
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

Privacy-Preserving and Trustless Verifiable Fairness
Audit of Machine Learning Models

Gui Tang1, Wuzheng Tan2, Mei Cai3,
College of Cyber Security, Jinan University, Guangzhou, China1,2

Jinan University Library, Guangzhou, China3

Abstract—In the big data era, machine learning has devel-
oped prominently and is widely used in real-world systems.
Yet, machine learning raises fairness concerns, which incurs
discrimination against groups determined by sensitive attributes
such as gender and race. Many researchers have focused on
developing fairness audit technique of machine learning model
that enable users to protect themselves from discrimination.
Existing solutions, however, rely on additional external trust as-
sumptions, either on third-party entities or external components,
that significantly lower the security. In this study, we propose
a trustless verifiable fairness audit framework that assesses the
fairness of ML algorithms while addressing potential security
issues such as data privacy, model secrecy, and trustworthiness.
With succinctness and non-interactive of zero knowledge proof,
our framework not only guarantees audit integrity, but also
clearly enhance security, enabling fair ML models to be publicly
auditable and any client to verify audit results without extra trust
assumption. Our evaluation on various machine learning models
and real-world datasets shows that our framework achieves
practical performance.

Keywords—Security and privacy; machine learning; fairness;
cryptography; zero knowledge proof

I. INTRODUCTION

Machine Learning has seen great success in decision-
making and decision-support tasks in recent years [1] [2]
[3], being deployed in various applications and products in
practice, such as loans and hiring decisions. However, concerns
are rising that algorithms amplify bias and discrimination from
the training data, and fairness is becoming an essential metric
for evaluating machine learning models [4]–[8]. Consequently,
fairness has become a roadblock to widespread machine
learning applications. To address this formally, many works
towards considering how algorithm fairness can be assessed
by proposing various measures and how discrimination in ma-
chine learning systems can be mitigated by pre-processing [9],
[10], inter-processing [11], [12], and post-processing methods
[5] [13].

In practice, there is a need for guarantees that the result of
fairness audit are correctly calculated with respect to specific
fairness metrics, which is referred to as the audit integrity
of fairness. One of the basic ideas to ensure that users are
protected from discrimination is to ensure the integrity of the
audit. In order to get a fair model, the server usually requires
the user’s sensitive data, such as gender and race, to train the
machine learning model. However, this requirement is often
contrary to the interests of the user. First, users are usually
reluctant to share their data, even if it is a reasonable aim,

2Corresponding Author.

because it would expand their exposure to privacy risks. In
addition, the collection of sensitive user data is subject to legal
restrictions. For example, the EU’s General Data Protection
Regulation (GDPR) highlights the minimal prerequisites for
collecting sensitive data [14]. If the model itself is not a
secret, anyone can potentially run tests on it to establish its
purported fairness without exposing its data. However, this
approach may be contrary to the benefits of the model owner
due to intellectual property. Although there are fair learning
approaches [15], [16], training fair models without the sensitive
data have been proposed, it is still required to have the sensitive
data for assessing the fairness of the trained model [17]. We
call this problem as sensitive data availability.

To overcome sensitive data availability issues in providing
audit integrity, Veale and Binns [14] introduce a trusted third
party with sensitive data to certify the fairness of a machine
learning model. Although this model works well, it requires a
strong trust relationship between the third party and the model
owner. Either the third party has access to the ML model,
or the model owner has access to the sensitive data, which
may be against their interests. To audit the model publicly
while protecting sensitive data’s privacy and keeping the model
confidentiality, Kilbertus et al. [18] and Segal et al. [19]
proposed to utilize multi-party computation (MPC) approach.
Those approaches enable a public fairness audit under the
assumption of a semi-honest security model and are extended
by Pentyala et al. [20] to a malicious security model. Park et
al. [17] propose a framework to enable secure fairness audit by
leveraging confidential computing based on hardware enclave
under the malicious security model.

The problem. While previous work have been work well,
existing solutions still suffer from extra trust assumption.
This is problematic for two reasons. First, the additional trust
assumptions mean the third party determines the audit integrity.
Second, relying on a third party can lead to single-point
failures. Specifically, the MPC-based approach assumes that
the server and the third party are running all required steps in
a protocol. Moreover, the hardware-based approach introduces
additional hardware security assumptions and also suffers from
hardware vulnerabilities [21] [22]. Furthermore, when we are
in a situation where we want to audit the model used for several
different domains, we need to establish credible relationships
with more third parties or hardware enclaves.

To get secure and robust service, we need a much more
robust security guarantee: each party only trusts itself. This
raises our question: Can we design a framework for auditing
the fairness of machine learning models under no trusted party
existing scenario? Or can we guarantee security for audit

www.ijacsa.thesai.org 822 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

integrity without external trust assumptions? For example, we
want to support fairness audits as a service in the model market
to achieve fairness integrity.

We answer the question above positively in this paper by
proposing a fair audit framework, which enables a publicly
verifiable fairness audit of the ML model without disclosing
model parameters and guarantees audit integrity of the fair
audit. The main idea is to leverage the progress of zero
knowledge succinct non-interactive arguments of knowledge
(zk-SNAKRs) [23]–[29] recently. A zk-SNARK enables the
third party to efficiently convince the verifier that the compu-
tation of fairness audit is correctly calculated. We solve the
critical challenge of adapting zk-SNARK to this work under
the malicious threat model. In summary, the contributions of
this work are:

• We provide a generic framework to audit the fairness
of machine learning model under the trustless condi-
tion. We can support generic machine learning models
with arbitrary fairness metrics.

• We formally define security requirements and instan-
tiate the framework described above. We have solved
performance challenging problems in the instantiation
process.

• We implement our framework and evaluate its perfor-
mance on several real-world datasets. The experimen-
tal results show that our framework achieves practical
performance.

II. LITERATURE REVIEW

A. Fairness Audit

Despite training a machine learning model is a fundamental
problem, bringing the model to reality is also important. A
fundamental question is how to ensure that the model used
is non-discriminatory. There is a line of work to discuss this
problem. Veale and Binns [14] introduced highly trusted third
parties selectively storing data and performing discrimination
auditing to achieve fairness in machine learning. However,
they assume the modeler must disclose their model to a third
party or trust it in order to obtain the model prediction on test
data, which may be incompatible with modeler’s intellectual
property. To resolve these problems, other privacy-preserving
approaches such as multi-party computation or trusted execute
environment can be applied. Kibertus et al. [18] and Segal et
al. [19] proposed privacy-preserving fair certification and infer-
ence of ML model that protect sensitive attributes and model
confidentiality by using MPC. However, they assume that two
honest-but-curious server and require high communication.
The following work PrivFair [20] extend their security model
to active security threat models in 2- or 3-server setups. Park
et al. [17] provided a generic fairness audit framework that
relies on hardware enclaves and explores more potential threats
and attacks in the fairness certification process. Although their
approach has a small computational overhead, their require
additional hardware and trustworthiness to TEE, which is not
our goal. And TEE also face many unknown vulnerability
[21]. All of these work require additional trusts, and does not
provide public verifiable. There computation integrity rely on
their trust on third party. In this study, we explore a publicly

verifiable security audit protocol based on zero knowledge
proof with lower level of trust. Also [19] and [17] explore
the auditing dataset are publicly known during model training,
which makes the model certification harder by allowing the
modeler can adaptive training their model on the audit data.
We are also using this approach to improve the reliability and
robustness of fairness audits, which is seen as a promising
direction for fairness certification.

