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Abstract—The digitization of receipts and invoices, and the
recording of expenses in industry and accounting have begun
to be used in the field of finance tracking. However, 100%
success in character recognition for document digitization has
not yet been achieved. In this study, a new Optical Character
Recognition (OCR) engine called Nacsoft OCR was developed on
Turkish receipt data by using artificial intelligence methods. The
proposed OCR engine has been compared to widely used engines,
Easy OCR, Tesseract OCR, and the Google Vision API. The
benchmarking was made on English and Turkish receipts, and
the accuracies of OCR engines in terms of character recognition
and their speeds are presented. It is known that OCR character
recognition engines perform better at word recognition when
provided word position information. Therefore, the performance
of the Nacsoft OCR engine in determining the word position was
also compared with the performance of the other OCR engines,
and the results were presented.
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I. INTRODUCTION

With the introduction of computers into our lives, important
documents for the user began to be stored in the computer
environment. Although most documents are stored electroni-
cally, there are still printed-paper documents that we frequently
use in daily life. Invoices and receipts which are among such
documents printed on nondurable paper contains information
that needs to be saved. When it comes to saving and storing
a paper document, the first thing that comes to mind is to
scan the document and store the document image in electronic
environment. With this method, documents can be stored prop-
erly by gaining space. Nevertheless, operations such as listing,
sorting and processing these document images are carried out
by people, which means a loss of time and resources, especially
for companies. In order to meet this need, Optical Character
Recognition (OCR) engines have been developed to automate
the processing of document images. OCR engines have been
developed to read the images containing the text and convert
them into processable text outputs.

The most obvious examples of digitized printed documents
are receipts and invoices. Receipts and invoices carry data on
them that may be important to the user, such as amount, tax,
date. The user may wish to store or process this information.
Applications have been developed to meet these needs of the
user. The common purpose of these applications is to enable
the user to track his or her or someone else’s spending, store
and rank their spending. These applications may encounter
many problems when reading the receipt data. Since receipts

and invoices are made of paper, they are nondurable, so they
wrinkle very quickly, wear out in a short time and the writing
on them can be easily erased. In addition, factors such as
different fonts, images, shapes, presentation of information
in the form of tables, background of the receipt image, and
oblique withdrawal of the receipt make the situation more
difficult. These factors are examples of problems that make
it difficult to read a receipt. In the applications mentioned, it
is necessary to use the OCR engine, which gives the best result
despite these problems. The field of OCR is a field that attracts
a lot of attention and is competitive. For this reason, there are
many OCR engines produced. Since OCR engines are mostly
useful for large companies, most OCR engines produced are
for commercial purposes and the methods used are not shared.
The most well-known of the commercially produced OCR
engines are Amazon Textract and Google Vision Api. Unlike
commercially produced OCR engines, there are also a small
number of open source OCR engines. Examples of open source
OCR engines are Tesseract [1], Easy OCR [2] and OCRopus
[3].

The aim of this study is to develop an open source OCR
engine using artificial intelligence methods. The developed
OCR engine is trained using receipt data. The receipt dataset
is difficult to find because the receipt images contain personal
information belonging to the user. For this reason, we need
to create the dataset to be used for training ourselves. Since
all of the data obtained by us consisted of Turkish receipts,
Turkish receipt images were used for the training. The success
of the developed OCR engine is compared to other existing
OCR engines. For comparison, both Turkish receipt dataset
and English receipt dataset were used. Since the training
dataset consists of Turkish receipt images, the comparison
of the achievements of OCR engines was also made on
Turkish receipts. As mentioned earlier, these receipts contain
the personal information of the owner on them. For this reason,
the Turkish dataset and the results of the comparison cannot
be shared. Both for the sharing of the comparison results
and to measure the success of the developed OCR engine in
different datasets, the comparison is also made on the English
receipt data. Test images from the ICDAR-2019 SROIE [4]
competition were used for the English receipt dataset.

