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Abstract—Over the past decade, Medical Image Segmentation 

(MIS) using Deep Neural Networks (DNNs) has achieved 

significant performance improvements and holds great promise 

for future developments. This paper presents a comprehensive 

study on MIS based on DNNs. Intelligent Vision Systems are 

often evaluated based on their output levels, such as Data, 

Information, Knowledge, Intelligence, and Wisdom (DIKIW), 

and the state-of-the-art solutions in MIS at these levels are the 

focus of research. Additionally, Explainable Artificial 

Intelligence (XAI) has become an important research direction, 

as it aims to uncover the "black box" nature of previous DNN 

architectures to meet the requirements of transparency and 

ethics. The study emphasizes the importance of MIS in disease 

diagnosis and early detection, particularly for increasing the 

survival rate of cancer patients through timely diagnosis. XAI 

and early prediction are considered two important steps in the 

journey from "intelligence" to "wisdom." Additionally, the 

paper addresses existing challenges and proposes potential 

solutions to enhance the efficiency of implementing DNN-based 

MIS. 

 

Keywords—Medical image segmentation (MIS); SOTA 
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I. INTRODUCTION 

Computers store images as grids of pixels, each containing 
a color value. These digital images are considered 
unstructured data, and image segmentation is the process of 
partitioning pixels into separate regions that correspond to a 
single object or class. This is accomplished by labeling each 
pixel with its corresponding class. 

Image segmentation provides a deeper understanding of 
the structure of an image and is a crucial processing step in 
many image and video applications. It serves as the foundation 
for other challenges, such as object detection, image 
classification, and image analysis. 

In medical imaging, image segmentation involves 
separating organs, disease regions, tumors, or anomalies to 
assist in diagnosis, detect pathology, and monitor the 
progression of diseases. MIS is a challenging task because of 
the slow grayscale variation in medical images, making it 
difficult to distinguish objects. 

Currently, AI applications have reached the "Intelligence" 
level in DIKIW [1], which stands for Data, Information, 
Knowledge, Intelligence, and Wisdom. In MIS, ―Intelligence‖ 
is demonstrated through highly accurate segmentation results, 
even on low-contrast, blurry, noisy images [2]. Additionally, 

"Intelligence" in MIS is not only demonstrated through the 
ability to segment organs, but also through the ability to 
segment lesions [2]. 

"Wisdom", the highest level in the DIKIW hierarchy, 
represents humanity's ultimate goal. In MIS systems, the 
output not only provides segmented medical images but also 
offers an explanation for the segmentation results through 
eXplainable Artificial Intelligence (XAI). This helps to 
increase trust in the results among both doctors and patients, 
satisfying the demands for transparency and medical ethics, 
which is a critical aspect in realizing the practical application 
of AI-based disease diagnosis. Transparent segmentation 
results also contribute to early disease diagnosis, leading to 
improved treatment, monitoring, and healthcare processes. In 
healthcare systems, predicting future health conditions to plan 
appropriate care and potentially reducing the risk of death 
holds significant humanitarian significance. XAI and early 
prediction are two crucial steps towards bridging the 
"Intelligence-to-Wisdom" gap. 

The following major contributions are presented: 

 The state-of-the-art solutions in MIS focus on key 
factors such as network architecture, data, loss 
function, and evaluation metrics. The paper specifically 
explains the development process of the network 
architecture from the perspective of three levels of an 
intelligent vision system: the backbone, the typical 
network architecture, and applications of MIS. 

 The paper focuses on the state-of-the-art solutions in 
MIS and highlights the current interest in XAI-based 
MIS to meet ethical and legal requirements. 

 The paper presents a new perspective on MIS by 
incorporating the capability of making early 
predictions based on the results, which contributes to 
the improvement of community healthcare systems. 

The rest of the paper is organized as follows: In Section II 
the state-of-the-art solutions for deep neural network-based 
medical image segmentation are presented. Section III focuses 
on the explanation of black-box models using eXplainable 
Artificial Intelligence (XAI) to increase trust among end-
users. The paper analyzes early prediction techniques for 
disease progression in Section IV. The challenges and 
proposed solutions for improving the efficiency of future 
clinical applications are discussed in Section V. Finally, the 
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conclusions of this comprehensive study and suggestions for 
future research are presented in Section VI. 

II. STATE-OF- THE-ART SOLUTIONS IN MEDICAL IMAGE 

SEGMENTATION 

This section presents state-of-the-art solutions in MIS, 
including network architectures, data, loss functions, and 
evaluation metrics. The specifics are depicted in Fig. 1. 

 
Fig. 1. The pipeline of SOTA solutions in MIS. 

A. Network Architectures 

This study conducts a survey of state-of-the-art solutions 
in MIS based on the standard framework of intelligent vision 
systems (IVS). An IVS encompasses three main levels. 

Level 1 encompasses the backbone deep neural network 
(DNN) architectures used in image segmentation. 

Level 2 builds on Level 1 to create specialized image 
segmentation models. 

Level 3 leverages the knowledge from Levels 1 and 2 to 
develop typical applications for medical image segmentation. 

This study thoroughly describes and explains the three 
levels in the IVS framework (TABLE I. ) 

In the following sections, typical modules and 
architectures for each level will be thoroughly examined. 

Level 1: Background DNN architectures: 

This section introduces typical background neural network 
architectures and state-of-the-art modules aimed at enhancing 
the efficiency of segmentation. 

1) The typical background network architectures: The 

paper delves into several typical background architectures, 

including Convolutional Neural Networks (CNNs), Recurrent 

Neural Networks (RNNs), Graph Neural Networks (GNNs), 

Generative Adversarial Networks (GANs), and Transformers. 

 Convolutional neural network (CNN) (1982, [3]). 
Before gaining popularity, Convolutional Neural 
Networks (CNNs) have gone through several historical 
stages. The first foundation for convolution was laid by 
K. Fukushima et al. through a series of works, 
including "Cognitron: A self-organizing multilayered 
neural network" (1975), ―Neural network model for a 
mechanism of pattern recognition unaffected by shift in 
position-Neocognitron‖ (1979), ―Neocognitron: A new 
algorithm for pattern recognition tolerant of 
deformations and shifts in position‖  (1982). Since 
neighboring pixels in an image typically have strong 
inter-dependencies, K. Fukushima introduced the 
concept of "connectable areas" to extract features in 
"neighborhoods" instead of fully connecting the layers. 
This marked the first paradigm for unsupervised 
pattern recognition. The breakthrough of Convolutional 
Neural Networks (CNNs) lies in the use of two-
dimensional filters, which are capable of extracting 
meaningful features from locally connected 
subsamples. These filters have smaller size, resulting in 
more optimal computing and storage capacity 
compared to earlier fully connected networks. The 
output from the filters is fed into an activation function, 
which adds non-linearity to the feature space and can 
be learned during training. Additionally, the non-linear 
activation function generates outputs that are typically 
monitored through subsampling. This allows for the 
aggregation of outputs, making the input insensitive to 
geometric deviations such as distortion, resizing, and 
repositioning of the sample input.  CNNs have been 
successful in overcoming challenges in MIS, such as 
noise, blur, and low contrast. CNN architecture has 
several different backbones that are used in MIS, such 
as VGG (2014, [4]), ResNet (2015, [5]), DenseNet, 
DeepLabv3, MobileNets (2017, [6][7][8]), EfficientNet 
(2019, [9]). 