B. Zero Knowledge Proof

Zero knowledge proofs were introduced by Goldwasser
[30] and generic constructions based on probabilistically
checkable proofs were proposed in the seminal works of Kilian
[31] and Micali [32]. In recent years there has been significant
progress in efficient ZKP protocols and systems. A radically
different approach in zero-knowledge proof, categorized by
their underlying techniques and assumptions, there are pairing-
based schemes [24], [25], [27], discrete- log-based schemes
[33], interactive-proof [34], [35], interactive oracle proofs
(IOP) [26], [36], and so on. They provide different trade-offs
between prover runtime, proof size and verifier runtime and so
on. Please refer to [37] for more details on the performance and
comparisons of different ZKP schemes. Zero knowledge proof
has been widely used in blockchains and cryptocurrencies to
achieve privacy [38] and scalability. More recently, it also
found new applications in zero-knowledge machine learning
[39], [40], zero-knowledge middlebox [41], and so on.

III. PRELIMINARIES

In this section, we introduce the fairness notions in ma-
chine learning and the cryptographic primitives used in our
framework.

Notions. We use λ to denote the security parameter. Let
[n] denote the set {0, 1, . . . , n− 1}; a vector be denoted by a
boldface letter, e.g., x. And x← X denote that x is sampled
from a distribution X .

A. Fairness Notions in Machine Learning

There is plenty of fairness definitions [42] such as group
fairness, causal discrimination, and counterfactual fairness. In
this study, we mainly focus on statistical fairness definitions
that require protected data, such as demographic parity (or
statistical parity) [43], equalized odds [5], equal of opportunity
[5], and disparate impact [44]. Demographic parity means
that both protected and unprotected groups have an equal
probability of being assigned to the positive predicted class.
Equalized odds enforces both equal bias and equal accuracy
in all demographics. Equal of opportunity is a relaxation of
equalized odds, which only focus the positive predication
outcome. Disparate impact implies that the decision outcomes
disproportionately benefit or hurt members of certain sensitive
attribute value groups.

Let M be a trained machine learning model for a classifi-
cation task. Suppose possible inputs X , sensitive or protected
attribute G (relevant for fairness, e.g., ethnic or sex), the
true class label y and the predication ŷ = M(x, g), where
x ∈ X , g ∈ G. And we use tuple (M,X ,Y,G) represent the
audit sample D. Consider g = 0 designates the unprotected

www.ijacsa.thesai.org 823 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

group and g = 1 designates the protected group. We recall
these fairness definition below.

• Demographic parity (DP): P (ŷ = 1|g = 0) = P (ŷ =
1|g = 1)

• Equalized odds (EO): P (ŷ = 1|y, g = 0) = P (ŷ =
1|y, g = 1),∀y ∈ Y

• Equal opportunity: P (ŷ = 1|y = 1, g = 0) = P (ŷ =
1|y = 1, g = 1)

• Disparate impact (DI): P (ŷ = 1|g) ̸= P (ŷ = 1),∀g ∈
G

The fairness of the ML model is assessed by means of
the empirical fairness gap, as described in [19]. The fairness
notion must be expressed in the formulation in order to audit
ML models. Without loss of generality, we can consider the
demographic parity:

lg,y(M) = E
(x,g′,y′)

[I{M(x) = y}|g′ = g]

where I is an indicator function. Then define the estimated
group risk as lg,y(M,T) = 1

m

∑mg

i=1 I{M(xi) = yi ∧ gi = g},
where T = {(x1, g1, y1), . . . , (xm, gm, ym)} is independent
sample set and mg is the number of samples in T from group
g. Define the fairness gap of ML model as

max
g0,g1∈G,y∈Y

|lg0,y(M)− lg1,y(M)|

Also define empirical fairness gap (EFG) using the empirical
approximation as follows:

EFG = max
g0,g1∈G,y∈Y

|lg0,y(M,T)− lg1,y(M,T)|

We call model M (ϵ, δ)-fair on (G, T) with respect to a fairness
measurement if:

Pr

[
max

g0,g1∈G,y∈Y
|lg0,y(M)− lg1,y(M)| > ϵ

]
≤ δ

The EFG can naturally extend to the other fairness notion and
yield the corresponding (ϵ, δ)-fairness definitions.

B. Cryptography Primitives

Bilinear Groups. A bilinear group is given by a description
GK = (p,G1,G2,GT) such that

• G1, G2 are cyclic groups of prime order p and
generators are g ∈ G1 and h ∈ G2

• Bilinear map e : G1 ×G2 → GT , that is, e(ga, hb) =
e(g, h)ab, where a, b ∈ Zp

• e(g, h) generates GT

Commitment Scheme. A commitment scheme allows a
committee to commit a secret value and later open the com-
mitment and reveal the value to the verifier. We recall the
commitment scheme definition.

Definition 1: A commitment scheme is a tuple of algo-
rithms Com = (Setup,Commit,VerifyCommit) that works as
follows.

• Setup(1λ)→ ck takes as input the security parameter
λ and outputs a commitment key ck.

• Commit(ck,m) → (c, o) takes as input the commit-
ment key ck and a secret value m, and output a
commitment cm and an opening o.

• VerCom(ck, cm,m, o) → b takes as input a commit-
ment cm, a value m and an opening o, and output
accept (b = 1) or reject (b = 0).

The commitment scheme is required to be both binding
and hiding. In the study, we will be using Perdersen-like
commitment scheme [27] which is statistically hiding and
computationally binding under suit assumptions.

zkSNARKs. Zero knowledge proof enables a prover to
prove to a verifier the result y of a computation C satisfying
y = C(x,w), where x is public input and w is secret
witness of prover. The popular zero knowledge proof notions
used in practice are zero-knowledge succinct non-interactive
arguments of knowledge (zkSNARKs, for short) [23]–[25].
Here we recall the definition of zkSNARKs as follows:

Definition 2: A zk-SNARK for a relation R is a tuple of
algorithms Σ = (KeyGen,Prove,Verify,Sim) as follows:

• Setup(1λ, R) → CRS = ((ek, vk), τ): The setup
algorithm takes a relation R ∈ Rλ and security
parameter as input, and returns a common reference
string CRS and a simulation trapdoor τ .

• Prove(ek, x, w) → π The prove algorithm takes a
evaluation key ek from CRS, and (x,w) ∈ R as
inputs, and generates a proof π.

• Verify(vk, x, π) → b ∈ {0, 1} The verify algorithm
takes a verification key vk from CRS, public input x,
and proof π, and outputs 0(reject) or 1 (accept).

• Sim(CRS, τ, R) The Sim algorithm takes a CRS, a
simulation trapdoor td, and a relation R as input, and
returns a proof π.

A zkSNARKs scheme should satisfy the following proper-
ties:

• Completeness: For any pair (x,w) ∈ R, the verifier
always accepts the corresponding proof.

