
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

968 | P a g e

www.ijacsa.thesai.org

Cloud Task Scheduling using the Squirrel Search

Algorithm and Improved Genetic Algorithm

Qiuju DENG
1
, Ning WANG

2
, Yang LU

3

Chongqing College of Mobile Communication, Chongqing, 401520, China
1, 2, 3

Chongqing Key Laboratory of Public Big Data Security Technology, Chongqing, 401420, China
1

Abstract—With cloud computing, resources can be networked

globally and shared easily between users. A range of

heterogeneous needs are met on demand by software, hardware,

storage, and networking. Dynamic resource allocation and load

distribution pose challenges for cloud servers. In this regard, task

scheduling plays a significant role in enhancing the performance

of cloud computing. With the increase in the number of users and

the capability of cloud computing, cloud data centers are

experiencing concerns regarding energy consumption. To

leverage cloud resources energy efficiently and provide real-time

services to users, a viable cloud task scheduling solution is

required. To address these problems, this paper proposes a new

hybrid task scheduling algorithm based on squirrel search and

improved genetic algorithms for cloud environments. The

proposed scheduling algorithm surpasses existing scheduling

algorithms across multiple parameters, including makespan,

energy consumption, and execution time.

Keywords—Cloud computing; energy efficiency; task

scheduling; genetic algorithm

I. INTRODUCTION

Recent technological and scientific advances in
Complementary Metal-Oxide Semiconductor (CMOS) [1, 2],
machine learning [3], cloud computing [4], 5G connectivity [5,
6], Blockchain [7], artificial intelligence [8, 9], smart grids
[10], Internet of Things (IoT) [11, 12], and optical networks
[13, 14] are bringing numerous benefits to society. Schedulers
(brokers) in cloud computing determine potential solutions for
assigning constrained resources to requests in order to achieve
multiple goals (e.g., energy consumption, response time,
resource utilization, reliability) [15-17]. It is believed that the
study conducted in [18] laid the foundation for modern
scheduling techniques. Schedules are used in many
applications today, including power system control, multi-
media data object scheduling on the Internet, and
manufacturing printed circuit boards [19]. Over the past three
decades, distributed computing systems have become one of
the most important aspects of modern scheduling [20]. In
recent years, various standalone computers have been
combined with working together as a cluster system. By
integrating heterogeneous resources from geographically
dispersed areas, grid systems overcome the shortcomings of
cluster systems by using more resources [21]. Cloud computing
has recently become popular, combining the strengths of
clusters and grids [22].

Due to the wide solution space, most scheduling problems
are NP-hard and require a long period of time to be resolved
within a minimal period [23]. The scheduling of limited

resources in modern computing systems cannot be optimized
using a polynomial time-scheduling algorithm [24]. The
researchers of [25] illustrated the dilemma posed in this case by
giving a simple example: approximately 0.02 percent of the
possible solutions consume up to 1.01 the necessary amount of
time to reach the optimal result. It is proven that a complex
problem can be extremely challenging to solve. Therefore,
researchers have been motivated to develop effective
algorithms to solve such scheduling problems. Scheduling
techniques can be static or dynamic [26]. Due to the dynamic
nature of cloud environments, more dynamic algorithms must
be incorporated to achieve breathtaking results. In contrast,
static algorithms are only used when workloads vary only
slightly. Thus, deterministic methods cannot solve the task
scheduling problem. This problem has been solved
significantly in polynomial time by meta-heuristic algorithms,
which are non-deterministic methods [27].

Virtualization technology and dynamic task scheduling
techniques can benefit cloud service providers and users. By
scheduling tasks effectively, resources are conserved (the
resource utilization ratio is increased), and incoming tasks are
also completed in the shortest possible time (the makespan is
minimized) [28]. With the growing workloads in cloud data
centers, task scheduling has become increasingly critical due to
the scarcity of resources. In order to improve QoS criteria and
the mapping of incoming tasks to available resources, cloud
task scheduling needs further study. In scheduling, the goal is
to determine optimal resources for executing incoming tasks,
thereby enabling a scheduling algorithm to enhance various
QoS factors such as response time, energy consumption,
resource utilization, and makespan [29]. The rest of the paper is
organized as follows. The next section reviews the previous
works. Section III describes the proposed method.
Experimental results are reported in Section IV. The
conclusion is provided in Section V.