 Recurrent Neural Networks (RNN) (1989, [10]) Barak 
A. Pearlmutter has explored various approaches to 
constructing the foundational concept of continuous 
time-recurrent networks. The Recurrent Neural 
Network (RNN) aims to mitigate the weight gradient to 
minimize the time-orbit error of the states in the 
continuous regression network. RNNs are particularly 
well-suited for continuous time domains such as signal, 
control, and speech processing. In medical image 
segmentation, RNN has been applied to model the 
time-dependence of image sequences (video). By 
leveraging the relationships between space-time 
information, RNNs can be combined with other 
architectures to improve the accuracy of image 
segmentation. RNNs can capture both local and global 
spatial features of the image by considering the context 
information [11]. 
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TABLE I.  THE COMMON FRAMEWORK OF INTELLIGENT VISION SYSTEMS (IVS) FOR MEDICAL IMAGE SEGMENTATION (MIS) 

 Level of IVS Explanation Specific Solutions 

1 

Backbone 

DNN 

Architectures 

Traditional segmentation methods, such as thresholding, 

edge detection, and region-based techniques, have limitations 

when dealing with noisy, fuzzy, and low-contrast medical 
images. Convolutional Neural Networks (CNNs) alleviate 

these drawbacks. Additionally, Graph Neural Networks 

(GNNs) and Transformers address the limitations of 

convolution kernels with regards to locality and invariance 

Background Networks Architectures: CNN (1982, [3]), RNN (1989, 

[10]), GNN (2009, [12]), GAN (2014, [14]), Transformer (2017, [16]). 

Backbone DNN: VGG (2014, [4]), ResNet (2015, [5]), DenseNet, 
DeepLabv3, MobileNets (2017, [6][7][8]), EfficientNet (2019, [9]).  

Some additional modules: Inception (2015, [19]), Dilation convolution 

(2016, [21]), ASPP (2017, [7]), Attention (2015, [29]), Squeeze-and-
excitation (2018, [33]), Residual (2015, [5]), Dense (2017, [6]), Residual 

Dense (2018, [37]). 

2 

Specific DNN 

Architectures 

for MIS 

UNet is a widely used method in medical image 
segmentation. Its variants and hybrid network architectures 

have been developed to achieve higher accuracy in 

segmentation 

Unet (2015, [38]), V-net, 3D U-Net (2016, [39], [40]), Mask R-CNN 
(2017, [41]),  U-Net++ (2018, [42]), UNet 3+, DRU-Net, DoubleU-net 

(2020, [43] – [45]), TransUNet, Swin Transformer (2021, [46], [47]), 

UNETR++, LE-UDA, TransUNet+ (2022, [48], [49], [50]), SEP (2022, 
[51]), ESFPNet (2022, [52]) 

 

3 

Applications 

of MIS 

Medical image segmentation has evolved from single-organ 
segmentation to multi-organ segmentation and from organ 

segmentation to lesion segmentation. This has allowed for a 

more comprehensive and effective diagnosis of diseases, 

thereby improving human health care. 

Kidney Tumor Segmentation (F.Isensee et al., 2019, [53]), Brain Tumor 
Segmentation (S. Li et al. 2021, [54]), COVID-19 infection localization 

and severity grading from chest X-ray images (A. M. Tahir et al, 2021, 

[2][1]), Abdominal Multi-Organ Segmentation (F.Isensee, et al., 2022, 

[55]), and so on. 

 

 Graph Neural Network (GNN) (2009, [12]) Scarselli et 
al. introduced the Graph Neural Network (GNN) 
architecture, which expands upon traditional neural 
network methods for processing data represented in 
graph regions. Geometric Deep Learning, also known 
as GNN, is a nascent field of study that extends deep 
neural modeling to non-Euclidean domains. The 
structures of medical images often have irregular and 
unordered patterns, making it challenging to represent 
them as matrices for CNNs. As a result, graph-based 
representations are becoming increasingly popular in 
MIS [13]. 

 Generative Adversarial Networks (GAN) (2014, [14]) 
The Generative Adversarial Network (GAN) 
architecture was introduced by Goodfellow et al. based 
on game theory. In this architecture, two players, a 
generator and a discriminator, play against each other 
to minimize their respective costs. The discriminator's 
cost encourages it to correctly classify data as real or 
fake, while the generator's cost encourages it to 
generate the most realistic fake samples that the 
discriminator finds difficult to distinguish. In medical 
image segmentation, GANs can be used to create 
synthetic medical images and their corresponding 
segmented masks, leading to improved segmentation 
accuracy thanks to GAN's powerful generation ability 
and ability to capture the data distribution [15][14]. 

 Transformer (2017, [16]): The Transformer 
architecture was originally designed for natural 
language processing (NLP) tasks, where it achieved 
remarkable improvements. Its success in NLP has 
drawn the attention of the computer vision community. 
The Transformer enables parallel processing of input 
sequences while supporting long-term dependencies 
between sequence elements, thus overcoming the 
explicit long-term dependency limitations of the Unet 
model [17]. Transformers, unlike CNNs, are designed 
with less inductive bias and can fit into any data 
structure as easily as established functions. Their 

fundamental structure also demonstrates great 
scalability, making them suitable for networks with 
high capacity and large data sets. This allows for multi-
modal processing, including images, videos, text, and 
audio, using the same processing blocks. For medical 
imaging, organs that are frequently spread across a 
large receptive field can be efficiently encoded by 
modeling relationships between distant pixels. 
Therefore, the ability of Transformers to model the 
global context is crucial for accurate medical image 
segmentation, such as lung segmentation. Additionally, 
medical images are often blurred, noisy, and have low 
contrast, such as in ultrasound scans. Understanding 
the overall context between pixels against the 
background can help models avoid mis-segmentation 
[18]. 

2) SOTA modules for enhancing segmentation efficiency 

 For aggregating features at multiple scales: 

- The Inception module (2015, [19]) which 

concatenates multiple parallel convolutional filter 

banks with varying kernel sizes to extract features 

at multiple scales. Example of the application of the 

Inception module in medical image segmentation 

can be found in [20]. 

