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Abstract—Databases are commonly used to store complex
and distinct information. With the advancement of the database
system, non-relational databases have been used to store a vast
amount of data as traditional databases are not sufficient for
making queries on a wide range of massive data. However,
storing data in a database is always challenging for non-expert
users. We propose a conversion technique that enables non-expert
users to access and filter data as close to human language as
possible from the NoSQL database. Researchers have already
explored a variety of technologies in order to develop more precise
conversion procedures. This paper proposed a generic NoSQL
query conversion learning method to generate a Non-Structured
Query Language from natural language. The proposed system
includes natural language processing-based text preprocessing
and the Levenshtein distance algorithm to extract the collection
and attributes if there were any spelling errors. The analysis of
the result shows that our suggested approach is more efficient and
accurate than other state-of-the-art methods in terms of bilingual
understudy scoring with the WikiSQL dataset. Additionally, the
proposed method outperforms the existing approaches because
our method utilizes a bidirectional encoder representation from
a transformer multi-text classifier. The classifier process extracts
database operations that might increase the accuracy. The model
achieves state-of-the-art performance on WikiSQL, obtaining
88.76% average accuracy.

Keywords—Natural language processing; NoSQL query; BERT
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I. INTRODUCTION

In today’s digital age, non-relational databases are utilized
in almost every industry to store information. Non-Structured
Query Language (NoSQL) databases [1], [2] are increasingly
being used for large-scale data sets, search engines, and
real-time web applications [3]. Nowadays, NoSQL databases
work as an alternative to relational databases [4] and other
conventional databases [5].

With the growth of technology, NoSQL databases stores a
large amount of data in document stores, key-value data stores,
wide-column stores, and Graph stores. As opposed to relational
databases, MongoDB, CouchDB, Cassandra, etc are designed
on the architecture of distributed systems to store massive date
[6]. Many organizations are gradually looking into approaches
to understand and analyze this enormous unstructured data.
The current approaches to data management, organization, and
storage are being changed by “Big Data” [7]. In particular,
“Big Data,” an open source framework used to store vast
amounts of structured, unstructured, and semi-structured data
[8]. So, Normal users require knowledge of the query syntax
and table schema to access and store a large amount of data.
However, finding a reliable approach to generate the NoSQL

query from Natural Language (English) is challenging. Using
NoSQL approach, amateur users can interact with the database
system. The model facilitates communication between humans
and computers without recalling the query syntax method
for the non-relational databases. Natural Language Processing
(NLP) [9], [10], [11] is a branch of linguistics, information
engineering, computer science, and artificial intelligence that
studies how computers and humans interact with Natural
Language [12]. Traditional machine translation is applied to
translate the text from one language to another by NLP [13].

This research aims to develop a feasible tool for searching
databases where natural language can be used without needing
complex database queries that are developed by expertise.
Generating NoSQL from natural language has wide range of
applications. Tools with AI knowledge [14] such as Google
Assistant or Alexa use the NLIDB system for non-technical
users. Filling out a lengthy online form can be tedious and
users might need to navigate through the screen, scroll, look
up values in the scroll box, and so on whereas with NLIDB,
the users need to type a question similar to a sentence. Conse-
quently, such a tool has a wide range of usage and applications.
NoSQL approach has been researched both in academia as
well as in industry [15]. In this paper, we implement a Neural
Machine translation model which consists of four steps. First,
we have used a Natural Language Tool-Kit for performing text
preprocessing. Secondly, attributes are collected and extracted
using Levenshtein Distance (LD) [16], [17] algorithm. Thirdly,
we have used a bidirectional encoder representations from
BERT Transformers Model-based multi-text classification [18]
to extract the operations including find, insert, update and
remove. The last step of the proposed approach is generating
query.

Many research works have used WIKISQL dataset for
conversation Natural Language to Structured Query Language.
The BERT Model generates the NoSQL operational command
from the WIKISQL task. The contribution of this research
paper can be summarized as follows:

• Designing several algorithms to come up with a stan-
dard machine translation model for converting Natural
Language into NoSQL queries.

• To resolve the syntax errors for primitive users using
Levenshtein Distance algorithm that can extract the
collection and attributes from the text even if any users
make spelling mistakes or utilize synonyms.

• To employ the latest contextual word representation
BERT transformer model to extract the operations
with a higher accuracy rate.
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The remainder of the paper is organized as follows: Related
works conducting with the same and different technologies
by other researchers are illustrates in Section II. Section III
describes the proposed methodology and work flow. Section
IV shows experiment evaluation and result of the proposed
system. Conclusions with the future expansion are detailed in
Section V.