Although this study focuses on only one document type,
the methods used can be applied to other document types.
The method used in the study consists of three main headings.
These; pre-preparation, word detection and word reading. In
the preliminary preparation stage, the receipt areas are deter-
mined in the visual by passing through the visual masking and
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segmentation model that comes first. Then, the corner detection
algorithm is operated on the obtained mask and the perspective
process is applied by detecting the four corners of the receipt.
Thus, the receipt image is freed from unnecessary background
and more focus is provided on the regions containing text. In
the next step, the object detection algorithm is applied to the
image obtained and the locations of the words in the receipt
are determined. In the final stage, the words detected are
passed through the Convolutional Recurrent Neural Network
(C-RNN) [5] model and the reading process is performed.
In this way, the incoming receipt image is OCR’d and the
text output is produced. The success of the OCR engine
developed in this study is compared to Tesseract, Easy OCR
and Google Vision Api. When making the comparison, the
test dataset consisting of Turkish receipt images selected by
us and not used during the training phase and also English
receipt data from the ICDAR2019-SROIE competition is used.
Comparisons are evaluated on the basis of speed and accuracy,
and the results from each dataset are shown in separate tables.

The flow in this article can be summarized as follows. In
the following part of the study, the OCR engine developed will
be explained. The method and dataset used in this regard will
be detailed. In Section III, the success of the proposed OCR
engine will be detailed from the dataset used to compare it with
other commonly used OCR engines and the benchmark metrics
used. Section IV contains the results from the comparison,
interpretations and analyses of these results. Section V briefly
summarizes our work and talks about the work to be done in
the future.

II. RELATED WORK

OCR engines have been a topic of interest for a long time.
Even though studies have been carried out for a long time, the
OCR problem is still not a solved problem. However, there are
OCR engines that can achieve high success compared to others.
Applications such as Amazon Textract and Google Vision Api,
which are among these OCR engines, are chargeable to use.
Since OCR engines are generally produced for commercial
purposes, very few open source OCR engines are available.
The most well-known open source OCR engine in the literature
is Tesseract. Tesseract OCR engine differs from our study in
terms of the methods it uses. While deep learning methods are
used for OCR in our study, Tesseract performs OCR with pixel
operations. The Tesseract OCR engine first determines the text
areas in the image by performing page layout analysis. Blobs
are obtained by applying connected component analysis in the
specified text fields. The detected blobs are then separated into
lines and words. After the words are divided into characters
with two different methods, the text recognition process is
performed using the two-pass adaptive classifier.

Apart from the Tesseract OCR engine, there is another
open source OCR engine called OCRopus. This OCR engine,
first determines the text fields by page layout analysis like
Tesseract. Then the text fields determined by the page layout
are sent to the Text Line Recognition stage, and the language
of the text and the writing direction of the text (right to left,
left to right) are determined. It uses dynamic programming
algorithm for character detection and multi-layer perceptrons
(MLPs) for character recognition. There is also a study [6],
which uses slightly more modern methods and whose text

recognition stage is similar to our work. In the text detection
phase, all contours are detected with the Canny algorithm
and then lines are determined using these contours. Then,
preprocessing operations such as Noise removal, perspective
correction, baseline correction are applied to improve the
reading process before the text recognition stage. The lines
detected in the text detection stage are divided into smaller
pieces by the sliding window method for the reading process.
The image pieces obtained from the lines are then sent to the
text recognition model. First, features are obtained by passing
the incoming image pieces through the encoder consisting of
Convolution layers. Then, these features are passed through
the Bidirectional Long-Short Term Memory (Bi-LSTM) and
Connectionist Temporal Classification (CTC) layer, which is
the decoder part of the model, and text outputs are produced.

Unlike these [1], [3], [6] studies, [7] study describes a new
method for reading clipped words from document data. In this
method, the incoming word image is first passed through an
encoder called the Gated Recurrent Convolution Neural Net-
work (GRCNN). The features obtained in the encoder section
are then sent to the decoder consisting of Bi-LSTM and CTC
layers, and text outputs are produced. The aforementioned
[1], [3], [6], [7] studies were developed using document data,
similar to our study. In the OCR field, there is also OCR in
Natural Scene data, in addition to document data. Although
the OCR issue in Natural Scene data is similar to the OCR
issue in document data, it is a much more difficult problem.
While some studies on Natural Scene data focused only on
text recognition [8], [9], [10], some others [11], [12], [13], [14]
tried to solve the text detection and recognition issue together.