• Knowledge Soundness: it holds if the prover must
know a witness and such knowledge can be efficiently
extracted from the prover by using a knowledge ex-
tractor.

• Zero knowledge: An argument is zero-knowledge if
it does not leak any information other than the truth
of the statement. There are exist a simulator without
secrets can generate valid proofs.

• Succinctness: The size of a proof is |π| ≤
poly(k)polylog(|x|+ |w|)

Commit-and-prove SNARK. Commit-and-prove SNARK
is a SNARK(cp-SNARK, for short) [27] that can prove knowl-
edge of (x,w) such that R(x,w) = 1 holds w.r.t. a witness
w = (u,w) and u opens a commitment cu as follow:

Definition 3: We denote a cp-SNARK as a triple of algo-
rithm CP = (KeyGen,Prove,VerProof).

www.ijacsa.thesai.org 824 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

• KeyGen(ck,R) → CRS = (ek, vk) generates the
common reference string(CRS).

• Prove(ek, x, (cj)j∈[l], (uj)j∈[l], (oj)j∈[l], w)→ π out-
puts the proof of correct commitment.

• VerProof(vk, x, (cj)j∈[l]) → b ∈ {0, 1} reject or
accept the proofs.

The above definition has perfect completeness, computa-
tional knowledge soundness and zero knowledge in the random
oracle model. Please refer to [27] for more details on the
formal definition.

IV. PROBLEM STATEMENT

A. System Model

As shown in Fig. 1, our framework involves four enti-
ties: server, regulators, client, and bulletin board. With the
involvement of the entities, we consider such a scenario
problem: the server in possession of a trained model seeks
to convince any later-coming client that the model satisfies
a set of fairness metrics typically defined by a group of
specialist regulators, while not revealing the model parameters.
We note that we consider multiple specialist regulators who
hold different fairness metrics dependent on the policy, law
regulation, and environment of their domains, so as to ensure
an all-around fairness assessment of a trained model. To
address the above scenario problem, our framework contains
three phases, including the query phase, the auditing phase,
and the verification phase, with the following basic workflow:

• The sever commits to the model that will be evaluated,
and meanwhile, the regulators commits to their test
data that are used for evaluating model fairness.

• Any one regulator can send the test data to the
server, and the model is evaluated on the data, thereby
obtaining the corresponding evaluation result. Also,
the commitment on the evaluation result and the proof
regarding evaluation correctness are submitted to the
bulletin board. Here refers to the query phase.

• A regulator can audit the model fairness with the
evaluation result he obtains, according to the fairness
metric he holds. As a result, the regulator submits the
auditing result and a proof on correct auditing to the
bulletin board. It refers to the auditing phase.

• Any later-coming client who questions the model
fairness is able to browse the fairness auditing results
and assert the truth with the proofs from the bulletin
board. Here refers to the verification phase.

Remarks. We remark that the server provides a black-box
query inference towards the regulators, without exposing the
model parameters.

B. Threat Assumptions

We consider either the server or the regulators have the
motivation to cheat the client with respect to the model fairness
in our scenario problem. We now clarify our concrete threat
assumptions on the involved entities.

Fig. 1. System overview

Server: The server is considered to be malicious, which
may arbitrarily deviate from the evaluation of model fairness.
Specifically, 1) it may give incorrect model predication on test
data, such as random values or predication not on the commit-
ted model or test data; 2) it also may use an unfair model to
interact with the regulator, trying to trick the regulator. We note
the server has access to the regulator’s test dataset in plaintext
in our scenario. First, given that the source and amount of
data is limited, there is a tendency to audit model fairness
on publicly available datasets [19] to obtain richer test data.
Second, in scenarios where privacy is required for the test
dataset, since each of the regulator’s test data only contains
sensitive attributes and an identifier as stated in work [14],
this represents a lesser privacy risk.

Regulator: We consider regulator as malicious. The regula-
tor might give wrong fairness audit results, such as auditing an
unfair model as fair or vice versa, due to conflict of interest or
just machine failure. The regulator also might use test datasets
that differs from the previously committed data.

Client: We assume client is honest. The client can know
the algorithms for model prediction and fairness evaluation, but
does not have access to the model parameters. The commit-
ments, audit result, and proofs are always available to client.

Bulletin Board: We assume that integrity and availability
hold for bulletin board. The bulletin board can be instantiated
by using a blockchain system, such as Bitcoin or Ethereum. We
make the assumption like existing work [45]. We also assume
the existence of a secure communication channel between any
two entities.

Remarks. Note that we do not consider how to train a fair
machine learning model and we do not discuss some machine
learning attack, such as model extraction, model inversion, and
evasion attacks [46] [47]. These studies are outside the scope
of this work.

www.ijacsa.thesai.org 825 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

C. Security Goals

We aim to propose a framework for model fairness auditing
in trustless setting, which departs from previous works. The
framework establishes an evidence on the server-side model
fairness, such that an off-line or later-coming client can be
faithfully convinced of the truth respective to model fairness.
To be specific, we should achieve the following security goals.

Trustless Verifiable Model Fairness: We require that the
truth of model fairness can be efficiently verified by any one
non-designated client. Concretely, a client of interest as a
verifier can verify the public proofs posted by the server and
the regulators, so as to determine if the server’s model indeed
reaches the fairness degree of the regulators over specific test
data.

Model Privacy: We require that neither evaluation results,
auditing results or proofs reveals the private information of the
model against any one verifier.

Audit Integrity: We can provide the publicly verifiable audit
integrity to convince that any later-coming client.

Accountability: We require that a verifier can account the
misbehavior of the server or the regulator, if evaluation proof
or audit proof cannot be verified. This property cannot be
provided by MPC-based works.

V. TECHNICAL CHALLENGE

Above scenario allows the server to know the regulator’s
test data for evaluating his model, and the regulators to obtain
the corresponding evaluation results for auditing model fair-
ness. When any a later-coming client gets the auditing results,
we do not desire the client to learn any private information of
the server’s model, the regulator’s test data and the evaluation
results. We therefore need to achieve that any client (as
non-designated verifier) can check the correctness of model
evaluation and fairness auditing without private information of
the model, test data and evaluation results.

Zero-knowledge proof technique can be used to address the
above scenario problem without leaking private information.
As Fig. 1 demonstrated, a regulator can firstly commit to test
data (the server also commits to the model). The server then
conducts the model evaluation with the test data, yielding
the corresponding evaluation results. It also commits to the
evaluation results, and generates a proof π1 that the model
is indeed evaluated over the test data, with the committed
evaluation results as output. After that, the regulator executes
the computations of fairness auditing, and generates a proof π2

regarding the execution correctness. Lastly, a verifier checks
the validity of both π1 and π2 without knowing the previously
mentioned model, test data and evaluation results. Despite the
easy-following technical roadmap, we encounter the following
two challenges for efficiency:

A. Supporting Lightweight Verification

Our work adopts the state-of-the-art zkSNARK scheme
constructed by Groth [25] (refer to Groth16) due to its short
proof size (three group elements) and efficient verification.
Despite the optimal performance of the scheme, the direct
adoption without any modification cannot satisfy our scenario

requirements. Specifically, to test model fairness and ensure
the result reliability require sufficiently large test data, e.g.,
6800 test inputs per regulator, as mentioned in [19]. Based
on the scenario, the overall proof size will increase linearly
with the amount of data, although the single proof of the
Groth16 scheme is succinct. But a verifier is considered a thin
device with restricted resources, and thus the result proof as
described above easily becomes a computational and storage
burden on the lightweight verifier. Furthermore, this situation
becomes even worse when we want to verify the results of
the fairness audit of multiple regulators with different test
data and different fairness metrics. Therefore, the challenge
is implementing more efficient verification when the model
fairness is audited by large test data from multiple regulators.