II. RELATED WORK

Research in Natural Language for non-relational databases
has started as far back as the twenty century. Since the interest
in Natural Language Processing has continued tremendously.
In the early 1970’s LUNAR [19], the first Natural Language
Interface for the relational database (NLIDB) has introduced
to the researcher. LUNAR was a Question Answering (QA)
system connected with the moon rock sample database. The
information of rock samples brought back from the moon
was used to make the LUNAR database. NLP to NoSQL
query conversion field has very little research on it. This
section discusses various works on Natural Language to query
conversion.

In 2021, Minhazul et al. [20] suggested a machine learning-
based NLP2SQL translation system. They used the Naive
Bayes algorithm for command extraction and decision tree re-
gression for condition extraction. Their proposed method lack
accuracy because of using the bag of words technique in the
derivation of condition from SQL. An advance deep learning
solution can mitigate this problem. On the other hand, they can
use the neural translation technique for this machine translation
approach. The system can use the statistical translation method
also.

Mallikarjun et al. [21] proposed an automated NLP-based
text processing approach. Their approach can successfully
convert an excel datasheet into a DBMS. Their system has a
user authentication system that prevents unwanted users. The
system has a limitation of 16,384 columns and 1,048,576 rows
for an excel worksheet. This data may be massive for average
purposes but not enough for big data.

An Intelligent processing system in a document-based
NoSQL database had proposed by Benymol et al. [22] in
2021. They used state-of-the-art algorithms and technologies to
convert text into NoSQL. They used different types of TF-IDF
schemes for information retrieval, machine learning algorithm
for modeling, and hyper parameter tuning for model selection.
The system may have vulnerability in stream and batch data
on the Big Data processing platform. The proposed model also
has a problem with dynamic processing strategies. In this stage,
the system fails to find any possible solution.

Fatma et al. [23] proposed an automatic UML/OCL model
for the NoSQL database converter. Their system mainly fo-
cuses on the big data platform. Because there is wide use
of NoSQL database in the big data platform. After creating
the NoSQL database, the system automatically checks the
OCL constraints of the model. There are different types of
NoSQL databases and a maximum of them have a problem
with integrity constraint checking. For this, it is the most
challenging task in the system.

In [24] M. T. Majeed et al. have designed a fully auto-
mated framework that, using an AI technique, can recognize

keywords, symbols, attributes, values, and relationships among
various types of quiries. Additionally, they proposed a graph-
ical user interface where users could enter NL queries and
have a NoSQL query created from those queries. For complex
queries, the proposed framework didn’t offer a solution.

S. Mondal et al. [25] introduced a query-response model
that can respond to a variety of queries, including assertive,
interrogative, imperative, compound, and complicated forms.
This NoSQL system’s primary task is to retrieve knowledge
data from the default MongoDB database. This paper didn’t
give any solution of time-related query such as “What is the
age of x after 10 years”.

T. Pradeep et al. [26] presented a Deep Learning based
approach that converts English questions to MongoDB queries.
They applied an encoder-Decoder machine-translation method
for this conversion. The encoder turns the NLQ text input
into a vector and sends it to the decoder. The decoder uses a
deep neural network to predict NoSQL queries. Their system
uses ten different deep learning models to handle ten types of
MongoDB queries. One solution is the best possible answer
for this problem.

Sebastian Blank et al. [27] suggested an end-to-end Ques-
tion Answering (QA) system. It allows a user to ask a question
in natural language on the Elasticsearch database. They solve
the homogeneous operation problem of the database by us-
ing policy-based reinforcement learning. For that, they used
Facebook’s bAbI Movie Dialog dataset. They also design a
KBQueryBot, an agent of translating a natural language query
into the domain-specific query language based on a sequence-
to-sequence model [28]. It gives every single answer with the
help of an external knowledge base.

Some classic NLIDB systems can solve the spelling cor-
rections of misspelled words automatically [29]. The module
gives the interface between computer and user by the database
query language. Consequently, they discuss the overall system
architecture of the NLIDB, some implementation details, and
experimental results. The proposed work only focuses on
automatic spelling and grammar correction.

Z. Farooqui et al. [30] recommended the conversion of
English to SQL. For example, their system converts English
questions or text queries into SQL queries. Later it will be
operated on databases. Their suggested technique and method
are generic and smooth. It can handle both small and large
applications for generic NLIDB systems. There are four types
of input NLQ text Normal, Linear Disjoint, Linear Coincident,
and Non-Linear Model. It focuses on simple SQL query
clauses such as SELECT, FROM, WHERE, and JOIN. Their
system can handle complex queries resulting from ambiguous
NL queries.