- The dilation convolution (or "atrous convolution") 

kernel, introduced in 2016 [21], increases the size 

of the kernel, and the corresponding receptive field 

without significantly increasing the number of 

pixels processed. This results in improved speed 

and accuracy. Example of the use of the dilation 

module in medical image segmentation networks 

can be found in [22]. 

- The Atrous Spatial Pyramid Pooling (ASPP, [7]) 

module, introduced in 2017, utilizes dilated (or 

atrous) convolution to gather information at 

multiple scales. This helps to preserve local 

features while capturing multi-scale contextual 

information, leading to improved segmentation 
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efficiency. ASPP module is applied in medical 

image segmentation such as retinal segmentation 

[23], segmentation of abdominal organs from CT 

images [24], SAR-U-Net liver segmentation from 

CT images [25], U-Net-ASPP segmented COVID-

19 [26], localized skin lesions [27]; spinal segments 

[28] 

 Focusing on important features: 

- The attention mechanism (2015, [29]) focuses on 

spatially significant features. This mechanism is 

commonly applied in medical image segmentation 

problems such as [30] - [32] 

- Squeeze-and-excitation block (2018, [33]) focus on 

features based on channel-weighted adjustment. 

Medical image segmentation problems that apply 

this block like [34] - [36]. 

 Connecting to the previous layers and solving the 
vanishing gradient problem: 

- Residual block (2015, [5]), which adds the previous 

layer outputs to feature maps learned from the 

current layer; 

- Dense block (2017, [6]), which connects the 

outputs of all previous layers to the feature maps 

learned by the current layer; 

- Residual Dense block (2018, [37]), which allows 

full using the local and global features. 
Level 2: Specific DNN Architecture for MIS. 

Background network architectures at level 1 such as CNN, 
GNN, transformer, and so on can be used to implement 
various tasks such as detection, recognition, classification, and 
segmentation. This paper focuses on DNN architectures for 
image segmentation. TABLE II.  compares three specific 
networks for the medical imaging segment, UNet (2015, [38]), 
UNet++ (2018, [42]), and TransUNet+ (2022, [50]) in terms 
of network architecture, pros, cons, and performance. 

From the comparison results, it can be observed that 
network architectures are continuously improving in terms of 
performance. The current trend is the use of hybrid networks, 
such as TransUNet+ [50], to meet the increasing demand in 
healthcare systems. 

TABLE II.  COMPARES THREE SPECIFIC NETWORKS FOR THE MEDICAL IMAGING SEGMENT 

 Unet (2015, [38]) Unet++ (2018, [42]) TransUNet+ (2022, [50]) 

A
r
c
h

it
ec

tu
r
e
s 

 
Unet includes encoder to extract features, decoder 

synthesize extracted features to segmentation results and 
skip connection copies low-resolution (encoder) to 

high-resolution (decoder) feature maps. 

 
Uses dense blocks to Re-designed skip 

pathways and use Deep supervision 
 

 
Encoder: CNN and Trans; decoder: original 

decoder and the enhanced features; skip 

connection: enhancement module.  

 

P
r
o

s 

- Train with fewer annotated images (at most 35 

annotated images) 
- Fast training time in 2015 (On a NVidia Titan 

GPU (6 GB), segmenting a 512x512 image 

takes less than a second.). 
- Easily applied to more tasks. 

- Added redesigned skip pathways and deep 

supervision for more precise segmentation, 

model pruning, and increased speed. 
 

- Combining Transformer (global self-attention 

mechanisms) and CNN (enhance finer details 
by recovering localized spatial information), 

Redesigning the skip connection to enhance 

features and improve the focus on the key 
patches. In the decoder, cascaded up-sampler 

contains an up-sampling layer and a linear 

layer. 
- Performance in small organ segmentation. 

C
o

n
s 

- Limits on network depth and skip connection 

- Limitations on long-range information extraction 

- Reduces the robustness of feature 

representation and increases the number of 
parameters. 

- High computational cost and memory usage 

 

P
e
r
fo

r
m

a
n

ce
s  

IoU: 76.62 

(LiTS Challenge) 

 
IoU: 82.90 

(LiTS Challenge) 

 

 

 
DSC 76.09 

(Synapse multi-organ CT dataset) 

 
DSC: 81.57 

(Synapse multi-organ CT dataset) 

https://competitions.codalab.org/competitions/17094
https://competitions.codalab.org/competitions/17094
https://competitions.codalab.org/competitions/17094
https://competitions.codalab.org/competitions/17094
https://competitions.codalab.org/competitions/17094
https://competitions.codalab.org/competitions/17094
https://www.synapse.org/
https://www.synapse.org/
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The paper not only compares three of the most specific 
network architectures for MIS, but it also tracks the latest MIS 
rankings on paperswithcode. According to the latest updates, 
the two top models, SEP (2022, [51]) and ESFPNet-L (2022, 
[52]), are at the forefront on two datasets, Kvasir-SEG and 
CVC-ClinicDB, respectively. 

Spatially Exclusive Pasting (SEP) (2022, [51]) is an 
innovative data augmentation technique designed to tackle the 
issue of data scarcity in polyp segmentation, an important task 
in the diagnosis of intestinal diseases such as tumors and 
precancerous lesions. 

Fig. 2 illustrates the procedure of SEP technique. The core 
concept of this technique is to copy the polyp region and paste 
it to other locations in order to generate a large number of new 
images. The augmentation process is divided into three 
modules: (1) a Potential Map Generation Module that 
generates a potential value for each coordinate, (2) a Pasting 
Module, and (3) an Update Module that updates the potential 
values for each coordinate. 

According to the latest statistics on the rankings of 
paperswithcode.com (Fig. 3), SEP has achieved the highest 
mean Dice score (0.941) surpassing UNet (0.818), UNet++ 
(0.821), and FCBFormer (0.939). 

The limitation of SEP is that it is only applicable to a 
limited number of data sources and is specifically designed for 
the task of polyp segmentation. 

 

Fig. 2. The process of SEP [51]. 

 

Fig. 3. Leaderboard the models with the highest mean Dice on the Kvasir-

SEG. 

ESFPNet (2022, [52]) is a deep learning architecture 
designed for real-time accurate segmentation and robust 
detection of bronchial lesions in autofluorescent bronchoscopy 
(AFB) video streams. Fig. 4 depicts the architecture of 
ESFPNet, which consists of a pre-trained Mix Transformer 
(MiT) encoder that leverages the encoder structure and an 
efficient Intelligent Phased Feature Pyramid (ESFP) decoder 
structure. ESFPNet-L produces superior results, with a mean 
Dice score of 0.949, compared to other recent architectures 
such as DuAT (0.948) and ColonFormer (0.947). Fig. 5 
displays the rankings of the models with the highest mean 
Dice scores on the CVC-ClinicDB dataset. Additionally, with 
a processing speed of 27 frames per second, ESFPNet 
provides clinicians with a useful tool for confidently 
segmenting and detecting lesions in real-time during direct 
airway bronchoscopy. However, one drawback of ESFPNet is 
the high cost and difficulty in acquiring more live human 
video data. 