II. RELATED WORK

A QoS-aware cloud task scheduling algorithm was
proposed by Wu, et al. [30]. In the proposed algorithm, tasks
are first prioritized using their special attributes, then sorted
according to their priority. Second, the algorithm schedules
tasks based on the sorted task queue according to the
completion time for each task on different services. Based on
CloudSim experiments, the algorithm can achieve good load
balancing and performance by using priority and completion
time to determine QoS. An improved sunflower optimization
algorithm was introduced by Emami [31] for optimizing
existing task scheduling algorithms. The algorithm schedules

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

969 | P a g e

www.ijacsa.thesai.org

tasks in polynomial time. Experimental results have shown that
the algorithm outperforms its competitors. Makespan and
energy consumption have improved by 0.74% and 3%,
respectively, compared to the best counterpart.

Yang, et al. [32] developed a simplified cloud computing
task scheduling model. This paper uses game theory to
simplify cloud computing task scheduling algorithms as
opposed to previous studies. This algorithm considers the
reliability of a balanced task when scheduling tasks with game
theory. A task scheduling model for computing nodes is
developed based on the balanced scheduling algorithm. The
rate allocation strategy is calculated using game strategy in the
cooperative game model. Experimental results indicate that the
proposed algorithm performs better than others.

Srichandan, Kumar [6] developed an approach to task
scheduling that combined the advantages of two widely used
biologically-inspired algorithms: genetic and bacterial
foraging. This article makes two main contributions. In the first
place, the scheduling algorithm minimizes the time between
tasks, and in the second place, it reduces energy consumption
economically and environmentally. According to experimental
results, the proposed algorithm provides superior performance
for convergence, stability, and solution diversity.

Abd Elaziz, et al. [33] presented a method for scheduling
cloud tasks to minimize the time consumed scheduling
different tasks across different virtual machines. This method
uses Differential Evolution (DE) to improve the Moth Search
Algorithm (MSA). The MSA mimics moth movements in
nature using Levy flights and phototaxis as indicators of the
ability to explore and exploit resources. The exploitation ability
still needs to be improved so that DE can be used for local
searches. Three experimental series are conducted to evaluate
the proposed algorithm. An analysis of twenty global
optimization problems is carried out using the traditional MSA
and the proposed method in the first experiment. The proposed
algorithm was compared to other meta-heuristic and heuristic
algorithms on synthetic and real trace data in the second and
third experimental series. Performance measurements in both
experiments demonstrate that the proposed algorithm
outperforms competitors.

Using cat swarm optimization algorithm, Mangalampalli, et
al. [34] addressed data center-specific parameters, such as
power consumption, migration time, and makespan. VM
mapping was performed by calculating the priorities of tasks at
the task level. Based on the cloudsim simulator, this algorithm
generates random inputs for total power costs. HPC2N and
NASA workload archives are used as inputs to the algorithm.
The proposed algorithm is compared to existing algorithms
such as PSO and CS. Using HPC2N and NASA workloads,
significant improvements are observed in different parameters.

Various meta-heuristic algorithms have been used in the
works discussed above. These approaches share the common
characteristic of using random population to initialize the
metaheuristics and hybrid metaheuristics. The initial
population has a significant impact on metaheuristic
algorithms. Randomness is a fundamental requirement for

avoiding local minimum traps. However, the algorithm
convergence can be improved if some particles are assisted
heuristically in selecting effective or near optimum starting
points. The proposed algorithm utilizes heuristic algorithms for
initializing the papulation in order to significantly improve the
algorithm's performance.

III. PROPOSED METHOD

There are many scheduling algorithms to minimize the
tasks' completion time in distributed systems. These types of
scheduling systems find the most proper resources to assign to
the tasks. Minimizing the tasks' completion time does not lead
to minimizing each task's execution time. Task scheduling
goals in cloud computing are to propose optimal scheduling of
the tasks with load balancing guarantee and guarantee Quality
of Service (QoS) criteria like response time, execution time,
system throughput, cost, reliability, and availability. A new
method is proposed for scheduling cloud tasks.

A. Formulating the Problem

The utilized method has four main parts, including the
network information server, the network resource broker, the
tasks, and the resources that act in the following manner. Users
send requests to process tasks. The information about the task
is embedded in the request, including the required CPU time
for each task, the size of each task, and the total number of
tasks. The network resource broker starts calculating the
program parameters after the received message from the user.
Moreover, the information server provides the resources
information for the network resource broker. The proposed
method will be used to select the input for processing the
resource. The local update of the nodes is performed after
assigning a task to a resource. The global update of the nodes is
performed after executing a task by a reference. Fig. 1 shows
the flowchart of the proposed algorithm.

The execution results are transmitted to the user. The
fitness function is the function that receives a candidate
solution for a problem as input and provides an output that
determines a good amount of the solution. The key
characteristic of the optimization algorithms is determining the
fitness value of each solution. The algorithm tries to schedule
K tasks to M virtual machines in each repetition. Virtual
machines are optimally scheduled in accordance with their
processing capacity, given by Eq. (1).