Tanzim Mahmud et al. [31] proposed a system based on
Context-Free-Grammar (CFG). Any input token of appropriate
terminals found in the input NLQ will replace the correspond-
ing attribute in the relational table or applicable operators of
SQL. The interface can configure easily and automatically by
the user. It relies on the Metadata set and Semantic sets for
tables and attributes. It can handle ambiguities in the input
NLQ. For example, the system can solve the same attribute
name clashing problem within a table. The limitation of the
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proposed CFG system can only convert limited queries. Other
than that, the system is dependent on a specific language.

Xiaojun Xu et al. proposed SQLNet [32], an NLP to
SQL conversion approach which is order-independent and
alternative to the traditional sketch based program synthesis
approaches [33]. Failing an order input NLQ text is not a
problem in that case. It uses a sequence–to-set model, which is
a column attention mechanism that generates SQL queries. It
represents pseudo-tasks with the help of a function of relevance
and works on the WikiSQL task.

Victor Zhong et al. [34] thought about the availability
of the query ground truth (intermediate labels) and database
response. They proposed Seq2SQL, a modular approach that
translates NLQ into SQL queries. Their suggested system
also generalizes across different table schemas. There are
three modules in Seq2SQL. The first module tries to identify
an aggregator function like MIN() or MAX(). The second
module extracts column names from NLQ and uses them as
a select operator. Both modules worked on question-answer
pairs. The third module extracts condition or where-clause
from NLQ. There is a possibility to swap between arguments in
the WHERE clause. This ambiguity problem could solve by
policy-based reinforcement learning [35] in question-answer
pairs.

III. PROPOSED METHODOLOGY

The main concept behind this method is to transform
Natural Language (NL) into Non-Structured Query Language
(NSQL) using Natural Language Tool Kit (NLTK) and Deep
Learning Model. The concept and its description are formal-
ized in the following sections. The proposed architecture is
shown in Fig. 1.

A. Input Natural Language Query (NLQ)

NLQ consists of only the normal terms of user’s language,
without any special format or syntax. Natural language query
(NLQ) in English is given as input. This input text will be
processed for getting information and later converted into
NoSQL queries.

1) Text preprocessing: Since the inventory of individual
words, text can take many forms, ranging from sentences
to many paragraphs with special letters. In NLP the text
preprocessing is an important task and the first step in the
preprocessing to building a model. It is a data mining technique
that transforms plain text into a machine-readable format. Real-
world data is frequently inadequate, inconsistent, or deficient
in specific behaviors and is likely to contain various errors.
This step is needed for transferring input text from human
language to machine-readable format for further processing.

In this paper, we have used NLTK for text preprocessing.
The NLTK is the most widely used and well-known of the NLP
libraries in the Python ecosystem. It is used for all sorts of tasks
from lowercase conversion to tokenization, removing escape
words, part of speech tagging, and beyond. Input text will
be processed for getting information from Natural language
Query input. From the processed text, the system will extract
collection, attribute, and operation for making a NoSQL query.

Fig. 1. Proposed methodology

2) Lowercase conversion: Lowercase conversion is the first
step of text preprocessing. In this step, the input NLQ is
converted into a lower case format. Although the uppercase or
lowercase forms of words are supposed to have no difference,
all the uppercase characters usually changed into lowercase
forms before the classification.

3) Tokenization: Tokenization splits the natural language
query, phrase, string, or entire text document into smaller
units such as individual words or tokens. The former Sentence
Boundary Disambiguation (SBD) is often used to form a list
of individual sentences. It depends on a pre-trained, language-
specific algorithm similar to the Punkt Models from NLTK.
The text divides into a list of words using an unsupervised
algorithm to form a model for abbreviated words. For the
English language, a pre-trained Punkt tokenizer includes in
the NLTK data package.

4) Removing escape words: Escape or extra words are the
words that are frequently appeared within the text without
having more information or content. So, the escape words
are removed because they are not needed in the analysis of
the query. For the purpose of building queries, several sets of
escape words have been developed. In this paper, we proposed
a new set of escape words. Auxiliary verbs and prepositions
are mainly used in this context as escape words such as ‘a’,
‘an’, ‘the’, ‘is’, ‘of’, ‘with’, ‘to’, ‘for’, ‘and’, ‘all’, etc.
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TABLE I. ESCAPE WORDS

Escape Words With Escape Words Without Escape
Words

all, the Find all the students Find students
is, the, of, What is the name What name student

all of all student?
the, and Insert the student Insert student

name x and age 20 name x age 20

Beside Table I, this step eliminates punctuation from the
input natural query. The detailed process of eliminating escape
words is illustrated in Algorithm 1.