Level 3: Applications of MIS 

Level 3 is dedicated to the investigation of specific 
applications designed to perform medical image segmentation. 
This inherits and develops the background and backbone of 
the Deep Neural Network (DNN) architectures from Level 1 
with a specific DNN architecture designed for image 
segmentation processing at Level 2. 

According to the estimate of cancer cases in the United 
States in 2022, the most common types of cancer were 
prostate (268,490 cases in men) and breast (287,850 cases in 
women). The second most common cancers were lung and 
bronchus (117,910 cases in men and 118,830 cases in women) 
[56]. 

TABLE III. lists the number of papers with codes 
corresponding to each task, based on the latest statistics (as of 
November 2022) available on paperswithcode.com in the 
"Browse SoTA > Medical > Medical Image Segmentation" 
section. 

Furthermore, the paper considers papers that have won 
first place in challenges at the International Conference on 
Medical Image Computing and Computer-Assisted 
Intervention (MICCAI)

1
 in the past three years (2019 - 2022). 

TABLE IV.  summarizes these challenges [57] 

According to the research results, it is evident that state-of-
the-art (SOTA) applications are focusing on improving 
segmentation performance, from single organ segmentation to 
multi-organ segmentation (abdomen, brain, genital organs, 
etc.), and from organ segmentation to tumor and infection area 
segmentation, to provide comprehensive care for human 
health. 

B. Data 

1) Medical image modalities: Data is a crucial component 

in the learning process. Medical imaging is a method and 

approach to create visual images of the interior of the body 

using non-invasive technologies [58]. It is used to aid in the 

diagnosis or treatment of various diseases. Some common 

                                                           
1 https://miccai.org/ 

https://paperswithcode.com/sota/medical-image-segmentation-on-kvasir-seg
https://paperswithcode.com/sota/medical-image-segmentation-on-kvasir-seg
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medical imaging techniques include X-rays, computed 

tomography (CT) scans, magnetic resonance imaging (MRI), 

ultrasound (US), positron emission tomography (PET), and 

single-photon emission computed tomography (SPECT), 

among others [59]. This paper explores the four most 

commonly used medical imaging modalities—X-ray, CT, 

MRI, and Ultrasound. TABLE V.  compares these four 

imaging modalities in terms of their advantages, 

disadvantages, SOTA applications, and health effects [60]. 

 
Fig. 4. ESFPNet architecture [52]. 

 
Fig. 5. Leaderboard the models with the highest mean Dice on the CVC-ClinicDB. 

https://paperswithcode.com/sota/medical-image-segmentation-on-cvc-clinicdb
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TABLE III.  STATISTICS OF NUMBER OF PAPERS WITH CODE ON PAPERSWITHCODE.COM
2 

 
Segmentation tasks Benchmarks 

Papers 

with code 
 Segmentation tasks Benchmarks 

Papers 

with code 

1.  Medical Image  104 407 17. Video Polyp 4 11 

2.  Lesion 8 142 18. COVID-19 Image   10 

3.  Brain Tumor 9 94 19. Lung Nodule  5 8 

4.  Brain 1 51 20. Nuclear  1 8 

5.  Cell 8 41 21. Skin Cancer  2 8 

6.  Skin Lesion 2 39 22. Electron Microscopy Image  3 7 

7.  Retinal Vessel  4 36 23. Infant Brain Mri  1 5 

8.  MRI  32 24. Brain Lesion From Mri  5 

9.  3D Medical Image 3 28 25. Ischemic Stroke Lesion   4 

10.  Cardiac  26 26. Automatic Liver And Tumor   3 

11.  Liver 1 23 27. Placenta   3 

12.  Semi-supervised MIS 2 17 28. Acute Stroke Lesion  1 

13.  Brain Image Segmentation 6 14 29. Cerebrovascular Network  1 

14.  Volumetric MIS 1 12 30. Automated Pancreas  1 

15.  Pancreas 2 12 31. Semantic Segmentation of Orthoimagery  1 

16.  Iris  3 12 32. Pulmonary Vessel  1 

TABLE IV.  SUMMARY OF CHALLENGES AT THE INTERNATIONAL CONFERENCE MICCAI IN THE LAST THREE YEARS (2019 - 2022)3
 [57] 

 Challenges First Author Title 

1.  2022 MICCAI: Multi-Modality Abdominal Multi-Organ Segmentation 

Challenge (AMOS22) (Results)  

Fabian Isensee, 

Constantin Ulrich 
and Tassilo Wald 

Extending nnU-Net is all you need (paper) (code)  

2.  2021 ISBI: MitoEM Challenge: Large-scale 3D Mitochondria Instance 

Segmentation (MitoEM) (Results) 

Mingxing Li Advanced Deep Networks for 3D Mitochondria Instance 

Segmentation (paper) (code)  

3.  2021 MICCAI: Fast and Low GPU memory Abdominal oRgan 

sEgmentation (FLARE) (Results)  

Fan Zhang Efficient Context-Aware Network for Abdominal Multi-

organ Segmentation (paper) (code)  

4.  2021 MICCAI: Kidney Tumor Segmentation Challenge (KiTS) 

(Results) 

Zhaozhong Chen A Coarse-to-fine Framework for The 2021 Kidney and 

Kidney Tumor Segmentation Challenge (paper)  

5.  2020 MICCAI: Automatic Evaluation of Myocardial Infarction from 

Delayed-Enhancement Cardiac MRI (EMIDEC) 

Yichi Zhang Cascaded Convolutional Neural Network for Automatic 

Myocardial Infarction Segmentation from Delayed-
Enhancement Cardiac MRI (arxiv)  

6.  2019 MICCAI: Kidney Tumor Segmentation Challenge (KiTS19) Fabian Isensee Automated Design of Deep Learning Methods for 

Biomedical Image Segmentation (arxiv). 