 𝑝 𝑚 𝑝 𝑚 𝑚 𝑚 (1)

where 𝑝 𝑚𝑏 𝑟 𝑚𝑗 is the number of processors in the
 𝑚𝑗 virtual machine and MIPSVMJ is the number of million
instructions per second of all processors on VMJ virtual
machine. Task scheduling reduces the execution time of virtual
machine tasks. The execution time is estimated by Eq. (2).

 𝑜𝑛 𝑚

 (2)

where 𝑘𝐿 𝑛𝑔 ℎ𝑗 denotes the length of the jth request
on the queue, and Capacityvmj refers to the processing
capacity of the virtual machine on the jth location of the
solution (J=1, 2, ..., K).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

970 | P a g e

www.ijacsa.thesai.org

Fig. 1. Flowchart of the proposed algorithm.

The amount of load on the virtual machine and the amount
of load resulting from accepting a new request are considered
for load balancing in virtual machines. Hence the virtual
machine load is defined as Eq. (3).

𝐿𝑜 𝑚 𝑟𝑟 𝑛 𝐿𝑜 𝑚 𝑘𝐿 𝑛𝑔 (3)

where 𝑟𝑟 𝑛 𝐿𝑜 𝑉 𝑗 signifies the virtual machine load
on the jth location of the solution (J=1, 2, ..., K). During task
assignment, the standard deviation of the solution's virtual
machine should be minimized for load balancing.

B. The Steps of the Proposed Method

Two main steps of the proposed method for task scheduling
in this paper include:

 First step: GA to select the tasks and prioritize them for
execution.

 Second step: using the Squirrel Search Algorithm (SSA)
to map tasks to the virtual machines and their duration
to reduce energy and fair load distribution.

1) Task selection for execution based on GA: First, in this

section, general information is expressed about GA, and then

the use of this algorithm to select the best task is explained.

John Holland invented the main idea of GA from the

evolutional theory of Darvin in 1967. Generally, GAs includes

the following parts:

 Chromosome: Chromosomes in GAs show points in the
search area and possible solutions to the considered
problem. The number of genes (variables) on each
chromosome (solution) is constant. Binary coding
(binary strings) is used to present the chromosomes. A
chromosome in this research shows a list of assigned
resources for each task.

 Population: A population includes a set of
chromosomes. A new population is generated with the
same count of chromosomes using the impact of genetic
operators on the population.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

971 | P a g e

www.ijacsa.thesai.org

 Fitness function: First, a fitness function is provided to
solve a problem using GAs. The fitness function in this
research is based on the last task completion time
duration, meaning that it is considered from the start
time of the tasks to the last task completion in a parallel
manner.

 Selection operator: This operator reproduces some
chromosomes among the existing chromosomes in a
population. Fitter chromosomes are more likely to
reproduce. Elitist Selection is used in this research.

 Crossover operator: The crossover operator generates a
new pair of chromosomes from a pair of chromosomes
from the productive generation. Uniform crossover is
used in this paper, and a random matrix is generated,
namely a mask including 0 and 1 and the same length as
the existing chromosomes. The mask chromosome
determines which genes are transferred to the child
from the first parent and which one from the second
parent.

 Mutation operator: A mutation operator is applied to the
chromosomes after crossover. This operator changes the
content of a gene by randomly selecting an operator of a
chromosome's gene.

Mapping the tasks of the application workflow to the
distributed resources may have many objectives. The focus of
this research is on minimizing the sum of the calculation time
of the application workflow. The parallel workflow allows
each task to have subtasks, and the subtasks are distributed
among different resources in order to minimize the total
completion time. so that each task can have some subtasks, and
the subtasks are distributed among different resources to
minimize the total time of the project completion. This system
has two main parts:

 Task: it is the work performed in the cloud environment
based on the user's request. Each task also is divided
into some subtasks.

 Resource: each service in the cloud environment can
assign one or some virtual machine and web services to
each resource. These resources may have different
processor powers and perform the service in different
time durations and costs. A cloud computing system
faces the challenge of selecting the resources for each
task with the least amount of time and cost.

2) Machine selection by the SSA: Squirrel search is a

memetic metaheuristic algorithm to find the optimal global

solution via heuristic functions. This algorithm is based on

memes evolution carried by interactive people and the global

exchange of information among the population. In the SSA,

the squirrels are transformed due to memetic evolution. In this

algorithm, the squirrels are considered the hosts for the memes

and are presented as a memetic vector. Each meme includes

memo types showing a feature on the chromosome, like genes

in GA. The squirrels can exchange their information and

correct their memes. The amount of each squirrel search is

adjusted by the memes improvement, and each squirrel's

position is changed. SSA combines deterministic and random

approaches. The deterministic approach makes it possible to

use the response-level information efficiently to direct the

heuristic search and the random components guarantee the

flexibility and strength of the search.