Algorithm 1: Removing Extra Words
Input: I = Input words and; E = List of Extra Words
Output: L: List of words after removing extra words
cw = CountWord(I)
for cw ∈ CW do

I = I[c] TOKENS = Tokenization(I)
for l ∈ TOKENS do

TOKEN = EMPTY
if l /∈ E then

PUSH(TOKEN, t)
end

end
PUSH(L, TOKEN)

end
return L

Removing escape words is a simple but essential aspect
of many text mining applications cause it reduces memory
overhead. It can reduce noise and false positives. This method
can potentially improve the power of prediction in any text
mining application.

5) Parts of Speech (PoS) tagger: PoS tagging helps in text-
to-speech conversion, information retrieval, and word sense
disambiguation. It’s used for the classification of words in their
PoSs and labeling them according to the tagset. The collection
of tags used for PoS tagging is tagset. PoS tagging is also
referred to as word classes or lexical categories. However, all
PoS tags aren’t necessary to analyze. All PoS tagging attributes
are provided by the NLTK toolkit. The PoSs must be defined
as the following:

• Noun Tags = [‘NN’, ‘NNS’, ‘NNP’, ‘NNPS’]

• Adjective Tags = [‘JJ’, ‘JJS’, ‘JJR’]

• Verb Tags = [‘VB’, ‘VBP’, ‘VBD’, ‘VBG’, ‘VBZ’]

• Adverb Tags = [‘RB’, ‘RBR’, ‘RBS’]

Adverb and adjective tags do not have much significance
in generating NoSQL queries. Only noun and verb tags are
considered for the next steps of PoS tagging. Because verb &
noun tags may indicate command and attributes or table name
respectively. Algorithm 2 illustrates the process.

B. Collection and Attribute Extraction

Levenshtein distance (LD) algorithm is used in a specific
solution to extract collections and attributes from natural

Algorithm 2: Keeping Necessary Tags
Input: W = All the words after removing stop words;
Output: T = Necessary Tag’s with appropriate word
c = CountWord(W)
for c ∈ C do

w = W[c] TAGS = Tagging(w)
for t ∈ TAGS do

TAG = EMPTY
if t ∈ VERB then

PUSH(TAG, t)
end
if t ∈ NOUN then

PUSH(TAG, t)
end

end
PUSH(T, TAG)

end
return T

language queries. The approach starts by counting how many
words in the list are similar to one another. Afterward, it
compares every single similar word with every attribute from
the WordNet by the LD and synonym list plays a crucial role in
extracting attribute and collection names. This method keeps
a list of words that are synonyms for each noun tag. Using
WordNet, a list of noun tag synonyms is generated. The aim
of making a synonym list is to find a specific collection and
attribute from an input query. Every user formulates their query
in a different way. They also use different words to describe
the attribute or collection names. So, this approach checks
synonyms of the words from the user query in the WordNet
library. we give some analogies in Table II:

TABLE II. ANALOGY BETWEEN TEXT AND INTRUSION DETECTION
WHEN APPLYING THE LD ALGORITHM

Text Intrusion Detection
Find the name of all student Collection(all student)
What is the accommodation Attribute(address)

of student id 01
Find the Fastname of the students Attribute(name)

In this paper, the LD algorithm works as a threshold.
Sentence word is compared with the collection name if the
value is greater than the threshold then it saves the collection
and attributes with the appropriate name in a list. Finally, this
approach gives an output figure of the match collection and
attribute. The designed algorithm for collection and attribute
extraction is described in Algorithm 3

Levenshtein Distance formula is used to measure the dis-
tance between the two strings a and b with length |a| and |b|,
respectively.

LDa,b(m,n) =


max(m,n)

min


LDa,b(m− 1, n) + 1

LDa,b(m,n− 1) + 1

LDa,b(m− 1, n− 1) + 1(am ̸=bn)

Here (am ̸= bn) is the indicator function that is equal to 0
when (am ̸= bn), otherwise 1, and LDa,b(m,n) is the distance
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Fig. 2. Operation extraction using BERT model

Algorithm 3: Attribute Extraction
Input: W = List of Attributes from Database; C =
List of Collection name from Database; S = Set of
Similar Words
Output: A = Attributes Name; B = Table Name
t = CountWord(T)
for i← 1 to t do

for j ∈ S do
LD − THRESHOLD = 1

THRESHOLD = LD-Algorithm(S[j],W [j])

if LD − THRESHOLD>THRESHOLD
then
PUSH(A[i],W [j])

PUSH(B[i], C[i])
end

end
end

between the first m characters of a and the first n characters
of b.