                                                           
2 https://paperswithcode.com/area/medical/medical-image-segmentation 
3
 https://github.com/JunMa11/SOTA-MedSeg 

https://amos22.grand-challenge.org/
https://amos22.grand-challenge.org/final-ranking/
https://arxiv.org/abs/2208.10791
https://github.com/MIC-DKFZ/nnUNet
https://mitoem.grand-challenge.org/
https://mitoem.grand-challenge.org/evaluation/challenge/leaderboard/
https://arxiv.org/abs/2104.07961
https://github.com/Limingxing00/MitoEM2021-Challenge
https://flare.grand-challenge.org/
https://flare.grand-challenge.org/Awards/
https://github.com/JunMa11/FLARE/blob/main/FLARE21/ShortPapers/fosun_aitrox.pdf
https://github.com/Shanghai-Aitrox-Technology/EfficientSegmentation
https://kits21.grand-challenge.org/
https://kits21.grand-challenge.org/evaluation/challenge/leaderboard/
https://openreview.net/forum?id=6Py5BNBKoJt
http://emidec.com/
https://arxiv.org/abs/2012.14128
https://kits19.grand-challenge.org/
https://scholar.google.com.hk/citations?user=PjerEe4AAAAJ&hl=en&oi=sra
https://arxiv.org/abs/1904.08128
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TABLE V.  COMPARISON BETWEEN THE MEDICAL IMAGING MODALITIES 

 X-ray CT MRI US 

A
d

v
a

n
ta

g
e
s Low cost  

Fast imaging time. 

Quick imaging 

Excellent spatial resolution 

It is possible to combine it with 

angiographic techniques. 

There is no ionizing radiation. 

Exceptional spatial resolution 

Outstanding soft tissue contrast 

Dynamic angiographic imaging. 

Low cost and real-time nature 

Fast imaging time 

No ionizing radiation, good spatial 

resolution 

More prevalent, portability. 

D
is

a
d

v
a

n
ta

g
e
s 

Ionizing radiation 

Low sensitivity. 

Ionizing radiation 

Low sensitivity 

Limited soft tissue contrast. 

High cost 

Long imaging time 

Contraindications in some patients 

Operator dependent 

The difficulty of distinguishing 

imaging structures between tissue 

and gas 

Noise, shadow, speckle, low 

contrast, and blurred edges 

Limited penetration/sensitivity 

A
p

p
li

ca
ti

o
n

s 

o
f 

M
IS

 

Bone [61], Lung [2], [62], Caries 

lesion [63] 

Lung [42], [64] - [66], Proximal 

femur segmentation [67], Kidney 

tumor segmentation [68], tooth and 

alveolar bone segmentation [69] 

Brain [66], [70] - [72], Retinal 

Vessel [73] - [75],  Cardiac [66], 

[76] – [78], prostate [66], [39], [78], 

Osteosarcoma [79] 

Breast [80], kidney [81], prostate 

[82], multi-organs [83] 

H
ea

lt
h

 

e
ff

e
c
ts

 

Biological effect, need protection 

against unnecessary does. 

High radiation, dangerous to health. Less harmful effects, better for the 

fetus. 

Safe, painless, non-invasive and 

non-ionized. 

Some comments on medical imaging modalities: 

 Regarding the segmentation problem: Due to 
challenges such as noise, shadow, speckling, low 
contrast, and blurred edges, US images pose more 
difficulties in segmentation compared to MRI and CT 
images 

 Regarding health effects: X-ray and CT imaging have 
various negative impacts on human health. 

 Regarding segmentation applications: Multiple medical 
imaging modalities can be utilized for various health 
care applications to provide comprehensive health care 
for individuals 

2) MIS in different dimensionality of medical images: 

This section provides an overview of 2D, 3D, and 4D data 

types in medical imaging, as well as image segmentation 

issues in these three data types. 

 Structured 2D images have a defined height and width 
and exist in a flat space. The most common type of 
medical image in this category is X-rays. This paper 
focuses on examining segmentation models, such as 
2D CNNs, original UNets, and their variants, that are 
applicable to 2D image.  

 Structured 3D images have a defined height, width, and 
depth, and can be considered as a collection of stacked 
2D frames. This type of medical imaging, which 
utilizes spatial relationships, is commonly used in 
modalities such as CT and MRI scans. 3D imaging is 
widely used in clinical practice due to its ability to 
provide rich information about the imaged regions, 
which aid in the visualization and quantification of 
various tissues and organs. However, manual 
segmentation of 3D images is challenging and time-
consuming, highlighting the importance of automated 
computer-aided segmentation models. or 3D medical 
image segmentation, CNN models often employ a 3D 

kernel to extract spatial features or utilize GNN or 
Transformer. Some of SOTA models in this field 
include 3D U-Net [40], V-Net [39], nnU-Net [84], 
HighRes3dNet [85], 3D-Res-Unet [86], DenseVNet 
[87], UNETR [88], SegResNet [89], Point-Unet [90], 
and others. 

 Structured 4D images, which are comprised of height, 
width, depth, and temporal dimensions, are commonly 
referred to as dynamic volumes and represent moving 
data in real-time. In the medical field, 4D images are 
often used to measure various parameters such as heart 
rate [91], lung breathing [92], blood flow rate, fetal 
movement, and more. In the field of medicine, 4D 
imaging techniques include dynamic volume CT, 4D 
CT, MRI, and ultrasound. The segmentation of 4D 
medical images has great potential in uncovering 
disease progression and monitoring disease trajectory 
[93]. However, traditional image segmentation can be 
complex and costly without the aid of AI models. 
Commonly used models in 4D image segmentation 
include "balloon" models and deformable (time-
varying) models, such as, LSTM, FCSLSTM [93], and 
XCAT [94]. 

Based on the characteristics of each medical imaging 
modality, as well as the statistics from the MICCAI 2023 and 
2022 challenges, and the latest papers on paperswithcode, it 
appears that 3D medical imaging techniques, such as MRI and 
CT, are currently the most popular. The advantages of 3D 
medical images include the utilization of spatial relationships, 
the ability to obtain more information from image regions than 
can be obtained from 2D images, and a lower cost for 
processing and acquisition compared to 4D images. 

3) Medical image dataset: Data is a crucial aspect of 

learning, and medical image segmentation datasets often 

contain sensitive information, making them highly privacy-

sensitive. However, in order to evaluate the performance of 
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image segmentation methods, the datasets must be made 

publicly available. To accomplish this, organizers gather and 

anonymize medical imaging datasets, and host various 

challenges to advance the field of medical imaging. There are 

several medical databases available for free use in research, 

including: 

 World Health Organization (WHO): WHO is a United 
Nations agency that connects nations, partners, and 
people to promote health and ensure the safety of the 
world. Established in 1948, WHO serves the most 
vulnerable populations so that everyone, everywhere, 
can attain the best possible health. The World Health 
Data Hub of the WHO is a comprehensive digital 
platform for global health data that provides efficient 
solutions for collecting, storing, analyzing, and sharing 
timely, reliable, and actionable data. The WHO is 
responsible for managing and preserving a vast array of 
data collections related to global health and well-being, 
as mandated by its Member States. 