B. Improving Proving Performance

Recall that the proof generation process based on an zk-
SNARK scheme involves compiling a computation (e.g., model
fairness auditing) into a circuit, such as arithmetic circuit and
Boolean circuit, and then expressing the circuit with rank-
1 constraint system (R1CS) used for generating proof. The
involved arithmetic and Boolean operations generally deter-
mine the efficiency of the zkSNARK scheme used in practical.
For example, the overhead of the Groth16 scheme is friendly
for arithmetic operations in the finite field but unfriendly for
Boolean operations (due to the radical blow-up in the circuit
size required to compile Boolean operations into the arithmetic
circuit). Such technical feature, however, is in conflict with the
concrete computation of our scenario, since model fairness
auditing involves many Boolean-efficient operations such as
comparison. Our challenge thus is efficiently handling Boolean
operations in proof generation.

VI. CONCRETE DESIGN

We now present our framework that enables the fairness
audit for an ML model while keep model confidentiality in
an efficient publicly verifiable manner, enabling each one to
assess model fairness individually and thus minimize trust
dependency between server, regulator and client. It builds on
Groth16 zk-SNARK scheme, Pedersen commitment and sig-
nature scheme. As mentioned above, our framework consists
of three phase: query phase, audit phase, and verification
phase. (1) In the query phase, the regulator query the server’s
model using the committed test dataset. Then the server
evaluate model on test data and generate a proof for correct
evaluation, and sends the evaluation results and the evaluation
proof to the regulator. (2) The regulator verifies the evaluation
proof and evaluate fairness metrics of model. And then the
regulator generate auditing proof. And release auditing result
and auditing proof to the bulletin board. (3) The client verifies
the evaluation proof, audit proof and determines the fairness
of the server’s model.

A. Query Phase

1) Model evaluation.: In this phase, the main goal of reg-
ulator is to obtain the evaluation of the server’s model on test
data that can be used to audit the model’s fairness. Firstly, the
regulator collects sufficient test dataset X = {x0, . . . , xn−1}
(in a legally compliant way or directly extracted from public
audit datasets [19]) and commits it to cmx using the Pedersen

www.ijacsa.thesai.org 826 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

commitment scheme. The server also commits its ML model
parameter to cmm using the same commitment scheme. Then
both parties posting their commitments cmx and cmm to the
Bulletin board respectively. Noted that the ML model structure
is known to the verifier, we only protect the model parame-
ter privacy, e.g. weight information. Secondly, the regulator
transmits test data X = {x0, . . . , xn−1} to the server, then
the server computes the evaluations of model on the test data
Ŷ = {y0, . . . , yn−1} and generates the evaluation proof πe.
Moreover, the server commit the evaluation of model to cmŷ

and publish it and the evaluation proof πe to the Bulletin board,
and the server sends the model evaluations Ŷ to the regulator.

2) Proof generation.: Our framework conducts the commit-
and-prove paradigms [27] so that we can support zero-
knowledge evaluation for both secret input and secret models
in a straightforward way. Specially, in our scenario, we allow
the server get the test data in plaintext, and the regulator
obtains the evaluation results for audit the model. However,
from the client’s perspective, the privacy of the model, test
data, and the evaluation result all is preserved.

The claim from [19] stated that an ML model M is ϵ-fair
with confidence 1− δ if:

EFG < ϵ ∧min
g∈G
≥ 2

(ϵ− EFG)2
ln

2|G||Y|
δ

where mg denotes the number of occurrences of g in T . Takes
EFG = 0.05, ϵ = 0.1, δ = 0.2 and |G| = 100 as example, we
need sample number mg ≈ 6800. In this scenario, although
the individual evaluation proof are small, thousands of test
data make verifying multiple evaluation proofs expensive. As
stated above, however, our goal is to keep the succinctness
of proof due to we want to support a lightweight client who
has limited memory and computation resources. There are two
common techniques to keep succinctness of multiple proofs
in literature, one is SNARK recursion [48] [49], and other is
proof aggregation [50] [51]. The SNARK recursion can prove
the proof is correct, and we can compress a sequence of proofs
into one proof. Specially, we can aggregate proofs via recursive
composition that create another SNARK for the circuit that
contains n copies of the Groth16 verifier circuit [48]. But the
SNARK recursion incur significant practical overhead due to
we need to compiler the verify algorithm into a circuit, and this
is the bottleneck of recursion SNARK efficiency. For example,
computing a pairing on the BLS12-377 curve require ∼ 15000
constraints [48].

3) Proof aggregation.: In our work, we adopt proof aggre-
gation technique. Inspired by SnarkPack [50] [51], we resort
to utilize special structure of proof to aggregate multiple proof.
SnarkPack propose an approach to reduce the overhead in
communication and verification time for verify multiple proofs
without the need of further larger trusted setup ceremonies.
The SnarkPack allows to aggregate n Groth16 zk-SNARKs
proofs with O(log n) proof size and verifier time and can be
constructed from two different existing ceremonies (e.g., the
“power of tau” for Zcash [38] and Filecoin [52]).

We explain the aggregation protocol used in SnarkPack
and how it can adapt to our CP-SNARK scenario below. First,
we recall the verification process used in Groth16. A detailed
description of Groth16 SNARK protocol can be found in [25].

The proof π in Groth16 consists of three group element π =
(A,B,C) ∈ G1×G2×G1. For the verification algorithm, we
need the verification key vk:

vk :=

(
gα, hβ ,

{
Sj = g

βj(s)+αwj(s)+yj(s)

γ

}t

j=0

, hγ , hδ

)
The verifier need check that pairing equations is satisfy:
e(A,B) = e(gα, hβ) ·e(

∑t
j=0 S

aj

j , hγ) ·e(C, hδ), where [a] is
public input.

The high level idea of Groth16 aggregation is straightfor-
ward: instead of checking that n different pairing equations are
simultaneously satisfied, it is sufficient to prove that only one
inner pairing product of a random linear combination of these
equations defined by a verifier’s random challenge r ∈ Zp

holds. The same idea is heavily exploited exploited in poly-
nomial commitment, SNARK batch, SNARK recursive [48].
Specially, consider n proof [πi]

n−1
i=0 = {Ai, Bi, Ci}n−1

i=0 , the
verifier need to check n equations of e(Ai, Bi) = Yi·e(Ci, h

δ),
where

Yi = e(gα, hβ)n · e(
n−1∏
i=0

S
∑n−1

j=0 ai,j ·rj

i , hγ)

The aggregation will instead check a single randomized equa-
tion:

n−1∏
i=0

e(Ai, Bi)
ri =

n−1∏
i=0

Y ri

i · e(
n−1∏
i=0

Cri

i , hδ)

And we rewritten above equation as:

ZAB = Y ′
prod · e(ZC , h

δ)

where ZAB =
n−1∏
i=0

e(Ai, Bi)
ri , ZC =

n−1∏
i=0

Cri

i and

Y ′
prod =

n−1∏
i=0

Y ri

i . And then we will check that ZAB , ZC

are consistent with the initial proof triples. Here we use two
notions: the target inner pairing product (TIPP) and the multi-
exponentiation inner product (MIPP) (detail can see [50]).