III. METHODOLOGY

In this section, all stages of the developed OCR engine
are examined in detail. The OCR engine mentioned in this
study was developed through three basic processes. In the
preliminary preparation stage, which is the first stage; the
incoming receipt image is subjected to multiple processes for
the detection of text fields. In the second stage, word positions
are determined on the full-screen receipt image, which is
the output of the first stage. In the final stage, the detected
words are clipped and sent to the “word reading model”
and the reading process is performed. The diagram given in
Fig. 1 summarizes the process mentioned. The details of the
processes are given in the following subheadings.

A. Preliminary Preparation

Receipt images sent to the OCR engine and expected
to be read often come with background images and taken
from different angles. The input image can also contain a
background image, as shown in Fig. 2. In such a case, the
detection of text fields is even more difficult. Factors such as
the constant change of the background, the position of the
receipt in the image, the obliquity of the receipt are just some
of the reasons that will make it difficult to determine the text
field. For this reason, the receipt image is passed through the
preliminary preparation stage before the text fields on it are
detected. The purpose of the preliminary stage is to obtain
a full-screen and vertical image of the receipt in the image,
free from the background image, and to send the clean receipt
image to the text detection stage.
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Fig. 1. The diagram that shows all the stages and outputs of the OCR model

Fig. 2. The processes and outputs of the preliminary stage

Fig. 2 also appears to detail the inside of the box called
Pre-porocessing in Fig. 1. The preliminary preparation phase
consists of three steps. These can be listed as (i) determination
of the receipt area (receipt mask formation), (ii) determination
of receipt corners, and (iii) application of the perspective
process. Masking model is used to determine the receipt area.
The purpose of the masking model is to produce a mask of
the objects in the visual and labeled in the training data. In
the training of the masking model, the input visual for the
input and the mask of the same resolution as the expected
output are required. An example of an input image is the Input
Image in Fig. 2. While the mask of this image is produced,
the receipt field in the image is labeled with the help of a
tool called LabelMe [15] . The tagged receipt field has a value
of 1, while the background without a receipt is 0. When this
matrix is converted to a image, the Receipt Mask given in Fig.
2 is obtained. This is how the dataset for the training of the
masking model is prepared.

The masking model is based on the Convolutional Encoder-
Decoder method. The resolution of the model input is reduced
as the layers progress. This part is known as the Encoder and
is the part where the Model draws information from the image.
Then, in the Decoder stage, the image that is reduced in the
Encoder stage is restored again. Finally, the mask of the input
image is produced by passing through the classification layer.
Depending on the number of classes in the training dataset, the
activation function of this classification layer can be Sigmoid
or Softmax. Since the OCR engine mentioned in this study
has a single class of receipt field, the last layer of the masking
model used is passed through the Sigmoid activation function.
As an output, a matrix consisting of numbers between 0 and 1
in the input image resolution is obtained. In this matrix, pixels

that are close to zero are considered as backgrounds, while
pixels with a value closer to one are considered as receipt
areas. The receipt area in the receipt image is thus estimated.

There are multiple Encoder-Decoder methods for the mask-
ing model. As the masking model used in this study, the most
appropriate Encoder-Decoder method was selected among the
methods presented in the segmentation models [16] library by
trying. Among the methods available in this library, only the
achievements of Unet [17] and Linknet [18] Encoder-Decoder
methods are compared. After selecting the Encoder-Decoder
method for the masking model, it is necessary to select a
Backbone for the Encoder. As skeletal model, VGG16 [19]
and Resnet34 [20] models with similar parameter numbers are
compared. A mobilenetv2 [21] model with a lower number
of parameters has also been added to the comparison. As a
result, the most appropriate masking model was selected by
comparing two different Encoder-Decoder methods and three
different Skeletons. The results obtained are shown in Table I.