The squirrel search is started with the primary population of
P squirrels that are generated randomly from the problem area
of Ω. In the Di-dimensional problems, the position of the i

th

squirrel is presented as (xi1, xi2, …, xiD). Then the merit of
each squirrel is calculated based on its position, and the
squirrels are sorted decreasingly based on their merits. In the
next step, the total population is divided into m groups. This
division is performed so that each group includes n squirrels
(P=m×n). During the division process, the first squirrel is
located in the first group, the second one in the second group,
the mth one in the mth group, and the (m+1)th one in the first
group again. The squirrels with the best and the worst merit
values are presented as Xb and Xw in each group, respectively.
Moreover, the squirrels with the best merit among the
population are presented as Xg. Then using an evolutional
process, the worst existing squirrels' merit on each cycle of the
algorithm is corrected.

3) Selecting the best machine by SSA: In this section, SSA

is used to execute the tasks globally. In this method, each

squirrel is considered a response to the problem, and the

squirrels are distributed randomly. There are some sets with an

equal number of squirrels. In order to assign tasks to virtual

machines, three main measures should be considered, namely

the task size, the machine processing power, and makespan.

The input tasks and the virtual machines are presented as
 𝑘𝐿 ={ 1, 2,…, 𝑛} and 𝑉 ={ 𝑚1, 𝑚2,…, 𝑚𝑚}
respectively. The squirrel hybrid mutation evolutional
approach maps the tasks to the local virtual machine. The
algorithm steps are presented in the following.

4) Generating the First Generation: Like other

evolutional algorithms, the primary population is generated

randomly. In the proposed method, each virtual machine is

considered a squirrel to perform the tasks. In each repetition of

the algorithm, it tries to schedule K tasks by M virtual

machines. The processing capacity of the virtual machines can

affect the optimal scheduling of tasks to the virtual machines.

Before assigning the squirrels to the sets, the fitting function

value of each squirrel should be calculated using Eq. (4).

 (4)

This fitting function is calculated based on the machine
processor and makespan. The lower the makespan, the better
situation the machine has. Hence, the above equation results in
the highest fitting function value for the most powerful
machines.

After calculating the fitting function for all the squirrels'
populations, they are sorted decreasingly, and there is a list of
empty sets. The total population of the squirrels is divided into
M sets. The division is performed so that each set has N
squirrels. For the division, the first squirrel belongs to the first

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

972 | P a g e

www.ijacsa.thesai.org

set, the second one belongs to the second set, the Mth one
belongs to the Mth set, and the (M+1)th belongs to the first set
again. It is repeated until the last squirrel. Each M sets include
N squirrels. Since the squirrels are sorted decreasingly based
on the fitness function, the first and the last assigned squirrels
to the set are the best and the worst solutions, respectively.
Hence, the order of entering the squirrels into the sets is
important. Locality and makespan criteria are considered to
find the best answer by the squirrel algorithm, which are
explained in the following. The processing capacity of each
virtual machine is calculated using Eq. (5):

 (5)

where power is the processing power of the virtual machine
and Pcount is the number of empty processors. The execution
time of each task on the virtual machine is estimated by Eq.
(6):

 (6)

where TaskTime is the size of the task which wants to be
executed. The execution time of each virtual machine is
different. Less execution time of a task on the virtual machine
makes less makespan on the machine. In order to accomplish
this, the following algorithm is applied.

The worst squirrel's location in each set of the local search
based on the fitting function is improved according to the best
answer location on that set or even the best answer of all sets.
Hence the average of the squirrel fitting increases. The
following algorithm is used for this aim:

 Step 1: the best and the worst squirrels of each set based
on the fitting value are called 𝑋𝑏 and 𝑋𝑤𝑜𝑟 ,
respectively.

 Step 2: the worst squirrel of each set (𝑋𝑤𝑜𝑟) tries to
improve itself by exchanging its information rather than
the best squirrel (𝑋𝑏 s). In order to reduce the
makespan value achieved when all virtual machines are
processing the same amount of data, the following
improvement is performed.

 Step 3: two 𝑋𝑏 and 𝑋𝑤 𝑟 squirrels are selected
so that their fitting function has the most difference, and
this value should apply to all. Thus, the number of tasks
of Xworst is transferred to Xbest. This transfer is
performed until both fitting functions are equal.