• TIPP: takes some committed vector A ∈ Gn
1 ,B ∈ Gn

2

and shows that ZAB =
∏n−1

i=0 e(Ai, Bi);

• MIPP: takes a committed vector C ∈ Gn
1 and a vector

r ∈ Zn
p and shows that ZC =

∏n−1
i=0 Cri

i

After that we can use TIPP and MIPP to generate the
aggregated proof π = (πt, πm, TAB , UAB , TC , UC , ZAB , ZC),
where the last two elements are required to verify the Groth16
equation, the first two elements used to verify the TIPP and
MIPP arguments, and other elements are required for the
verifier derive randomness r in Fiat-Shamir transformation
[53]. After verify TIPP and MIPP proof, the regulator use
ZAB , ZC as the linear combination of the proofs. Then the
regulator verify the Groth16 equation using the aggregated
proof ZAB , ZC and decides whether to move to the next stage.

In the case of CP-SNARK, we need additional element D
of the proof that contains a commitment to the data and to
create a CPlink to link D to the external commitment. Also
we need some additional element in CRS to create D and the
CPlink. Nevertheless, the special structure of the proof does

www.ijacsa.thesai.org 827 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

TABLE I. CONFUSION MATRIX

Actual-Positive Actual-Negative

Evaluation-
Positive

True Positive (TP)
TPR= TP

TP+FN

PPV= TP
TP+FP

False Positive (FP)
FPR= FP

FP+TN

Evaluation-
Negative

False Negative (FN)
FNR = FN

TP+FN

True Negative (TN)
TNR= TN

TN+FP

not change. In order to verify the proof, we only need verify
equation of the structure: e(A,B) = Y · e(C, hδ). Thus, we
can obtain the aggregated proof in the same way.

B. Auditing Phase

In this phase, multiple regulators aim to evaluate particular
fairness metrics depending on the environment, policy, and
industry to determine the fairness of the ML model.

1) Fairness audit: Following the common approach in [42],
we can use a confusion matrix (see Table I) to compute
statistical metrics of ML model, which is what most statistical
measures of fairness rely on. The basic notion in confusion
matrix as follow:

• True positive (TN): a case when the predicted and
actual evaluation are both in the positive class.

• False positive (FP): a case predicted to be in the
positive class when the actual outcome belongs to the
negative class.

• False negative (FN): a case predicted to be in the
negative class when the actual outcome belongs to the
positive class.

• True negative (TN): a case when the predicted and
actual evaluation are both in the negative class.

Based on these basic concepts, we calculate the fairness
metrics. Specifically, the fairness notion we took in this work
is as follows: Demographic parity (DP), Equalize odds (EO),
Equal opportunity, and Disparate impact (DI). Use these for-
mulation, following the basic paradigm in zk-SNARKs, we can
express the whole fairness computation as arithmetic circuit
and then generate proof.

2) Technical observation: As mentioned earlier, the chal-
lenge in generating proof is that we must handle many non-
linear operations because we adopt group-based fairness no-
tions, e.g., divides, comparison, sorting, and so on. To resolve
the challenge, our framework uses the observation that for
a prover to convince a verifier that it knows the output of
some non-linear operation, the prover does not actually need
to execute the non-linear operation in the circuit. Instead, the
prover just needs to prove that the output of the non-linear
operations is correct. For example, suppose the prover wants
to prove z = x/y to the verifier. In that case, the prover does
not need to straight to compiler divide to a ciruit but simply
provides a divided result z as an ”advice” and then prove
multiplication operation x = z×y. Note that the multiplication
operation only contain one multiplication gate, so it much
more efficient than naive encoding the divide operation to

a circuit (e.g., compute inverse use Fermat’s little theorem,
a · ap−2 = 1). The observation is broadly used in literature
[24], [39], [54], [55]. Next, we will show how to bring this
idea into our framework to help model audit.

3) Handle non-linear operations: At a high level, we can
split the computation in the audit phase into two-component:
one is to evaluate fairness metrics, and the other is to compute
the empirical fairness gap. First, we summarize the typical
non-linear operation in the auditing process below and then
design a protocol to prompt efficiency. The typical operations
in statistical fairness evaluate as follow: 1) divides; 2) absolute
value; 3) comparison; and 4) maximum or minimum value. To
clarify the research methodology, we consider the following
examples. First, the regulator needs to compute the basic
metrics: TP, FP, TN, and FN. And then calculate fairness
metrics like TPR and FRP. Finally, the regulator computes the
EFG corresponding fairness notion, such as DP.

For division operations, we have solved as above. For
comparison operation, e.g. x ≥ 0, we ask the prover to
provider the bit decomposition (a0, . . . , ak) of x as a witness
(ak denote sign bit, e.g. positive(1) or negative(0)). Then
we can check that: 1) each ai is binary: ai(ai − 1) =
0,∀i ∈ [k]; 2) The correctness of bit-decomposition of x:
ak(x−

∑k−1
i=0 ai2

i) + (1− ak)(x+
∑k−1

i=0 ai2
i) = 0.

In calculating the EFG, we need to find the maximum
metrics gap between different group. Naive computation is not
feasible because it requires us to make a two-by-two difference
between all the elements in the group and then select the
maximum gap value. A more thoughtful way is to sort the array
and then use the maximum value minus the minimum value
to get EFG. Nevertheless, directly representing a sorting algo-
rithm such as QuickSort as a circuit requires a comparison that
contains O(n log n), which is expensive. Following the above
observation, we asked the prover to provide some “advice” as
a witness to improve efficiency, and we can combine absolute
and maximum value into one relation. Concretely, assume that
we have (x0, . . . , xn−1) denote the fairness metrics on n test
data and want to compute max |xi − xj | between different
group. The prover is required to provide the maximum xmax

and the minimum value xmin in list as an auxiliary witness.
Then we can check that xmax is actually the maximum number
as follows:

1) xmax − xj ≥ 0 ∀j ∈ [n].
2) ∃j ∈ [n] such that xmax − xj = 0. This condition is

equivalent to xmax ·
∏n−1

j=0 (xmax − xj) = 0.

The first condition can be checked by bit-decomposing
of xmax − xj and then checks are exactly the same as the
comparison operation. Similarly, the check of xmin is exactly
the same as xmax above.