When comparing, dataset and training parameters were
kept constant. The dataset used in the comparison consists of
the same data as the dataset of the masking model used in the
OCR engine mentioned in this study. The dataset contains a

TABLE I. COMPARISON OF COMPARING THE SUCCESSES OF MASKING
MODELS. (BATCH SIZE: 8, EPOCHS: 50, METRICS: IOU,

SAVEBESTVAL IOU ACC, INPUT RESOLUTION: 512,512)

Model Mobilenetv2
Unet

VGG16
Unet

Resnet34
Unet

Mobilenetv2
Linknet

VGG16
Linknet

Resnet34
Linknet

Duration
(Sec) 0.0926 0.1070 0.0908 0.0880 0.1004 0.0870

IoU% 98.28 98.42 98.40 98.17 98.44 98.31
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total of 1352 background receipt images. 10 percent of this
data is reserved for testing. The results given in Table I were
obtained using this training and testing dataset. In training,
bce jaccard loss was used as a loss function. The remaining
parameters are found in the description of Table I. Each model
is trained by up to 50 epochs and the best Val IoU values are
used for success comparison. Then the average elapsed time for
a receipt estimate was used to compare the model speed. Test
data were used for duration and success measurement. When
the results given in Table I are examined, it is understood that
there is not much difference between them. However, if it is
necessary to choose the most suitable model, the Resnet34
Unet should be chosen due to its proximity to the highest
success and lowest speed. In this study, Resnet34 is used as
Skeleton and Unet is used as Encoder-Decoder method in the
masking model.

Using the masking model, the receipt areas in the incoming
receipt image are determined. This process alone is not enough.
The detected receipt area needs to be separated from the
unnecessary background. Perspective process is used in this
study both to get rid of unnecessary background and to cor-
rect oblique receipt images. The perspective process converts
images that are oblique, such as the input image given in Fig.
2, into full-screen images such as the Receipt Image in Fig.
2. For this, the four corners of the region to be applied to the
perspective process (in this case, the receipt area in the image)
must be determined correctly. The receipt mask obtained from
the Masking model is used for corner determination. The edges
of the receipt image are determined using the Canny function
in the OpenCV library on the receipt mask. Then, the output
consisting of black and white images with edges is sent to the
findContours function and the corner points in the receipt mask
are determined. Using the positions of the obtained corner
points, the best four corners to represent the receipt mask
are selected. Finally, the positions of these four designated
verticals are sent to the getPerspectiveTransform. The output
of this function is sent to the warpPerspective function and the
Receipt Image in Fig. 2 with perspective applied is generated.

B. Text Detection

At this stage, the receipt visual, which is the output of the
preliminary preparation stage, is taken as input. In order to
read the incoming receipt image, the text fields must first be
determined. In this study, object detection algorithm is used
for the detection of text fields. Object detection algorithms are
used to determine the position of pre-labeled objects in the
image or video. In this study, the task of the object detection
algorithm is to detect the text fields on the receipt image that
comes as a full screen. The dataset used for the object detection
algorithm is labeled using a tool called LabelMe. The data
used in the dataset are the receipt images from the preliminary
preparation stage. When this data is labeled, each word in
the receipt image is labeled as belonging to the same object
class. The dataset consists entirely of Turkish receipt images
and consists of 552 data in total. 10 percent of this dataset is
reserved for test data.

In this study, You Only Look Once (YOLO) model is used
due to its speed and success. For word detection, YOLO V3
[22] and YOLO V4 [23] models were compared and the most
appropriate model was selected. For the training, a dataset

Fig. 3. The Words Detected by YOLO Models on the Sample Turkish
Receipt (Blue Boxes), the Output of the YOLO V3 (Left), the Output of the

YOLO V4 (Right)

consisting of Turkish receipt data used in Text Detection was
used. For success comparison, 10 percent of the dataset was
used as a test dataset. Accuracy was taken into account as a
benchmark. In comparison, the batch size and model resolution
are kept the same. Average Precision, IoU, F1 Score are used
as comparison metrics. The darknet [24] library, which is also
used in YOLO training, was used to calculate the mentioned
metrics of YOLO models. The results from the comparison
are shared in Table II. In Fig. 3, the words detected by both
YOLO models in the sample Turkish receipt image are seen.
Although the difference in success is not clearly seen in Fig.
3, when Table II is examined, it is seen that the YOLO V4
model gives the best result in all categories. For this reason,
YOLO V4 model is used in the word detection model.