 Step 4: after duplication of these two values, the list of
squirrels in the set is sorted again. This process is
performed for the next Xbest and Xworst.

 Step 5: this process is continued until the fitting
function value of all squirrels is equal to the set fitting
function average value.

 Step 6: all the sets are combined and sorted based on
the fitting value, decreasingly, after internal evolution in
each set. Then they are divided into some sets, and the
evolution continues until the stop condition.

Usually, the stop condition of the algorithm is selected
based on the constant variations of the best answer fitting or
the algorithm repetition up to a determined number. In this
problem, the considered stop condition is the determined value,
𝑔𝑙𝑜𝑏 𝑙 .

IV. SIMULATION

The proposed algorithm for task scheduling is implemented
using Cloudsim. Moreover, the proposed method is simulated
on the San Diego dataset. The San Diego dataset is a widely
used benchmark dataset for task scheduling simulations. By
using Cloudsim to simulate the proposed algorithm on the San
Diego dataset, it allows researchers to compare their results
with the existing literature on task scheduling and measure the
performance of their proposed algorithm. This section
compares the proposed method with [9] and [8] methods based
on comparable criteria, including makespan, energy
consumption, and execution time. This comparison allows for a
clear assessment of the relative merits of the proposed method
compared to the existing literature, highlighting the advantages
in terms of performance and energy efficiency. Makespan
determines the maximum time that each machine is active. If
the distributions are not fair, this criterion is for different
machines. It is the maximum time of the machine that works
more than all other machines. The less general average of this
criterion makes the better performance of the scheduling
algorithm.

The proposed method is compared in the first experiment
with the method presented in [35]. According to the results
obtained in this experiment, the proposed method showed
better results with regard to makespan, as shown in Fig. 1. This
is because the proposed method is able to more efficiently
distribute the tasks among the different machines, resulting in a
lower makespan. Additionally, the proposed method is able to
better account for the different capabilities of the machines,
leading to a more even distribution of the tasks and better
machine utilization. The proposed method is compared in the
second experiment with the method presented in [34]. HPC2N
and NASA workloads were used in this experiment to evaluate
the proposed method. As shown in Fig. 2 and Fig. 3, the
proposed method outperforms previous approaches regarding
makespan time. The proposed method is able to better utilize
the machines by accounting for the differences in the machines'
capabilities. This means that it can better distribute the tasks to
the machines, leading to a shorter makespan time, as seen in
the results of the second experiment.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

973 | P a g e

www.ijacsa.thesai.org

Fig. 2. Makespan comparison

Fig. 3. Makespan comparison based on HP2CN workload.

Energy consumption criterion shows the amount of
consumed energy for the execution of the tasks on the
machines simulated in two different scenarios. In the first
scenario, the number of machines is constant, and the number
of tasks increases in each step. It is assumed that each task unit
consumes one energy unit. In this scenario, the proposed
method's performance is better. The cause of the increasing
trend of the consumed energy diagram is the constant number
of machines and the increasing number of tasks in each step.
Execution time is the average time the tasks reach the

resources. The less time, the better the scheduling algorithm. In
the third experiment, the energy consumption and execution
time of the proposed method is compared according to the data
of the article [36]. This experiment uses five physical
machines, 20 virtual machines, and 50 to 400 tasks. The
obtained results are shown in Fig. 4. In the fourth experiment,
the power consumption and execution time are evaluated based
[37] dataset. Four physical machines and 5 - 50 virtual
machines are used in this experiment. The obtained results are
shown in Fig. 5 to 7.

1
2

0
5

.2
3

6

1
3

5
4

.1
2

5

1
5

4
5

.2
5

1

1
7

5
2

.3
6

2

1
9

7
6

.2
5

6

1
1

6
8

.1
2

4

1
3

2
5

.2
6

5

1
5

3
8

.2
5

4

1
6

9
2

.3
2

4

1
8

8
6

.2
3

5

0

200

400

600

800

1000

1200

1400

1600

1800

2000

200 400 600 800 1000

M
a
k

es
p

a
n

 (
m

s)

Cloudlets

CSO Method Proposed Method

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

974 | P a g e

www.ijacsa.thesai.org

Fig. 4. Makespan comparison based on NASA workload.

Fig. 5. Energy consumption comparison.