Overall, comparing to straight compute maximize value
above, the prover only additionally provides bit-decomposing
of maximize and minimize value, and the protocol checks two
additional bit decomposition. After all of computation done,
the regulator publish all of the commitments, proofs, and audit
result with associated signature on bullet board.

www.ijacsa.thesai.org 828 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

TABLE II. EVALUATION PROOF TIME OF FLR MODEL

Dataset preprocess time(s) prover time(s) verifier time(s)

German 2.139 0.736 0.0159
Bank 110.853 34.9684 0.0293
Adult 82.272 26.921 0.0403

C. Verification Phase

Depending on the application area, regulator is selected to
verify the correctness of the audit results. After get the audit
result from y, the client request committed values for the ML
models cmm, test data cmx, and evaluation results cmy . The
client then request evaluation proof πe and auditing proof πa

from the bulletin board.

Upon reception of all of message, the client verifies the
signature using the public key of the selected regulators and
server for the authenticity of commitment, proof and results.
If satisfied, client then verifies the evaluation proof πe and
audit proof πa using the verification key and commitment. If
all these verification pass, then the client will be convinced
by the regulator’s auditing results and thus determinate the
fairness of the model.

If the client verify failure then one can identify the mis-
behaving party and take penalize it, in the form of reputation
evaluation, incentives, etc. Then the party responsible for the
misleading behavior is deterred and restart a new auditing pro-
cess. After all checks are successful, the client can determine
the correctness of the ML model auditing results.

VII. EVALUATION

We implemented our fairness audit framework and we
present the experiment result in this section.

A. Setup

We have implemented the fairness audit framework in C++
using the libsnark [56] library. We run all of the experiments on
4-core Intel i7-5600k (2.6 GHZ, 8 physical cores) and 48 GB
of RAM with Ubuntu18.04. Note that we run our experiments
on Docker container. Our current implementation is only use
a single CPU core. We report the time in seconds and take the
average of 10 runs per experiment as the result.

We used three real-world datasets from various domains:
German credit dataset (German), Bank marketing dataset
(Bank), and Adult income dataset (Adult) [57]. The datasets
vary in size and disparity of minority groups and as such some
can be used to create fair or unfair models. In this experiment,
we train fair logistic regression (FLR)1. Note that due to
zk-SNARK systems only support group elements, we use a
generic 8-bit unsigned quantization technique to transform
float into integers.

1The implementation of fair machine learning model is based on the
repository https://github.com/mbilalzafar/fair-classification.

B. Performance of Model Query

In this section, we report the performance of the query
phase of the model. First, we use FLR model to measure
the time to generate evaluation proofs for all three datasets.
Since matrix multiplication is involved in all three models,
a representative FLR is selected to measure the performance.
Table II shows the results of evaluation proof in model query
phase. The FLR model needs matrix-vector multiplication
between the weight vector and input matrix of test data, where
the sizes of input matrix are 1000 × 20 and 45550 × 20, and
48880× 15. As a result, the input test data and the number of
samples affect the circuit constraints and thus the performance.

After that we measure the overhead incurred by aggregating
the proofs. Due to the different sizes of the three datasets
to ensure the fairness of the model, we set different fairness
gaps and confidence levels just like in [19]. We performed our
test on the mentioned datasets with δ = 0.05 and ϵ = 0.1.
Our evaluation result can see in Fig. 2. The results show that
aggregated proofs of thousands of proofs are relatively small in
size and can be verified in a few seconds. Although the proofs
take more time, this is not impractical. In practice, aggregation
operations can be performed offline without affecting the
online use of the model after deployment.

C. Performance of Fairness Audit

After query phase, the regulator calculates fairness metrics
based on the evaluation results from the server. Thus, we mea-
sure computation times of fairness metrics in three datasets.
Naturally, we split the data into a training and test subset. The
sizes of the three datasets are 200, 9100 and 9000, respectively.
In Bank dataset, we use the marital status feature as binary
sensitive attribute and income for labels. We considered gender
as a binary sensitive variable in Adult and German. Table III
shows the evaluation results of fairness audit. The experimental
results prove the usefulness of our framework, which takes
only a few milliseconds to verify the correctness of the fairness
audit results, making it easy for anyone to ensure that they are
protected from discrimination. In addition, both preprocessing
and prove times are within acceptable bounds.

VIII. DISCUSSION AND FUTURE WORK

One problem with the Groth16 system used in the frame-
work instantiation, despite its state-of-the-art proof scale, is
that it requires a trusted third party to generate the CRS used
to construct the proofs. While it is possible to use MPC to
generate reliable CRS [58], a transparent zkp system [28] could
be used instead to avoid trusted party, which is left for future
exploration. We expect that better ZK systems will emerge
to replace the ZKP schemes we use and thus improve the
efficiency of proposed framework. In order to achieve optimal
ZK systems in all aspects, such as proof size, proofing time,
etc., one promising direction is proof composition [37], [59].
Also, we can naturally extend our work to support confidential
model prediction and model accuracy assessment [39], [40].

For future work, we want to explore further protecting the
privacy of test data on the server. Especially since there are no
publicly available test data and the user data is susceptible in
some scenarios. A promising direction is the use of verifiable

www.ijacsa.thesai.org 829 | P a g e

https://github.com/mbilalzafar/fair-classification

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

(a) prover time (b) verifier time (c) proof size

Fig. 2. Performance of Aggregation

TABLE III. FAIRNESS AUDIT PERFORMANCE OF FLR MODEL ON THREE DATASETS

Dataset preprocess time(s) prover time(s) verifier time(s)

DP EO EOP DI DP EO EOP DI DP EO EOP DI

German 8.17 8.62 9.84 8.29 1.64 2.35 1.95 2.25 0.0062 0.0059 0.0061 0.0063
Bank 87.13 86.42 86.01 88.23 25.55 23.23 24.66 25.28 0.0052 0.0061 0.0063 0.0052
Adult 81.19 80.58 81.56 82.48 23.23 24.96 23.86 23.75 0.0067 0.0068 0.0069 0.0065

encryption techniques [60] to ensure integrity and confiden-
tiality. Finally, it is also interesting to explore other fairness
definitions beyond group-based as a research direction.

IX. CONCLUSION

This work proposes a framework to prompt publicly fair
audits for a machine learning model. Unlike previous work,
our construction only assumes the third-party collection test
data and does not rely on the third party. We minimize the
trust between the server, the regulator, and the client. Also,
our framework can support multiple regulators to provide
more strength and border fairness without additional trust
assumptions. Our experimental evaluation confirms that our
framework is practical for fairness auditing ML models with
real datasets.

ACKNOWLEDGMENT

The authors would like to thank Dr. Jiasi Weng for valuable
and helpful discussions on this work. Wuzheng Tan was
supported by National Natural Science Foundation of China
(Grant Nos. 62272199).

REFERENCES

[1] S. M. D. A. C. Jayatilake and G. U. Ganegoda, “Involvement of
Machine Learning Tools in Healthcare Decision Making,” Journal of
Healthcare Engineering, vol. 2021, p. e6679512, 2021.

[2] T. Tulabandhula and C. Rudin, “On combining machine learning with
decision making,” Machine Learning, vol. 97, no. 1, pp. 33–64, 2014.

[3] A. E. W. Johnson, M. M. Ghassemi, S. Nemati, K. E. Niehaus, D. A.
Clifton, and G. D. Clifford, “Machine Learning and Decision Support in
Critical Care,” Proceedings of the IEEE, vol. 104, no. 2, pp. 444–466,
2016.