 Medical ImageNet is a large-scale resource for 
machine learning based on medical images. The 
Stanford Center for Artificial Intelligence in Medicine 
and Imaging (AIMI Center) was established in 2018 
with the primary objective of using AI to address 
clinically significant medical issues. The Stanford 
Medical ImageNet is a petabyte-scale searchable 
repository of annotated and de-identified clinical 
images (radiology and pathology) that are linked to 
genomic data and electronic medical records, providing 
a platform for the speedy development of computer 
vision systems. 

 Kaggle: Kaggle offers a customizable Jupyter 
Notebook environment with no setup required. It 
provides free access to GPUs and a vast repository of 
community-submitted data and code. Within Kaggle, 
you will find all the necessary code and data to 
complete your data science projects. With over 50,000 
public datasets and 400,000 public notebooks 
available, you can quickly complete any analysis. 
Currently, Kaggle has 930 medical datasets, including 
210 medical image datasets. 

 Paperswithcode: The mission of Papers with Code is to 
create a free and open resource for machine learning 
research, including papers, code, datasets, methods, 
and benchmarks. It lists 2029 results for medical image 
datasets. Simpson, Amber L., et al. released ten 
datasets for medical image segmentation for various 
tasks under the Medical Segmentation Decathlon. 

 mridata.org is an open platform for researchers to share 
raw magnetic resonance imaging (MRI) datasets. The 
website was created through a collaboration between 
Professor Michael Lustig's group at UC Berkeley and 
Professor Shreyas Vasanawala's group at Stanford's 
Lucile Packard Children's Hospital. The datasets 
available on the website can be used for a variety of 
purposes. 

 Medical image datasets for segmentation are collected 
by researchers from various sources, including 
scientific journals and conferences, and collaborations 
between health organizations and partnerships. These 
datasets can be found by searching Google Scholar and 
Google using keywords such as 'medical segmentation', 
'medical image datasets for segmentation', etc. 

4) Taxonomy of data-driven learning paradigms: Data-

driven learning paradigms can be classified into four 

categories: supervised learning, unsupervised learning, semi-

supervised learning, and weakly supervised learning. 

 Supervised learning: The first type of machine learning 
that humans introduced was supervised learning. In this 
method, the learning model is trained by providing 
labeled data, where both the input data and the 
corresponding output labels are given. The model then 
uses this information to make predictions on new, 
unseen data based on what it has learned from the 
training data. Learning from a forest to predict a tree is 
an example of supervised learning. The first model to 
utilize this method was the perceptron. Most ML 
algorithms employ supervised learning. In the medical 
field, supervised learning is commonly used to estimate 
risk. With risk modeling, the computer not only 
replicates a doctor's expertise, but it can also uncover 
novel relationships that might not be noticeable to 
humans [95]. 

 Unsupervised learning: However, labeling data is often 
difficult, expensive, and time-consuming, requiring the 
assistance of specialists. Furthermore, as network 
architecture advances, models can learn from unlabeled 
data. This is known as unsupervised learning. The 
Deep Belief Network (DBN) was proposed by Hinton 
in 2006, which uses this unsupervised mechanism. 
Unsupervised learning is based on data structures for 
performing clustering and data classification. However, 
since the data is not labeled, the learning challenge will 
increase. The usefulness of the patterns identified 
through unsupervised learning needs to be assessed 
either by human inspection or through additional 
supervised learning tasks [96]. Studies using 
unsupervised learning for Medical Image Segmentation 
(MIS) include the following: breast cancer 
segmentation on MRI [97]; COVID segmentation on 
CT lung tissue [98]; brain segmentation on 3D MRI 
[99]; multi-modality segmentation, including 2D hand 
x-ray, 3D abdominal magnetic resonance (MR) image, 
and 3D cardiovascular MR images [100], as well as 
cardiac substructure segmentation and abdominal 
multi-organ segmentation between MRI and CT 
images [101], etc. 

 Semi-supervised learning combines supervised and 
unsupervised learning paradigms to solve the problem 
of training an accurate classifier with less human effort 
and time. This framework leverages both a limited 
amount of labeled data and a large amount of unlabeled 
(undiagnosed) data to achieve this goal [102]. Studies 

https://www.who.int/
https://www.kaggle.com/
https://paperswithcode.com/
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using semi-supervised learning in the field of MIS can 
be found in the range of studies [103] to [105]. 

 Weakly supervised learning paradigms are used when 
raw data is not fully processed or processed 
inaccurately. The goal of weakly supervised learning is 
similar to that of supervised learning, but instead of 
using a carefully labeled and processed training set, 
weak supervision is provided through one or more 
weakly annotated examples. These examples may 
come from community sources, be the output of rule 
heuristics, the results of remote monitoring, or the 
output of other classifiers [106]. Numerous studies 
have employed weakly supervised learning for the 
segmentation of medical images, as demonstrated in 
researches [107] to [109]. 

One thing to remember about medical imaging data is that 
the amount of annotated (labeled) data is very small. TABLE 
VI. TABLE VI. compares the four paradigms discussed above 
in terms of labeling costs. 

TABLE VI.  COMPARISON OF LABELING COSTS OF DATA-DRIVEN 

LEARNING PARADIGMS 

Methods Data Labeling 

Cost 

Supervised Learning Labeled data High 

Unsupervised 

Learning 

Unlabeled data No 

Semi-supervised 
Learning 

Labeled data + unlabeled data Medium 

Weakly supervised 

Learning 

 

Labeled data (small) + noise data 

(incomplete and inaccurate labels) + 

unlabeled data 

Low 

The accuracy of data-driven learning models is directly 
proportional to the amount of annotated data and inversely 
proportional to the cost of labeling. To improve the accuracy 
of learning models while reducing the cost of labeling, two 
solutions that have been proposed are transfer learning and 
active learning. 

Traditional machine learning methods assume that the 
training and test data come from the same domain, with the 
same input feature space and data distribution characteristics. 
However, this assumption is not always true in real-world 
machine learning scenario. In some cases, collecting and 
annotating training data can be expensive or difficult. Transfer 
learning addresses this issue by training models on labeled 
data from domains where data collection and annotation are 
easier. The knowledge gained from the training data is then 
transferred to the test data domain [110]. Many models today 
are pre-trained on the ImageNet dataset [111]. Transfer 
learning has been applied in the field of medical image 
analysis in works such as [112] and [113]. 

While the ImageNet dataset is large and well-labeled, 
medical image data has distinctive characteristics that set it 
apart from natural images in datasets like ImageNet. Active 
learning is a method of selecting a subset of data from a larger 
dataset, such as a data lake [114] for annotation. The goal of 
this method is to increase the amount of annotated data, 
reduce data annotation costs, and improve model performance. 