C. Operation Extraction

Operation extraction is a particular solution that uses BERT
Model to extract operations from natural language queries. In
this approach, we use BERT Model for classifying the specific
operation. In machine learning, classification is the set of
categories that analysis belongs to the basis of a training set of

data containing (or instances) whose categorical membership
is known [36]. A classification model tries to make some
inferences from the observed data. To predict one or more
outcomes from the dataset, provide one or more data as inputs
to the categorization model.

In the dataset, BERT employs a novel technique known as
Masked Language Model (MLM), in which it masks words
in the sentence at random and then attempts to predict them.
It doesn’t use common sequence left-to-right or right-to-left
language models. Instead, it uses the bidirectionally trained
sequence with a deeper sense of language context and the
model. The pre-train BERT applying two unsupervised tasks:

• Pre-training the BERT to understand language.

• Fine-tuning the BERT to learn specific task.

BERT depends on a Transformer (the self-attention mech-
anism to learns contextual relationships between words in a
text). A simple Transformer consists of an encoder that reads
text input and a decoder to generates a task prediction. Since
the BERT model only requires the encoder part for generating
a language representation model. There are two main models
of BERT:

• BERT base has 12 transformer blocks, 768 hidden
layers, 12 attention heads, and 110M parameters.

• BERT large has 24 transformer blocks, 1024 hidden
layers, 16 attention heads, and 340M parameters.

In this paper, we used the BERT base model that has
enough pre-trained data to help bridge the gap in data. The
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model for operation extraction shows in Fig. 2. Given the input
text, the Model that tokenizes the text using BERT tokenizer
then generates the input masks with input IDs of the sentence.
The input mask uses WordPiece [37] for tokenizing that splits
the token like “going” to “go” and “ing.” It is mainly to cover
a broad spectrum of Out-Of-Vocabulary (OOV) words. After
tokenization, the output class goes as input in the classification
model. we used a neural network for classification to get
the highest accuracy. After classifying, we get the output of
the operation. Here we work on four types of operations, in
consideration- FIND, INSERT, UPDATE, REMOVE.

D. Build Syntax Tree & Generate Query

After Tokenization, collection, attribute, and operation are
extracted from the sentence, we map the syntax tree with key-
value pairs to build the query sequentially with the logical
expression. If there are no logical expression in the sentence,
it will be Nulled. Fig. 3 shows the syntax tree.

Fig. 3. Mapping syntax tree

Finally, we concatenate the whole step part-by-part and
generate a NoSQL query. Fig. 4 shows the architecture of
NoSQL query and given the output of the result.

Fig. 4. Architecture of query generation

IV. EXPERIMENTAL ANALYSIS AND RESULT

In this section, we evaluate our proposed model with the
dataset. Firstly, we present the analysis of our dataset, then set
up the evaluation. In the end, we compare our proposed model
with the existing works and mention the differences, weak and
strong points of our proposed model.

A. Dataset

We reshuffle the WIKISQL dataset for a better understand-
ing of our model performance. WIKISQL is a massive crowd
sourced dataset for creating NLIDB. The model is retrained
periodically by reflecting the latest dataset. Our proposed
model has used two types of data: (1) Natural Language

Query column which represent the natural language query
and (2) Operations column. The description of the datasets
is illustrated in Table III.

TABLE III. DESCRIPTION OF DATASET

Dataset WIKISQL
Language NLQ

Total number of cases 80,654
Length of the text (average) 61.09

Word count of the text (average) 11.66
Granualarity of text description line

Number of validation text 8,421
Number of test cases (total) 15,878
Number of train cases (total) 56,355

To avoid overfitting, we split the dataset into the training
set and the testing set. we train our model on 70:30, 60:40,
and 80:20 ratios and get the optimal result from the 80:20
ratio on our dataset. The data fields are the same among all
splits. WikiSQL is a collection of hand-annotated SQL table,
question, and query examples from Amazon Mechanical Turk
crowd workers. It is orders of magnitude larger than current
datasets, with 87000 samples as of this writing. The number of
validation queries is 8,421. We build queries for the table and
then ask crowd workers to paraphrase them. Each paraphrase is
then double-checked by independent personnel to ensure that it
does not alter the meaning of the original inquiry. We anticipate
that making WikiSQL available will aid the community in
developing the next generation of natural language interfaces
(Fig. 5).