6
3

5
.2

6
5

 7
8

0
.2

3
5

8
8

6
.2

6
4

9
0

2
.3

6
5

9
4

1
.2

3
8

5
9

6
.2

3
5

 7
6

8
.5

6
2

8
5

1
.2

3
7

8
8

4
.2

3
7

9
0

5
.3

5
4

0

100

200

300

400

500

600

700

800

900

1000

200 400 600 800 1000

M
a

k
es

p
a

n
 (

m
s)

Cloudlets

CSO Method Proposed Method

0
.4

3

0
.7

1
6

0
.6

8
1

1
.3

2
 1

.4
8

9

1
.9

1
6

2
.2

3
1

2
.3

6
9

0
.2

1
3

5

0
.3

1
8

0
.4

6
7

0
.8

9
6

1
.0

2
7

8

1
.4

3
7

1
.8

3
9

1
.9

3
2

0

0.5

1

1.5

2

2.5

50 100 150 200 250 300 350 400

E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

 (
W

h
)

Number of Tasks

PATS Method Proposed Method

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

975 | P a g e

www.ijacsa.thesai.org

Fig. 6. Energy consumption comparison vs. iteration.

Fig. 7. Energy consumption comparison vs. number of VMs.

3
1

.3
8

2

2
7

.8
7

3

2
3

.0
5

7

2
3

.0
5

7

2
3

.0
5

7

2
3

.0
5

7

2
3

.0
5

7

2
3

.0
5

7

2
3

.0
5

7

2
3

.0
5

7

2
3

.0
5

7

2
3

.0
5

7

2
5

.0
4

2
4

2
3

.3
2

9

2
1

.3
5

4

1
8

.3
5

4
1

1
7

.2
6

4

1
6

.2
5

1

1
5

.1
4

1
2

1
5

.0
2

4

1
4

.6
8

2

1
4

.3
2

9

1
4

.1
2

8

1
4

.0
2

9

0

5

10

15

20

25

30

35

4 8 12 16 20 24 28 32 36 40 44 48

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
w

h
)

Number of Iteration

FHCS Method Proposed Method

0

1
7

.3
8

2
3

.4
1

5

3
0

 3
2

.4
7

6
 4
0

.9
5

2

4
7

.7
3

8

5
5

6
0

.7
1

4

6
7

.7
3

8

1
.2

9
7

1
2

.3
8

4

1
9

.5
7

4

2
6

.9
5

7

2
9

.0
2

7

3
4

.3
8

7

3
8

.6
9

1

4
5

.2
9

7

5
2

.1
6

1

5
9

.6
8

3

0

10

20

30

40

50

60

70

80

5 10 15 20 25 30 35 40 45 50

E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

 (
w

h
)

Number of VM

FHCS Method Proposed Method

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

976 | P a g e

www.ijacsa.thesai.org

Fig. 8. Execution time comparison.

V. CONCLUSION

In this paper, by applying efficient scheduling to virtual
machines, the efficiency of the system is enhanced, resulting in
a shorter response time. It makes quick calculations and
reduces energy consumption. This problem aims to apply an
efficient scheduling method on virtual machines on a cloud
system to meet all operational requests, and each performance
criterion is optimized. Hence, metaheuristic algorithms are
used. This algorithm is used by mathematical modeling of the
political-social evolutional process to solve many optimization
problems. This optimization evolutional strategy performance
in convergence rate and reaching the global optimal is very
high. While integrating multiple meta-heuristic methods may
provide a hybrid heuristic with good performance, some meta-
heuristics are not complementary, so combining them may not
improve or even degrade performance. Performance is also
affected by the integration strategy. In order to improve the
performance of distributed systems on a wide range of aspects,
we will study the complementarity of multiple meta-heuristics
and develop an efficient integration strategy for the hybrid of
multiple meta-heuristics.

REFERENCES

[1] S. Seyedi and B. Pourghebleh, "A new design for 4-bit RCA using
Quantum Cellular Automata Technology," Optical and Quantum
Electronics, vol. 55, no. 1, p. 11, 2023.

[2] S. Seyedi, B. Pourghebleh, and N. Jafari Navimipour, "A new coplanar
design of a 4‐bit ripple carry adder based on quantum‐dot cellular
automata technology," IET Circuits, Devices & Systems, vol. 16, no. 1,
pp. 64-70, 2022.

[3] J. Akhavan and S. Manoochehri, "Sensory data fusion using machine
learning methods for in-situ defect registration in additive
manufacturing: a review," in 2022 IEEE International IOT, Electronics
and Mechatronics Conference (IEMTRONICS), 2022: IEEE, pp. 1-10.

[4] T. Taami, S. Krug, and M. O’Nils, "Experimental characterization of
latency in distributed iot systems with cloud fog offloading," in 2019
15th IEEE International Workshop on Factory Communication Systems
(WFCS), 2019: IEEE, pp. 1-4.