[4] T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma, “Fairness-Aware
Classifier with Prejudice Remover Regularizer,” in Machine Learning
and Knowledge Discovery in Databases, ser. Lecture Notes in Computer
Science. Springer, 2012, pp. 35–50.

[5] M. Hardt, E. Price, E. Price, and N. Srebro, “Equality of Opportunity
in Supervised Learning,” in Advances in Neural Information Processing
Systems, vol. 29. Curran Associates, Inc., 2016.

[6] G. Pleiss, M. Raghavan, F. Wu, J. Kleinberg, and K. Q. Weinberger,
“On Fairness and Calibration,” in Advances in Neural Information
Processing Systems, vol. 30. Curran Associates, Inc., 2017.

[7] J.-G. Lee, Y. Roh, H. Song, and S. E. Whang, “Machine Learning
Robustness, Fairness, and their Convergence,” in Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, ser. KDD ’21. Association for Computing Machinery, 2021,
pp. 4046–4047.

[8] H. Zhang, X. Chu, A. Asudeh, and S. B. Navathe, “OmniFair: A
Declarative System for Model-Agnostic Group Fairness in Machine
Learning,” in Proceedings of the 2021 International Conference on
Management of Data, ser. SIGMOD ’21. Association for Computing
Machinery, 2021, pp. 2076–2088.

[9] R. K. E. Bellamy, K. Dey, M. Hind, S. C. Hoffman, S. Houde,
K. Kannan, P. Lohia, J. Martino, S. Mehta, A. Mojsilović, S. Nagar,
K. N. Ramamurthy, J. Richards, D. Saha, P. Sattigeri, M. Singh, K. R.
Varshney, and Y. Zhang, “AI Fairness 360: An extensible toolkit for
detecting and mitigating algorithmic bias,” IBM Journal of Research
and Development, vol. 63, no. 4/5, pp. 4:1–4:15, 2019.

[10] B. d’Alessandro, C. O’Neil, and T. LaGatta, “Conscientious Classifica-
tion: A Data Scientist’s Guide to Discrimination-Aware Classification,”
Big Data, vol. 5, no. 2, pp. 120–134, 2017.

[11] B. H. Zhang, B. Lemoine, and M. Mitchell, “Mitigating Unwanted Bi-
ases with Adversarial Learning,” in Proceedings of the 2018 AAAI/ACM
Conference on AI, Ethics, and Society, ser. AIES ’18. Association for
Computing Machinery, 2018, pp. 335–340.

[12] R. Berk, H. Heidari, S. Jabbari, M. Joseph, M. Kearns, J. Morgenstern,
S. Neel, and A. Roth, “A Convex Framework for Fair Regression,” 2017.

[13] T. Bolukbasi, K.-W. Chang, J. Y. Zou, V. Saligrama, and A. T. Kalai,
“Man is to Computer Programmer as Woman is to Homemaker?
Debiasing Word Embeddings,” in Advances in Neural Information
Processing Systems, vol. 29. Curran Associates, Inc., 2016.

[14] M. Veale and R. Binns, “Fairer machine learning in the real world:
Mitigating discrimination without collecting sensitive data,” Big Data
& Society, vol. 4, no. 2, p. 2053951717743530, 2017.

[15] N. L. Martinez, M. A. Bertran, A. Papadaki, M. Rodrigues, and
G. Sapiro, “Blind Pareto Fairness and Subgroup Robustness,” in Pro-
ceedings of the 38th International Conference on Machine Learning.
PMLR, 2021, pp. 7492–7501.

[16] P. Lahoti, A. Beutel, J. Chen, K. Lee, F. Prost, N. Thain, X. Wang,
and E. Chi, “Fairness without Demographics through Adversarially
Reweighted Learning,” in Advances in Neural Information Processing
Systems, vol. 33. Curran Associates, Inc., 2020, pp. 728–740.

www.ijacsa.thesai.org 830 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

[17] S. Park, S. Kim, and Y.-s. Lim, “Fairness Audit of Machine Learning
Models with Confidential Computing,” in Proceedings of the ACM
Web Conference 2022, ser. WWW ’22. Association for Computing
Machinery, 2022, pp. 3488–3499.

[18] N. Kilbertus, A. Gascon, M. Kusner, M. Veale, K. Gummadi, and
A. Weller, “Blind Justice: Fairness with Encrypted Sensitive Attributes,”
in Proceedings of the 35th International Conference on Machine
Learning. PMLR, 2018, pp. 2630–2639.

[19] S. Segal, Y. Adi, B. Pinkas, C. Baum, C. Ganesh, and J. Keshet, “Fair-
ness in the Eyes of the Data: Certifying Machine-Learning Models,”
in Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and
Society, ser. AIES ’21. Association for Computing Machinery, 2021,
pp. 926–935.

[20] S. Pentyala, D. Melanson, M. De Cock, and G. Farnadi, “PrivFair: A
Library for Privacy-Preserving Fairness Auditing,” 2022.

[21] T. Cloosters, M. Rodler, and L. Davi, “TEEREX: Discovery and
Exploitation of Memory Corruption Vulnerabilities in SGX Enclaves,”
in 29th USENIX Security Symposium, 2020.

[22] T. Cloosters, J. Willbold, T. Holz, and L. Davi, “SGXFuzz: Efficiently
Synthesizing Nested Structures for SGX Enclave Fuzzing,” in USENIX
Security, 2022.

[23] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From extractable
collision resistance to succinct non-interactive arguments of knowledge,
and back again,” in Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, ser. ITCS ’12. Association for Com-
puting Machinery, 2012, pp. 326–349.

[24] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly
Practical Verifiable Computation,” in 2013 IEEE Symposium on Security
and Privacy, 2013, pp. 238–252.

[25] J. Groth, “On the Size of Pairing-Based Non-interactive Arguments,”
in Advances in Cryptology – EUROCRYPT 2016, ser. Lecture Notes in
Computer Science. Springer, 2016, pp. 305–326.

[26] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “PLONK: Permuta-
tions over Lagrange-bases for Oecumenical Noninteractive arguments
of Knowledge,” 2019.

[27] M. Campanelli, D. Fiore, and A. Querol, “LegoSNARK: Modular
Design and Composition of Succinct Zero-Knowledge Proofs,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’19. Association for Computing
Machinery, 2019, pp. 2075–2092.

[28] S. Setty, “Spartan: Efficient and General-Purpose zkSNARKs Without
Trusted Setup,” in Advances in Cryptology – CRYPTO 2020, ser. Lecture
Notes in Computer Science. Springer International Publishing, 2020,
pp. 704–737.

[29] J. Bootle, A. Chiesa, Y. Hu, and M. Orrú, “Gemini: Elastic SNARKs
for Diverse Environments,” in Advances in Cryptology – EUROCRYPT
2022, ser. Lecture Notes in Computer Science. Springer International
Publishing, 2022, pp. 427–457.

[30] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity
of interactive proof-systems,” in Proceedings of the Seventeenth Annual
ACM Symposium on Theory of Computing - STOC ’85. ACM Press,
1985, pp. 291–304.

[31] J. Kilian, “A note on efficient zero-knowledge proofs and arguments
(extended abstract),” in Proceedings of the Twenty-Fourth Annual ACM
Symposium on Theory of Computing, ser. STOC ’92. Association for
Computing Machinery, 1992, pp. 723–732.