This paradigm has been used in papers ranging from [115] to 
[118] 

C. Loss Functions 

1) Common loss functions: The image segmentation labels 

each pixel with the corresponding class. Therefore, it is 

necessary to use a mechanism to calculate the loss weight for 

each pixel. The most commonly used loss functions in 

segmentation are cross entropy and its variants. 

 Cross-Entropy loss is a fundamental function in 
medical image segmentation. It is derived from the 
Kullback-Leibler (KL) divergence, which measures the 
difference between two probability distributions, such 
as those provided by the training set. The minimum KL 
divergence is equivalent to the minimum Cross-
Entropy. The Cross-Entropy is defined as follows: 

      
 

 
∑ ∑    

       
  

   
 
     (1) 

where    
  is a binary indicator representing whether class 

label c is the correct classification for pixel i, and    
  is the 

corresponding predicted probability. 

 A variant of the Cross-Entropy loss is the Weighted 
Cross-Entropy loss (WCE). This loss function takes 
into account class imbalance by assigning weights to 
different classes. Another emerging variant of the 
Cross-Entropy loss is the Focal Loss, which adjusts the 
weights of well-classified training samples to reduce 
their impact. 
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where    is the class weight assigned to penalize majority 
classes,    is typically set inversely proportional to the 
frequency of each class in the training set. In the experiments 
to follow, we will set the class weight    to be the reciprocal 
of class frequency in the training set. 

Aside from cross-entropy, other standard loss functions 
used in image segmentation are the Dice loss, and the 
Intersection over union (IoU) loss - which is derived from 
the Jaccard index and measures the ratio of sample 
intersection to its union. Dice loss and IoU loss are often used 
to improve the corresponding evaluation metrics. 
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2) Hybrid loss functions: Jun Ma et al. presented an 

overview of loss functions in MIS sorted according to the 

following classification system: distribution-based, region-

based, boundary-based, and association-based. At the same 

time, the authors also found the relationship (connection) 

between different loss functions (see Fig. 6), as well as the 

specific use case of loss functions in different applications of 

MIS [119]. These loss functions are installed on GitHub 
4
 

Loss function relationships: As shown in Fig. 6 there are 
strong connections between loss functions. 

                                                           
4 https://github.com/JunMa11/SegLoss. 

https://github.com/JunMa11/SegLoss
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 Most distribution-based and region-based loss 
functions are variants of Cross entropy and Dice loss. 

 Although boundary-based losses are designed to 
minimize the distance between two boundaries, they 
share some similarities with Dice loss because both are 
calculated using region-based methods. 

 A compound loss is a combination of multiple loss 
functions. 

Recommendations for selecting loss functions: It is 
impossible to determine which loss function is the best. The 
data balance can be used to select the appropriate loss 
function. 

● Mild imbalance issues are well handled by Dice loss or 
General Dice loss (GD) 

● For highly imbalanced segmentation tasks, the 
compound loss functions are more commonly used. 

The Combo Loss function proposed by Saeid Asgari 
Taghanaki et al. [120] aims to improve multi-organ 
segmentation performance in cases where the input and output 
are imbalanced. This loss function has been shown to achieve 
higher Dice scores and reduce false negatives and false 
positives, and can be applied to 3D U-Net, 3D V-Net, and 3D 
Seg-Net architectures. 

 
Fig. 6. An overview of 20 loss functions for MIS and their relationships [119].

D. Evaluation Metrics 

Segmentation performance evaluation involves comparing 
the similarity between a manually generated and a DNN-
generated segmentation. Many metrics are used for evaluation, 
but some of the most commonly used ones in medical imaging 
are presented below. 

In MIS, the regions of interest (ROI) are often quite small 
compared to the overall image. This results in an imbalanced 
distribution of pixels between different classes. To address 
this issue, two common metrics used in MIS are the Dice 
Similarity Coefficient (DSC), also known as the F1 score, and 
the Intersection over Union (IoU), also known as the Jaccard 
index. 

Explanation of some acronyms: GT: Ground Truth; MS: 
Machine Segmentation; TP: True positive; TN: True negative; 
FP: False positive; FN: False negative; these terms are 
illustrated in Fig. 7, which has been modified from source 
[121]. 

 
Fig. 7. Illustrate GT, MS, TP, TN, FP, and FN modified from the source 

[121]. 

1) Jaccard index (JAC - IoU) evaluates the overlap 

between GT and MS regions. 
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(5) 

2) Dice similarity coefficient (DSC - F1 score) measures 

the similarity between GT and MS regions. 
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(6) 

The following are other metrics that are less commonly 
used in the evaluation of medical image segmentation due to 
their sensitivity to the size of the segment, meaning they 
penalize errors in small segments more heavily than in larger 
segments. 

3) The Hausdorff distance (HD) between two GT and MS 

regions is defined as "the maximum of all minimum distances" 

(see Fig. 8) [122]. 

                          } } (7) 

where gt and ms represent the pixels of regions GT and 
MS respectively, and d (gt, ms) is any metric between these 
pixels; for the sake of simplicity, take d (gt, ms) is taken as the 
Euclidean distance between gt and ms. 
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Fig. 8. Illustrate the Hausdorff distance [122]. 

4) Other evaluation metrics 

 Sensitivity / Recall / True Positive Rate (TPR): 

                              
  

     
 (8) 

 Specificity or True Negative Rate (TNR): 

                    
  

     
 (9) 

 Accuracy (ACC): 

      
     

             
  (10) 

 False Positive Rate (FPR) 

      
  

       
    –      (11) 

 False Negative Rate (FNR) 

      
  

       
    –      (12) 

 Precision or Positive Predictive Value (PPV): 

               
  

       
 (13) 

III. EXPLAINABLE ARTIFICIAL INTELLIGENCE IN MEDICAL 

IMAGE SEGMENTATION (XAI IN MIS) 

Recently, the use of AI in the medical field has led to 
impressive results, with machine learning models achieving 
over 99% accuracy. However, the practical application of 
these models remains limited due to their "black box" nature. 
XAI learns how models make decisions, investigates the inner 
workings of its layers, and provides visualizations of neural 
networks. Interpretability, which supports the reasoning 
behind a model's output, is crucial, particularly in precision 
medicine where experts require more in-depth information 
from a model beyond just a binary prediction to make an 
accurate diagnosis. In general, people are cautious about using 
techniques that are not transparent and can't be easily 
understood, due to the increasing emphasis on ethical AI, 
particularly in fields that have a direct impact on human lives 
[123]. To build trust among physicians, regulators, and 
patients, medical diagnostic systems must be transparent, 
easily understandable, and capable of providing explanations 
[123]. Moreover, by using XAI, model designers can uncover 
weaknesses in existing architecture and debug and fine-tune 
models to improve their performance. 