[5] P. He, N. Almasifar, A. Mehbodniya, D. Javaheri, and J. L. Webber,
"Towards green smart cities using Internet of Things and optimization
algorithms: A systematic and bibliometric review," Sustainable
Computing: Informatics and Systems, vol. 36, p. 100822, 2022.

[6] I. Ataie, T. Taami, S. Azizi, M. Mainuddin, and D. Schwartz, "D 2 FO:
Distributed Dynamic Offloading Mechanism for Time-Sensitive Tasks
in Fog-Cloud IoT-based Systems," in 2022 IEEE International
Performance, Computing, and Communications Conference (IPCCC),
2022: IEEE, pp. 360-366.

[7] S. Meisami, M. Beheshti-Atashgah, and M. R. Aref, "Using Blockchain
to Achieve Decentralized Privacy In IoT Healthcare," arXiv preprint
arXiv:2109.14812, 2021.

[8] F. Vahedifard, S. Hassani, A. Afrasiabi, and A. M. Esfe, "Artificial
intelligence for radiomics; diagnostic biomarkers for neuro-oncology,"
World Journal of Advanced Research and Reviews, vol. 14, no. 3, pp.
304-310, 2022.

[9] S. A. Saeidi, F. Fallah, S. Barmaki, and H. Farbeh, "A novel
neuromorphic processors realization of spiking deep reinforcement
learning for portfolio management," in 2022 Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2022: IEEE, pp. 68-71.

[10] S. H. Haghshenas, M. A. Hasnat, and M. Naeini, "A Temporal Graph
Neural Network for Cyber Attack Detection and Localization in Smart
Grids," arXiv preprint arXiv:2212.03390, 2022.

[11] A. Mehbodniya, J. L. Webber, R. Neware, F. Arslan, R. V. Pamba, and
M. Shabaz, "Modified Lamport Merkle Digital Signature blockchain
framework for authentication of internet of things healthcare data,"
Expert Systems, vol. 39, no. 10, p. e12978, 2022.

0

0
.2

0
4

 0
.3

0
8

 0
.4

 0
.4

5
3

0
.5

0
.6

0
.7

0
.8

0
.9

0
.0

3
5

6

0
.2

1
9

0
.2

6
8

0
.3

1
2

0
.3

5
6

0
.3

8
6

0
.4

1
2

0
.5

6
9

0
.6

2
7

 0
.7

3
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40 45 50

E
x
ec

u
ti

o
n

 t
im

e
(m

in
)

Number of VM

FHCS Method Proposed Method

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

977 | P a g e

www.ijacsa.thesai.org

[12] F. Kamalov, B. Pourghebleh, M. Gheisari, Y. Liu, and S. Moussa,
"Internet of Medical Things Privacy and Security: Challenges, Solutions,
and Future Trends from a New Perspective," Sustainability, vol. 15, no.
4, p. 3317, 2023.

[13] F. Khosravi, M. Tarhani, S. Kurle, and M. Shadaram, "Implementation
of an Elastic Reconfigurable Optical Add/Drop Multiplexer based on
Subcarriers for Application in Optical Multichannel Networks," in 2022
International Conference on Electronics, Information, and
Communication (ICEIC), 2022: IEEE, pp. 1-4.

[14] F. Khosravi, G. Mahdiraji, M. Mokhtar, A. Abas, and M. Mahdi,
"Improving the performance of three level code division multiplexing
using the optimization of signal level spacing," Optik, vol. 125, no. 18,
pp. 5037-5040, 2014.

[15] I. Attiya, M. Abd Elaziz, L. Abualigah, T. N. Nguyen, and A. A. Abd
El-Latif, "An improved hybrid swarm intelligence for scheduling iot
application tasks in the cloud," IEEE Transactions on Industrial
Informatics, 2022.

[16] A. Najafizadeh, A. Salajegheh, A. M. Rahmani, and A. Sahafi, "Multi-
objective Task Scheduling in cloud-fog computing using goal
programming approach," Cluster Computing, vol. 25, no. 1, pp. 141-
165, 2022.

[17] B. Pourghebleh, N. Hekmati, Z. Davoudnia, and M. Sadeghi, "A
roadmap towards energy‐efficient data fusion methods in the Internet of
Things," Concurrency and Computation: Practice and Experience, p.
e6959, 2022.

[18] S. M. Johnson, "Optimal two‐and three‐stage production schedules with
setup times included," Naval research logistics quarterly, vol. 1, no. 1,
pp. 61-68, 1954.

[19] B. Sellami, A. Hakiri, S. B. Yahia, and P. Berthou, "Energy-aware task
scheduling and offloading using deep reinforcement learning in SDN-
enabled IoT network," Computer Networks, vol. 210, p. 108957, 2022.