The Fig. 6 illustrates a blue histogram which shows the
word and text distribution of dataset. It is hand-annotated
semantic parsing dataset that contains logical and normal
forms, respectively. In the dataset, the data is extracted from
the web.

B. Text Pre-Processing

Text pre-processing is the first step of our proposed system.
This step involves removing noise from our dataset. we apply
several pre-processing steps to the data to convert words into
numerical features. An example of tokenization is:

Input: ‘find the name of all student’
Output: [‘find’, ‘the’, ‘name’, ‘of’, ‘all’, ‘student’]

C. Collection and Attribute Extraction from WordNet

We used NLTK WordNet to find find synonyms and
antonyms of words. A WordNet is a lexical database that con-
tains semantic relationships between words and their meanings.
Our proposed model can successfully extract collection and
attributes from WordNet library if there were any spelling
errors occur or synonyms used. The bar diagram 5 shows
how extract collection and attribute from WordNet using
Levenshtein distance. For example:

Collection extraction: ‘all student’:[‘student’,‘students’]
Attribute extraction: ‘name’: [‘name’, ‘title’, ‘label’]

www.ijacsa.thesai.org 815 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

Fig. 5. Collection and attribute extraction

Fig. 6. Word and text distribution

D. BERT Tokenizer

In operation extraction our proposed system starts with
BERT Tokenizer step. It gives sinusoidal positional encoding,
the model itself learns the positional embedding during the
training phase. Using the word-piece tokenizer concept that
break some words into sub-words.

It helps many times to break unknown words into some
known words and tokenize our text into tokens that correspond
to BERT’s vocabulary. An example of BERT Tokenization is:

Input: ‘find the name of all student’
Output 1: [101, 1023, 12334, 15233, 2033, 2435, 24353, 102]
Output 2: [‘[CLS]’, ‘find’, ‘the’, ‘name’, ‘of’, ‘all’, ‘student’,
‘[SEP]’]

Output 1 is indices of the input tokens from the vocab file
and output 2 is the reverse, a human-readable token of the
input ids. Apart from the input tokens we also got 2 special
tokens ‘[CLS]’ and ‘[SEP]’. BERT model is designed in such
a way that the sentence has to start with the [CLS] token and
end with the [SEP] token.

E. Split Data for Training and Testing

The training phase is the first step for the BERT Model.
This model is a transformer design based on an encoder
stack. We trained the WIKISQL dataset using this model.
The Model uses the Semi-Supervised Learning approach for
translating natural language query into operation. The training
sub-dataset contains all of the features required to turn a natural
language query into an operational query. To partition the
WIKISQL dataset into two sub-datasets, we use the scikit-
learn library’s “train test split” method. The suggested system
is built using the dataset’s training sub-dataset. The training
dataset is a fraction (80%) of the whole data set. The rest
(20%) is considered as test data. This information is imported
as a.csv file. Table IV shows a portion of the training data set.

TABLE IV. A SAMPLE OF TRAINING DATASET

Line No. Natural Language Query Operations
1 What’s Dorain Anneck’s pick find

number?
2 Find the student whose name is find

x.
3 Insert the arrival time of insert

greenbat.
4 Put the status of the trains at insert

location Museum
5 Update the record for september update

15, 1985.
6 Re-equip the student update
7 Remove the brighton cast for remove

jerry cruncher
8 Delete the all student remove

F. Model Building

BERT is an architecture that uses a transformer encoder
to process each token of input text in the context of all other
tokens. After splitting the dataset, we start with the pre-trained
BERT Model to classify the find, insert, update and remove
operations. In our model we use 12 layers of Transformer
encoder. After run the operation we get two variables: First
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Fig. 7. Comparison of four types operations

variable contains the embedding vectors of all of the tokens in
a sequence and second variable contains the embedding vector
of [CLS] token. We then pass the variable into a linear layer
with ReLU activation function. We have a vector of size 4
at the end of the linear layer, each of which corresponds to
a category of our labels (find, insert, update, and remove).
We use Adam as the optimizer and train the model for 10
epochs. Because we’re dealing with multi-class classification,
we’ll need to use categorical cross entropy as our loss function.
Fig. 8 depicted the operation.

For example:

Input: ‘find the name of all student’
Output: ‘find’

Fig. 8. Model building

The model enhances the accuracy rate for classification
than the previous model. For the classification task, the model
can classify 81.45% average class detection from previous
research. One of the reasons is BERT uses a pre-trained model
which is based on transfer learning. It can tune the data on a
specific NoSQL language. Fig. 7 illustrates the accuracy rate
of four types of operations separately.