C. Word Reading

The word reading stage is reached with the word positions
determined during the text detection phase. At this stage, words
are clipped from the receipt image using word positions. The
cropped words are read by means of the reading model. C-
RNN is used as a word reading model in this study. The dataset
used for the training of the model consists of words clipped
from Turkish receipt images. Words are manually tagged.
Although Turkish data are used in the training dataset, the
words are labeled according to the Latin alphabet. The reason
for this is that there are letters in Turkish that are very similar
to each other (ç-c, ö-o, i-ı ...). These letters create ambiguity
due to their similarities, and labeling them as a single class
increases success by eliminating uncertainty. For this reason,
the training dataset is labeled according to the characters in the
Latin alphabet. The dataset consists of 68,000 Turkish words

TABLE II. COMPARISON OF THE ACHIEVEMENTS OF YOLO MODELS

Model Average Precision IoU F1 Score
YOLO V3 84.31 59.50 0.80
YOLO V4 86.61 65.5 0.83
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Fig. 4. The C-RNN model scheme used as a word reading model

that are clipped and labeled from approximately 1,100 receipt
images. 10 percent of this Turkish data is reserved for the test
dataset.

The C-RNN model used for the word reading model is
based on the principle of Convolutional Encoder and Recurrent
Decoder. As seen in Fig. 4, the incoming word image is
first passed through the Convolutional layers. In this section,
the information of the letters in the word is obtained. Then,
wordprintouts are produced by looking at this information in
the Bi-LSTM layer. CTC-Loss is used as the loss function in
the model. The model takes words with resolution (256,64,1)
as input. During the model prediction, word predictions are
produced by passing the word outputs through the ctc decode
function in the [25] Keras library. After this stage, the words on
the receipt and the positions of these words are known. Using
this information, the lines are determined. Thus, the text output
with specified lines that are the output of the OCR engine is
produced.

The word reading model consists of two parts: Encoder
and Decoder. While creating the word reading model seen
in Fig. 4, various methods were tried on the Encoder and
Decoder layers. If we need to talk about the methods used
in the Encoder section, some of them can be listed as follows:
(i) The stride value was made 2 by using the Convolution layer
instead of the pooling layer. (ii) If there are three consecutive
Convolution layers, the first layer output is summed up with
the third layer output. (iii) The number of Convolution layers
before the pooling layer was reduced to one in order to create
a simpler model and to increase success. (iv) The activation
function used and the output dimension were changed. (v)
A feed forward layer has been added to the end of the
convolution layer, as shown in Fig. 4. Multiple encoder models
were developed using such methods, and the most successful
Encoder model seen in Fig. 4 was selected among them.
When changing the encoder model, the parameters used in the
training and the Decoder model were kept completely constant.

After the encoder model is selected, the Decoder model
should be selected as the most successful. The methods used

for this can be listed as follows: (i) The activation function
and output dimension used were changed. (ii) Instead of
using bidirectional LSTM, two forward directional and two
backward directional LSTMs were used and their outputs were
combined. (iii) It was attempted to transfer the LSTM hidden
state to the next LSTM layer, but this method was not used
because it reduced the success as expected. (iv) LSTM outputs
were collected with each other. (v) A feed forward layer
has been added after the LSTM output. While trying these
methods, the training parameters and the encoder model were
kept constant. Among the methods tried, the Decoder model
in Fig. 4 was selected that gave the most successful result.