[20] A. Kumar et al., "Optimal cluster head selection for energy efficient
wireless sensor network using hybrid competitive swarm optimization
and harmony search algorithm," Sustainable Energy Technologies and
Assessments, vol. 52, p. 102243, 2022.

[21] M. Mohseni, F. Amirghafouri, and B. Pourghebleh, "CEDAR: A cluster-
based energy-aware data aggregation routing protocol in the internet of
things using capuchin search algorithm and fuzzy logic," Peer-to-Peer
Networking and Applications, pp. 1-21, 2022.

[22] W. Shu, K. Cai, and N. N. Xiong, "Research on strong agile response
task scheduling optimization enhancement with optimal resource usage
in green cloud computing," Future Generation Computer Systems, vol.
124, pp. 12-20, 2021.

[23] V. Hayyolalam, B. Pourghebleh, M. R. Chehrehzad, and A. A. Pourhaji
Kazem, "Single‐objective service composition methods in cloud
manufacturing systems: Recent techniques, classification, and future
trends," Concurrency and Computation: Practice and Experience, vol.
34, no. 5, p. e6698, 2022.

[24] L. Abualigah and A. Diabat, "A novel hybrid antlion optimization
algorithm for multi-objective task scheduling problems in cloud
computing environments," Cluster Computing, pp. 1-19, 2020.

[25] E. Taillard, "Some efficient heuristic methods for the flow shop
sequencing problem," European journal of Operational research, vol. 47,
no. 1, pp. 65-74, 1990.

[26] X. Chen et al., "A WOA-based optimization approach for task
scheduling in cloud computing systems," IEEE Systems Journal, vol. 14,
no. 3, pp. 3117-3128, 2020.

[27] A. Amini Motlagh, A. Movaghar, and A. M. Rahmani, "Task scheduling
mechanisms in cloud computing: A systematic review," International
Journal of Communication Systems, vol. 33, no. 6, p. e4302, 2020.

[28] M. Hosseinzadeh, M. Y. Ghafour, H. K. Hama, B. Vo, and A.
Khoshnevis, "Multi-objective task and workflow scheduling approaches
in cloud computing: a comprehensive review," Journal of Grid
Computing, pp. 1-30, 2020.

[29] M. Soualhia, F. Khomh, and S. Tahar, "Task scheduling in big data
platforms: a systematic literature review," Journal of Systems and
Software, vol. 134, pp. 170-189, 2017.

[30] X. Wu, M. Deng, R. Zhang, B. Zeng, and S. Zhou, "A task scheduling
algorithm based on QoS-driven in cloud computing," Procedia
Computer Science, vol. 17, pp. 1162-1169, 2013.

[31] H. Emami, "Cloud task scheduling using enhanced sunflower
optimization algorithm," ICT Express, vol. 8, no. 1, pp. 97-100, 2022.

[32] J. Yang, B. Jiang, Z. Lv, and K.-K. R. Choo, "A task scheduling
algorithm considering game theory designed for energy management in
cloud computing," Future Generation computer systems, vol. 105, pp.
985-992, 2020.

[33] M. Abd Elaziz, S. Xiong, K. Jayasena, and L. Li, "Task scheduling in
cloud computing based on hybrid moth search algorithm and differential
evolution," Knowledge-Based Systems, vol. 169, pp. 39-52, 2019.

[34] S. Mangalampalli, S. K. Swain, and V. K. Mangalampalli, "Multi
Objective Task Scheduling in Cloud Computing Using Cat Swarm
Optimization Algorithm," Arabian Journal for Science and Engineering,
vol. 47, no. 2, pp. 1821-1830, 2022.

[35] A. Gupta, H. S. Bhadauria, and A. Singh, "Load balancing based hyper
heuristic algorithm for cloud task scheduling," Journal of Ambient
Intelligence and Humanized Computing, vol. 12, no. 6, pp. 5845-5852,
2021.

[36] H. Zhao, G. Qi, Q. Wang, J. Wang, P. Yang, and L. Qiao, "Energy-
efficient task scheduling for heterogeneous cloud computing systems,"
in 2019 IEEE 21st International Conference on High Performance
Computing and Communications; IEEE 17th International Conference
on Smart City; IEEE 5th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), 2019: IEEE, pp. 952-959.

[37] B. B. Naik, D. Singh, and A. B. Samaddar, "FHCS: Hybridised
optimisation for virtual machine migration and task scheduling in cloud
data center," IET Communications, vol. 14, no. 12, pp. 1942-1948,
2020.