G. Model Accuracy

Accuracy evaluates how well our model forecasts compare
them with the original values. With a low rigor yet a high
blunder, the model would make huge mistakes in the data.
Both blunder and rigor lowness indicates that with most data,
the model produces smaller errors. However, it produces huge
mistakes in some systems if they are both high. The ideal
scenario of any model would be high rigor and little blunder.
Fig. 9 illustrate the accuracy of the proposed model.

Fig. 9. Model accuracy

H. Model Loss

Loss is the total of our model errors. It evaluates how well
our model does (or how badly it does). When there are a lot of
mistakes, the loss is high and the model doesn’t work properly.
The better our model works, the lower it is. However, the
greatest conclusion we can make from it is whether the loss
is big or low. If we plot losses over time, we can evaluate
if and how quickly our model is learning. This is because
the loss function is utilized by the model for learning. This
takes the shape of approaches like gradient descent, which
modify parameters of the model using information on the loss
outcome. Fig. 10 illustrate the loss of the proposed model.
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Fig. 10. Model loss

I. Output

In output, we get the collection and attribute name, such
as all student and name. From the operation extraction, get
the find operation, then concatenate all the extractions output
part-by-part to generate a NoSQL query. For example:

We have classified the wrong output into two categories:
(a)sometimes, the query contained incomplete logical expres-
sion in condition part (b) the query is incorrect. Analysis of
the conversion results reveals the following:

• Observing all the NoSQL output, we can notice sug-
gested model can work with natural language queries
of different lengths. After a successful NoSQL query
output, the number of input and output tokens might
be distinct. The accuracy of the proposed model did
not depend on the length of the query.

• The BERT Model successfully predicts the operation
using a pre-trained model. It also tunes the NoSQL
command from a distinctive size of input text.

• The BERT model can process a large amount of
data. The WIKISQL dataset covered different types
of query statements. So there is no problem for the
BERT model to work with the WIKISQL dataset.

• The Bert model understands the semantic relationship
between natural language and NoSQL queries. As a
result, the decoder output is logically correct for the
maximum query.

• The model can generate “contextualized” word em-
beddings but it is compute-intensive at inference time
and need to calculate compute vectors every time.

• In collection and attribute extraction, we use the Lev-
enshtein Distance algorithm. The algorithm can extract
attributes from natural language queries furthermore
check the spelling error. The run time complexity of
this algorithm is lower than O(n2).

Test results show in Table V that have been translated
into the NoSQL syntax. The test data contains the natural

language query as well as appropriate. The output contains
each converted NoSQL query with original query and test
query, along with the percentage of converted NoSQL query.

J. Evaluation Setup

In this dissertation, we evaluate the result on our dataset
that have three notation to evaluate the query synthesis accu-
racy.

• Normal form accuracy is the form of a NoSQL
query that has no attribute. We analyze the synthesized
NoSQL query with the ground truth to verify whether
they match each other.

• Logical form accuracy is the accuracy of a NoSQL
query that has attributes or any logical expression of
the query.

• Query match is the comparison accuracy with the
original query match for find, insert, update and re-
move operations query. We use a canonical represen-
tation of the synthesized NoSQL query and the ground
truth to determine whether two NoSQL queries are
identical.

We also find out the F1 score for operation extraction that
measures the precision and recall value. Finally, we present
the comparison of our model with previous work on NoSQL
conversion tasks. The implementation of our model using
python [38].

The F1-score measures the accuracy of the operation (find,
insert, update, remove) by applying the precision and recall
values of the test. This test looks at whether the system can
process the sentences entered by the user so that it can be
measured the operation accurately with the F1-score method.
Table VI shows the accuracy values. The equation of the F1-
score, precision, recall, and accuracy have given below:

• Precision: It is the true positive relevance rate that
defined as the ratio tp

tp+fp , where fp indicates the
number of false positives;

• Recall: It is the true positive rate that defined as the
ratio tp

tp+fn , where tp and fn are the number of true
positives and false negatives, respectively;

• F1-score: F1-score is a function of Precision and
Recall that is the harmonic mean between Precision
and Recall, defined the ratio as 2∗(precision∗recall)

precision+recall ;

Next, we find out the accuracy of normal and logical forms.
Let X is the total number of queries in our dataset and X ex is
the execution query. we evaluate the every clause (find, insert,
update and remove) query using accuracy metric for normal
form Acc nf = X ex

X and for logical form Acc lf = X ex
X . Table

VII shows the accuracy of normal and logical queries. After
that the overall result is evaluated by the BLEU (Bilingual
Evaluation Understudy) that was developed to evaluate the
machine translation system.

