in imbalance learning. Decreasing 
imbalance ratio tend to result in improved performance across 
the metrics. 

It should however be noted that the adopted experimental 
design could have impacted the empirical results of this study. 
Particularly, in relation to reporting the mean scores of several 
repetitions of the experiments as against a single round as 
common in most DNN-based imbalance research [5]. 
Nevertheless, the adopted design has obvious benefits amongst 
which is an objective measure of the true model performance. 

In sum, the choice of method for handling class imbalance 
in DNN models depends on several factors, including the 
severity of class imbalance, the size and complexity of the 
dataset, and the specific evaluation metric of interest. In some 
cases, ERM may be sufficient to achieve good performance on 
imbalanced datasets, while in other cases, gDRO or other 
methods may be necessary. 
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VI. CONCLUSION 

Deep imbalance learning has mainly focused on imbalance 
in computer vision related tasks. Likewise, empirical risk 
minimization (ERM) which entails minimizing the average per 
sample training loss over the entire training data has been 
shown in pertinent works to bias DNNs to the majority class 
when learning from imbalance data [31]. An alternative 
learning objective, group distributionally robust optimization 
(gDRO) is investigated in this study for imbalance learning 
with a focus on tabular data.  The performance of gDRO in 
comparison with ERM and four classical imbalance resolution 
methods on several benchmark imbalance datasets of varying 
imbalance ratios are examined using four common metrics for 
evaluating class imbalance. Experimental findings show that 
while gDRO outperform other methods in terms of g-mean and 
ROC-AUC, whereas ERM and ROS rank highest in terms of 
pr-auc and f1-score respectively. Future research efforts will 
focus on the impact of pretraining on deep imbalance learning 
as well as gDRO for multiclass imbalance tabular data. 
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APPENDIX 

TABLE IV.  ROC-AUC SCORES  FOR OPTIMAL ARCHITECTURE SELECTION FOR EACH DATASET 

Dataset 2_lyrs 3_lyrs 4_lyrs 5_lyrs 6_lyrs 

abalone19 50 50 50 50 50 

abalone 66.33358 64.81243 71.23284 71.59815 66.15334 

covertype 93.75338 94.1079 93.28036 93.94478 93.53545 

ecoli3 71.14201 64.17092 69.55867 71.43367 75.80867 

glass4 79.375 74.6875 74.6875 74.6875 84.6875 

haberman 65.53534 61.76715 62.7362 63.29175 61.96581 

mamography 74.85703 76.7389 77.4536 78.67885 78.64452 

oil 69.72028 72.29672 72.50651 71.21878 61.21878 

ozone_level 54.46271 50.76923 50 51.64122 52.2568 

page-blocks0 90.47406 90.94058 90.8244 91.70862 90.76801 

phoneme 82.28141 83.61735 83.42348 83.15185 85.3148 

pima 72.05325 72.35902 73.29717 72.05595 73.51786 

protein_homo 85.52046 86.38106 88.44263 87.1977 87.19304 

satimage 78.53431 80.78899 78.5861 79.28501 78.04006 

segment0 99.96845 99.77978 99.74823 99.5911 99.74823 

vehicle0 96.21446 95.72569 96.74197 95.51737 96.86146 

vowel0 99.93056 99.93056 99.21627 99.14683 100 

wine_quality 54.41053 56.35424 54.12273 52.58129 52.51172 

yeast4 73.4827 73.3687 73.96551 72.27256 75.26621 
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Fig. 5. Mean (±standard deviation) for precision and recall of comparative methods 

 
Fig. 6. Mean ranking precision and recall (lower the better) 