IV. EVALUATIONS

A. Comparison Dataset

While the success of the OCR engine mentioned in this
study was measured, the accuracy of the outputs obtained
on the same dataset was compared with other OCR engines.
The comparison was performed both in the dataset consisting
of Turkish receipts and in the dataset consisting of English
receipts. For the success comparison, the production of the
OCR engine mentioned in this study requires a dataset that
is not used in the preliminary preparation, text detection or
word reading stages. A test dataset consisting of Turkish
receipts was created for comparison. This dataset consists of
66 Turkish receipt images. These receipt data are labeled on
a per-word basis. In Fig. 4, a sample image from the Turkish
test dataset is given. When the receipt image is examined, there
are Turkish letters such as ”I, Ş, Ü, Ç” in it. Since the OCR
engine developed could only read the Latin alphabet, these
Turkish letters were converted to similar letters in the Latin
alphabet (”I, S, U, C”) and tagged. For the sake of equality in
comparison, the outputs of all compared OCR engines are also
translated into the Latin alphabet. This process was applied
only in the Turkish dataset.

As mentioned before, the Turkish dataset used in the
comparison cannot be shared because it contains personal
information. For this reason, in addition to the Turkish dataset,
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the ICDAR2019-SROIE dataset, which consists of English
receipt data, is also used. Since the OCR engines were also
compared in the receipt dataset in the ICDAR2019-SROIE
competition, test images of the same dataset were used to
compare the OCR engine produced in this study with other
OCR engines. Since the text positions are given on a word-
by-word basis in the outputs of the compared OCR engines, the
dataset to be compared must also be labeled as words. Since
the ICDAR2019-SROIE dataset where the comparison will be
made is labeled on a sentence-by-sentence basis, these tags
need to be broken down and converted into word tags. When
performing this operation, if there are spaces in the labeled
text in the dataset, this text is divided into more words than
the number of spaces. The process of shredding this tagged
text was carried out by us. This English dataset is labeled by
the contest holders with all letters capitalized. For this reason,
the comparison was made after the outputs of all OCR engines
were converted to capital letters. This process was applied to
the English dataset only.

The application called LabelMe was used when labeling
words. Thanks to the LabelMe application, words and word
positions are saved in a file by manually labeling the data. Each
word saved in the file is saved in the (LeftTopCornerX Left-
TopCornerY RightLowerCornerX RightLowerCornerY Word)
format. Only a single word is stored in each line of the file and
only the words in a receipt are stored in each file. The order
in which words are labeled is not important because then each
tagged word is matched to the words read by OCR engines.

B. Comparison Method

The comparison of OCR engines is based on speed and
accuracy. The accuracy category includes two main issues.
These are the success of Word Reading and Word Posi-
tion Detection. These categories are the same as task 1
and task 2 in the ICDAR2019-SROIE study. The first task
in the competition measures how accurately the contestants
determine the positions of the words on the receipt. In the
second task of the competition, it is measured how accurately
the competitors read the text in the receipt image. In the
ICDAR2019-SROIE competition, they used Precision, Recall
and F1-Score to measure success in both tasks. These metrics
are not enough to measure the success of an OCR engine. For
this reason, while comparing OCR engines in this study, in
addition to these metrics, Character Error Rate (CER) metric
was used in word reading success and IoU metric was used in
word position determination. As mentioned in the Comparison
Dataset section of the article each receipt is labeled mixed on a
word basis. Since the words and positions obtained by reading
the receipt image with the OCR engine are also mixed, it is
necessary to match the labeled data with the data read by the
OCR engine to measure the success of the OCR engine.

When matching words, it is necessary to match them
correctly. OCR engines may have guessed more or less than
the words tagged. In order to prevent this situation, it is aimed
to achieve the highest success in matching. Compared the
tagged words with all the predicted words and recorded CER
achievements. The achievements are recorded in the list and
converted into a table in the size of (Number of Tagged Word
X Number of Words Read). Then, starting from the first row
of the table, the word with the highest achievement in the row

is determined. If this word also has the highest achievement
in the column and is higher than the specified threshold value,
the labeled word in the index of the row it is in is matched
to the read word in the index of the column in which it is
located. To prevent the matched words from being re-matched,
the achievement values in the table where CER achievements
are recorded are equalized to zero. Calculations are made after
all the words are matched to each other. When performing
calculations, the paired words are taken as True Positive (TP ),
while the predicted but unmatched words are taken as False
Positive. In addition, words that are not predicted but are
labeled are considered False Negative (FN ). The total number
of words matched in a receipt is shown as TPn. With these
definitions, formulas to be used in success comparison are
produced. The formulas used are shown as Eq. (1) and Eq.
(2).