K. Result

The article presents an efficient approach to transform
the natural language query into a NoSQL query effectively.
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TABLE V. THE ACCURACY FOR CONVERTING NATURAL LANGUAGE INTO NON STRUCTURED QUERY LANGUAGE

Input Text Original query Test query Accuracy(%)

Find all the students db.all student.find() db.all student.find() 100

What is the name of all student? db.all student.find({name:True}) db.all student.find({name:True}) 100

Find the student whose age greater than 70 db.all student.find({ age: { $gt: 70 }) db.all student.find({ age: { 70 }) 75.0

Insert the student whose name is x db.all student.insert ({name:‘x’}) db.all student.insert ({name:‘x’}) 100

Insert student whose name is x, age 22 db.all student.insert ({name:‘x’},{age:22}) db.all student.insert ({name:‘x’},{age:22}) 83.33

Update the name y who is x in student table db.all student.update ({name:‘x’},{$set:{name:‘y’}}) db.all student.update ({name:‘x’},{$set:{name:‘y’}}) 100

Update name z and age 40, whoes name is x db.all student.update ({name:‘x’},{$set:{name:‘y’}}) db.all student.update ({name:‘x’},{$set:{name:‘x’}}) 65.5

Remove all the students db.all student.drop() db.all student.drop() 100

Delete student whose name is x and age 20 db.all student.removeMany ({name:‘x’, age: 20}) db.all student.remove ({name:‘x’, age: 20}) 75.0

This model achieves a competitive result on our dataset.
The following tables represent the experiment result of each
classifier.

TABLE VI. EXPERIMENTAL RESULTS OF EACH CLASSIFIER

F1-score 0.808
Precision 0.892

Recall 0.74

Bilingual Evaluation Understudy (BLEU) is a score for
comparing a candidate translation of the NoSQL query to
one or more reference translations. To predict the accuracy
of automatic machine translation systems, Kishore Papineni,
et al. [39] proposed this score in 2002. We used the BLEU
score to determine the output.

BLEU is not entirely effective but offers several interesting
benefits like quick, easy to calculate, language-independent,
highly interactive with human interpretation, and widely used.

P =
m

wt
(1)

where, m is the estimate of tokens from the candidate
source code that are found in the reference text, and wt is the
total estimate of words in the candidate query. The accuracy
is calculated using the equation 2.

Accuracy = P × 100% (2)

The performance analysis of our model is given in Table
VII.

TABLE VII. PERFORMANCE ANALYSIS OF OUR MODEL. ACCnf AND
ACClf INDICATE THE NORMAL FORM AND LOGICAL FORM QUERY

ACCURACY, AND ACCqm INDICATES THE ACCURACY OF QUERY MATCH

Operation clause Accnf (%) Acclf (%)
Find 100 87.5

Insert - 91.67
Update - 82.75
Remove 100 75.0

Accounting to Concepts Identification errors and domain
dictionary errors, the average accuracy achieved by our system
is 88.76% respectively. We define the error rate as:

ErrorRate = (100−AccuracyRate)% (3)

TABLE VIII. ANALOGY OF DIFFERENT TYPES OF MODEL

Model Accuracy Error Rate
(%) (%)

Encoder-Decoder Model 71.5 28.5
REINFORCE-algorithm Model 84.2 15.8

Proposed Model 88.76 11.24

Table VIII represents BLEU portion of efficiency for
forecasting correct NoSQL query. Using the WikiSQL reshape
dataset the proposed model is passed down for comparing
with the existing other models. Fig. 11 illustrates the three
models’ estimated efficiency and error rates. It demonstrates
the accuracy of other measure rates of converting the natural
language query into the non-structured query language (that
scored 88.76%) is better or at least competitive than the earlier
results.

Fig. 11. Performance factor between previous and our proposed model

V. CONCLUSION

In the age of digitalization, internet users have been in-
creasing continuously. So a large amount of data needs to be
stored in a database. Relational databases faced some chal-
lenges in search engines and social networking services. Here,
the NoSQL database helps maintain a broad range of hierar-
chical data models. The proposed model deals with the NLP
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to non-relational query conversion. Initially, preprocessing the
text (English) by NLTK, then used LD algorithm for collection,
attribute extraction and BERT model for operation extraction
and finally, query generation. Our model can generate queries
for Find, Insert, Update, Remove clause with an average
accuracy of 88.76%. In the future, we intend to improve more
complex NoSQL queries such as logical function queries, using
other incentive mechanisms for better performance.
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