[32] S. Micali, “CS proofs,” in Proceedings 35th Annual Symposium on
Foundations of Computer Science, 1994, pp. 436–453.

[33] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short Proofs for Confidential Transactions and More,” in
2018 IEEE Symposium on Security and Privacy (SP), 2018, pp. 315–
334.

[34] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song, “Libra:
Succinct Zero-Knowledge Proofs with Optimal Prover Computation,”
in Advances in Cryptology – CRYPTO 2019, ser. Lecture Notes in
Computer Science. Springer International Publishing, 2019, pp. 733–
764.

[35] J. Zhang, T. Liu, W. Wang, Y. Zhang, D. Song, X. Xie, and Y. Zhang,
“Doubly Efficient Interactive Proofs for General Arithmetic Circuits

with Linear Prover Time,” in Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’21.
Association for Computing Machinery, 2021, pp. 159–177.

[36] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable Zero
Knowledge with No Trusted Setup,” in Advances in Cryptology –
CRYPTO 2019, ser. Lecture Notes in Computer Science. Springer
International Publishing, 2019, pp. 701–732.

[37] A. Golovnev, J. Lee, S. Setty, J. Thaler, and R. S. Wahby, “Brakedown:
Linear-time and post-quantum SNARKs for R1CS,” 2021.

[38] E. Ben Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized Anonymous Payments from
Bitcoin,” in 2014 IEEE Symposium on Security and Privacy, 2014, pp.
459–474.

[39] T. Liu, X. Xie, and Y. Zhang, “zkCNN: Zero Knowledge Proofs
for Convolutional Neural Network Predictions and Accuracy,” in Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’21. Association for Computing
Machinery, 2021, pp. 2968–2985.

[40] J. Weng, J. Weng, G. Tang, A. Yang, M. Li, and J.-N. Liu, “pvCNN:
Privacy-Preserving and Verifiable Convolutional Neural Network Test-
ing,” 2022.

[41] P. Grubbs, A. Arun, Y. Zhang, J. Bonneau, and M. Walfish, “{Zero-
Knowledge} Middleboxes,” in 31st USENIX Security Symposium
(USENIX Security 22), 2022, pp. 4255–4272.

[42] S. Verma and J. Rubin, “Fairness Definitions Explained,” in 2018
IEEE/ACM International Workshop on Software Fairness (FairWare),
2018, pp. 1–7.

[43] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel, “Fairness
through awareness,” in Proceedings of the 3rd Innovations in Theoret-
ical Computer Science Conference, ser. ITCS ’12. Association for
Computing Machinery, 2012, pp. 214–226.

[44] A. Chouldechova, “Fair Prediction with Disparate Impact: A Study of
Bias in Recidivism Prediction Instruments,” Big Data, vol. 5, no. 2, pp.
153–163, 2017.

[45] S. Kanjalkar, Y. Zhang, S. Gandlur, and A. Miller, “Publicly Auditable
MPC-as-a-Service with succinct verification and universal setup,” in
2021 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW), 2021, pp. 386–411.

[46] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
Inference Attacks Against Machine Learning Models,” in 2017 IEEE
Symposium on Security and Privacy (SP), 2017, pp. 3–18.

[47] Y. Zhang, R. Jia, H. Pei, W. Wang, B. Li, and D. Song, “The Secret
Revealer: Generative Model-Inversion Attacks Against Deep Neural
Networks,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 253–261.

[48] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu, “ZEXE:
Enabling Decentralized Private Computation,” in 2020 IEEE Symposium
on Security and Privacy (SP), 2020, pp. 947–964.

[49] N. Tyagi, B. Fisch, A. Zitek, J. Bonneau, and S. Tessaro, “VeRSA: Ver-
ifiable Registries with Efficient Client Audits from RSA Authenticated
Dictionaries,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2022, pp. 2793–2807.

[50] B. Bünz, M. Maller, P. Mishra, N. Tyagi, and P. Vesely, “Proofs
for Inner Pairing Products and Applications,” in Advances in Cryptology
– ASIACRYPT 2021, ser. Lecture Notes in Computer Science. Springer
International Publishing, 2021, pp. 65–97.

[51] N. Gailly, M. Maller, and A. Nitulescu, “SnarkPack: Practical SNARK
Aggregation,” in Financial Cryptography and Data Security, ser. Lec-
ture Notes in Computer Science. Springer International Publishing,
2022, pp. 203–229.

[52] “Filecoin: A decentralized market for storage,” https://filecoin.io.
[53] A. Fiat and A. Shamir, “How To Prove Yourself: Practical Solutions

to Identification and Signature Problems,” in Advances in Cryptology
— CRYPTO’ 86, ser. Lecture Notes in Computer Science. Springer,
1987, pp. 186–194.

[54] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou,
“vSQL: Verifying Arbitrary SQL Queries over Dynamic Outsourced
Databases,” in 2017 IEEE Symposium on Security and Privacy (SP),
2017, pp. 863–880.

www.ijacsa.thesai.org 831 | P a g e

https://filecoin.io

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 2, 2023

[55] S. Angel, A. J. Blumberg, E. Ioannidis, and J. Woods, “Efficient
Representation of Numerical Optimization Problems for {SNARKs},”
in 31st USENIX Security Symposium (USENIX Security 22), 2022, pp.
4273–4290.

[56] “libsnark: a c++ library for zksnark proofs,” https://github.com/sciprlab/
libsnark.

[57] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[58] E. Ben-Sasson, A. Chiesa, M. Green, E. Tromer, and M. Virza, “Secure
Sampling of Public Parameters for Succinct Zero Knowledge Proofs,”

in 2015 IEEE Symposium on Security and Privacy, pp. 287–304.
[59] T. Xie, Y. Zhang, and D. Song, “Orion: Zero Knowledge Proof

with Linear Prover Time,” in Advances in Cryptology – CRYPTO 2022,
ser. Lecture Notes in Computer Science. Springer Nature Switzerland,
2022, pp. 299–328.

[60] D. Fiore, A. Nitulescu, and D. Pointcheval, “Boosting Verifiable Com-
putation on Encrypted Data,” in Public-Key Cryptography – PKC
2020, ser. Lecture Notes in Computer Science. Springer International
Publishing, pp. 124–154.

www.ijacsa.thesai.org 832 | P a g e

 https://github.com/sciprlab/libsnark
 https://github.com/sciprlab/libsnark
http://archive.ics.uci.edu/ml

	Introduction
	Literature Review
	Fairness Audit
	Zero Knowledge Proof

	Preliminaries
	Fairness Notions in Machine Learning
	Cryptography Primitives

	Problem Statement
	System Model
	Threat Assumptions
	Security Goals

	Technical Challenge
	Supporting Lightweight Verification
	Improving Proving Performance

	Concrete Design
	Query Phase
	Model evaluation.
	Proof generation.
	Proof aggregation.

	Auditing Phase
	Fairness audit
	Technical observation
	Handle non-linear operations

	Verification Phase

	Evaluation
	Setup
	Performance of Model Query
	Performance of Fairness Audit

	Discussion and Future Work
	Conclusion
	References