V. RESULTS

Two different categories are taken into account when com-
paring OCR engines. These are Speed and Accuracy. The accu-
racy category is similar to the ICDAR2019-SROIE competition
and is divided into two as Word Position Detection Success and
Word Reading Success. The speed of OCR engines depends
on the system being tested. In particular, offline OCR engines
such as Easy OCR and Tesseract OCR depend on the power of
the system. For this reason, all OCR engines were tested from
the same computer and success measurements were made. The
processor of the system in which the tests are carried out is
Intel i5-11400H 2.7 GHz, the amount of Ram is 16GB, the
Graphics Card is NVIDIA RTX 3050TI (Mobile) and CUDA
Version 11.7.

A. Speed Achievement

For companies that use the OCR engine in a product, the
document reading speed of the OCR engine is important. The
use of a slow OCR engine in a project involving the use
of the OCR engine leads to the accumulation of work, thus
wasting time for the customer, the project user, and therefore
dissatisfaction. For this reason, the speeds of OCR engines
are compared in this section. When measuring the speed of
the OCR engine, the reading speeds of all the receipts in the
dataset used were measured. The sum of these speeds is then
averaged by dividing them by the total number of receipts.
This results in the average time spent by the OCR engine on
a receipt. While the speed of Easy OCR, Tesseract OCR and
Nacsoft OCR depends on the system specifications, the speed
cannot be measured on the computer where the test results
are obtained because the Google Vision Api does not work
on the local computer. For this reason, Google Vision Api is
not included in the speed measurement. The results obtained
in Table III are given.

TABLE III. COMPARISON OF THE DURATION ACHIEVEMENTS OF OCR
ENGINES IN THE ENGLISH DATASET

OCR Engine Easy OCR Tesseract OCR Nacsoft OCR
Mean of Time (sec) 0.89 1.88 0.45
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TABLE IV. COMPARISON OF THE WORD READING ACHIEVEMENTS OF
OCR ENGINES IN THE TURKISH DATASET

OCR Engine Easy OCR Tesseract OCR Vision Api Nacsoft OCR
Word Reading
Success (CER) 79.49 85.10 91.48 93.89

Precision 71.57 82.67 84.12 88.04
Recall 78.26 39.88 92.71 90.07
F1 Score 74.66 52.68 88.15 89.01

TABLE V. COMPARISON OF THE WORD READING ACHIEVEMENTS OF
OCR ENGINES IN THE ENGLISH DATASET

OCR Engine Easy OCR Tesseract OCR Vision Api Nacsoft OCR
Word Reading
Success (CER) 88.50 92.90 94.63 90.77

Precision 84.90 92.58 86.30 83.92
Recall 83.11 75.80 92.41 80.91
F1 Score 83.75 82.72 89.13 81.88

B. Word Reading Success

Another important metric of OCR engines is Word Reading
Success. The accuracy of the information contained in the
document read by the OCR engine directly depends on the
success of reading words. The success of reading words also
affects the success in extracting information from the text read.
Although there is no OCR engine that reads all documents
correctly, it is desired to choose the OCR engine that gives the
highest success possible. In this section, the success of reading
the words on the receipts is compared. When measuring
reading success, the word matching method mentioned in
the Method section was used and then the CER value was
measured among the matched words. The achievements are
added together and divided by the total number of matched
words (TPn). Thus, the Word Reading Success of a receipt
as defined in Eq. (1) is measured. The achievements of these
receipts are then summed up and divided by the number of
receipts in the dataset. As a result, the Word Reading Success
of the dataset is obtained. Table IV shows the success results
in the Turkish receipt dataset, while Table V shows the success
results obtained from the English receipt dataset.

∑TPn

i=1 CERi

TPn
(1)

When Table IV and Table V are examined, Tesseract OCR
has high precision and low recall accuracy. This means that the
Tesseract OCR engine predicts a small fraction of the words it
needs to guess, but the words it predicts are mostly the words
that are on the receipt. This difference between the precision
and recall categories is only visible in the Tesseract OCR
engine. When the results in Table IV are examined, it is seen
that the Nacsoft OCR engine, whose methods are described in
this study, has the best accuracy rate in almost all categories.
When Table V is examined, it is seen that Nacsoft OCR engine
gives close results to other OCR engines. Judging by the results
of the Vision api in Table IV and Table V, it is seen that it gives
the best success in the dataset consisting of English receipts,
and in the Turkish dataset, it comes after the Nacsoft OCR
engine with a close difference.

TABLE VI. COMPARISON OF THE WORD POSITION DETECTION
ACHIEVEMENTS OF OCR ENGINES IN THE TURKISH DATASET

OCR Engine Easy OCR Tesseract OCR Vision Api Nacsoft OCR
Word Position
Detection Suc-
cess (IoU)

65.34 77.04 84.03 78.75

Precision 85.55 80.02 88.82 92.68
Recall 93.37 38.85 97.90 94.79
F1 Score 89.16 51.26 93.08 93.69

TABLE VII. COMPARISON OF THE WORD POSITION DETECTION
ACHIEVEMENTS OF OCR ENGINES IN THE ENGLISH DATASET

OCR Engine Easy OCR Tesseract OCR Vision Api Nacsoft OCR
Word Position
Detection Suc-
cess (IoU)

66.87 77.73 75.94 76.86

Precision 92.10 93.13 90.01 90.74
Recall 89.92 76.44 96.38 86.88
F1 Score 90.72 83.40 92.96 88.16

C. Word Position Detection Success

Determining the position of the word is important in ex-
tracting information from the text. IoU is used when calculat-
ing the success of word positioning. IoU is measured between
the matched words in the word matching section mentioned
in the method section. By adding up the achievements and
dividing them by the total number of matched words, the Word
Position Determination success of a receipt data as defined
in Eq. (2) is measured. In this way, the IoU success of all
receipts in the dataset is measured and the results obtained
are collected. Then, the total value obtained is divided by the
number of receipts in the dataset, measuring the Word Position
Detection Success of the OCR engine in the dataset. Table VI
shows the success results in the Turkish receipt dataset, while
Table VII shows the success results obtained from the English
receipt dataset.

∑TPn

i=1 IoUi

TPn
(2)

An examination of the results of the Tesseract OCR engine
in Table VI and Table VII shows high precision and low recall
as mentioned earlier. When the results of the Easy OCR engine
are examined, Table VI and Table VII have the lowest accuracy
of word position detection success. The Vision Api has the best
success in both Turkish and English datasets. A review of the
results of the Nacsoft OCR engine in Table VI shows that it has
the best F1-Score accuracy compared to other OCR engines,
but it surpasses the Vision Api in word position detection
achievement.

VI. CONCLUSION

In the study, OCR engine was developed on Turkish receipt
data by using artificial intelligence methods. The success of
the developed Nacsoft OCR engine was compared with the
success of Tesseract OCR, Easy OCR and Google Vision Api
on English and Turkish receipt data. When the results obtained
are examined, Nacsoft OCR gives better results in Turkish
receipt data than other open source OCR engines, but cannot
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reach the same result in English receipt data. This may be due
to the fact that the training dataset consists only of Turkish
receipts. In addition, the low number of data used in the
training of the Nacsoft OCR engine may also adversely affect
success. According to this situation, success can be increased
by increasing the number of data used in the training of the
Nacsoft OCR engine and adding English data to the training
dataset. In the training of the Nacsoft OCR engine in future
studies, other document types besides the receipt data can be
included in the training.
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