If an image-based diagnostic system is enhanced with 
XAI, it will reach a level of Wisdom, which is higher than 
mere Intelligence. This is because, in addition to having high 
IQ, it also has high EQ or a sense of responsibility. 

XAI can be divided into two categories: interpretability 
and explainability. 

 "Interpretability" focuses on the underlying processes 
and events. It answers the "how" question by showing 
how the decision was made (based on the scoring 

criteria), but it does not explain "why" the criteria used 
are reasonable. The term "interpretability" addresses 
the "quantitative" aspects of the decision-making 
process. 

 "Explainability" focuses on the inherent characteristics 
of events. It addresses the "why" question by 
explaining the reasoning behind the decision, rather 
than just the "how". The term "explainability" refers to 
the "qualitative" aspects of the decision-making 
process. Some commonly used methods for 
explainability include CAM [124], Grad-CAM [125], 
Grad-CAM++ [126], LIME [127], and SHAP [128]: 

- Bolei Zhou and colleagues introduced the Class 

Activation Maps (CAM) approach [124], which 

utilizes a global average pooling (GAP) layer at the 

end of the neural network. CAM provides an 

interpretation of the model and reveals the areas of 

the image that the network focuses on to make 

decisions. By producing heatmaps, CAM shows 

which regions of the image are most important for 

decision-making. 

- Building on the CAM approach, various variants 

have been developed for the XAI process, including 

the widely used Grad-CAM [125] and Grad-

CAM++ [126]. 

- Local Interpretable Model-agnostic Explanations 

(LIME) [127] were introduced by Marco Tulio 

Ribeiro and others as a method for creating an 

interpretable model that accurately reflects the 

classifier in a locally interpretable representation. 

- SHAP (SHapley Additive exPlanations) [128], 

developed by S. Lundberg and S.-I. Lee, is a 

method that assigns a significant value to each 

feature for a specific prediction. This approach is 

viewed as a comprehensive framework for 

interpreting predictions. 
There are some XAI models that can only be interpretable, 

explainable or both. 

1) Consider the linear regression model for disease 

diagnosis. 

 It is considered "interpretable" because once the 
coefficients of the linear model are calculated, the new 
input can be used to determine how the predicted 
output was obtained. This process is clearly quantified. 

 However, it is "unexplainable" because it does not 
provide an explanation for why there is a linear 
relationship between the independent and dependent 
variables, which is not clearly quantified. 

 Both "interpretability" and "explainability" can be 
achieved if the statistical process includes a step for 
testing the linear hypothesis. This provides a way to 
determine the presence of a linear relationship and 
quantify the relationship between the independent and 
dependent variables, making the results both 
interpretable and explainable. 
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2) Example of a model that can only be explained: The 

lung infection segmentation model from X-ray images was 

trained using a Deep Convolutional Neural Network (DCNN) 

combined with Class Activation Maps (CAM) on data from 

two different scanners at two hospitals. It is possible to 

understand which areas of the lungs contribute to a positive 

outcome ("why"), but the reason why the sample test with the 

trained model at hospital 1 is positive but with the trained 

model at hospital 2 is negative is unclear ("how" to calculate it 

is not understood). 

IV. EARLY PREDICTION WITH MIS 

This section presents the role and typical applications of 
MIS in the field of early prediction. 

Tumors often start as small, hard-to-detect nodules, which 
can lead to a high mortality rate among patients. However, if 
detected early and treated promptly, it can increase the 
patient's chances of survival and decrease the cost of 
treatment. This is the motivation behind researchers 
performing early prediction problems. The segmentation 
results can be used to anticipate disease progression and offer 
appropriate treatment. Early prediction has a critical role in 
reducing patient risk, which holds great humanitarian 
significance. Furthermore, it helps to elevate the level of the 
system from intelligence to wisdom. 

A. Some Typical Applications 

The Fuzzy C-means (FCM) intelligent segmentation 
algorithm [129] was developed for early detection of enlarged 
hematoma in patients with intracerebral hemorrhage (ICH) on 
CT images. The processing of cranial CT images using the 
FCM algorithm has high clinical value in predicting early 
hematoma in ICH patients. 

Lung cancer is usually detected early when lesions appear 
in the bronchial epithelium of the airway wall. 
Autofluorescence bronchoscopy (AFB) [52] has been shown 
in recent studies to be particularly effective in detecting 
lesions, making it a potentially crucial approach for airway 
evaluation. Bronchoscopy is a commonly used method for 
detecting early-stage lung cancer. ESFPNet is a method for 
accurately segmenting and identifying bronchial lesions in 
AFB video streams. 

There are also some other early prediction models based 
on segmentation results such as brain-related disease [130] - 
[132], evaluation of bone tumors [133], lung disease [134] - 
[136], breast cancer [137] - [138], tumor metastasis of ovarian 
cancer patients [139], stroke, ischemic coma [140] - [141], 
acute pancreatitis [142], and cancer radiation [143]- [144]. 

In addition, early segmentation is also applicable to cases 
with noisy and incomplete annotations [145]. 

V. CHALLENGES AND SOLUTIONS 

A. Challenges with Dataset 

1) Shortage of large-scale, annotated, and standardized 

datasets: High-quality and large amounts of data are crucial 

for deep neural network (DNN) models. However, obtaining 

data, especially sensitive information like medical images, can 

be difficult through crawling methods. Additionally, manual 

annotations on medical images can be time-consuming, costly, 

and require specialized knowledge. 
Solutions to address the shortage of datasets include: (a) 

utilizing unsupervised learning techniques, such as semi-
supervised learning, weak supervision, active learning, and 
transfer learning (as discussed in Section IV4); (b) utilizing 
open-source datasets, including those mentioned in previous 
sections, as well as others listed in "10 Open Repositories for 
the Medical Image Processing Community" by vin bigdata 
[146]; (c) creating simulated data using the Synthetic Minority 
Oversampling (SMOTE) technique, which generates new data 
points based on the closest data points of the minority class; 
(d) implementing data augmentation [51]; (e) and Deploying 
Pre-Trained DNN models [147]. 

2) Class Imbalance in Datasets: Medical datasets are 

often highly imbalanced with regards to class distribution, 

with some diseases having significantly more negative 

samples than positive samples, sometimes up to a 98% to 2% 

ratio. This level of imbalance can result in biased outcomes, 

and the prediction model may not be accurate for the minority 

class as it is frequently biased towards the majority class. 
Solutions to class imbalance in medical datasets include 

adjusting the evaluation metric, under-sampling, over-
sampling, collecting more data, incorporating model penalties, 
and using cross-validation. 

In addition to class imbalance, medical image datasets can 
also face issues of sparse annotations and intensity 
inhomogeneities, which can affect model performance. There 
are specific solutions for each of these cases presented in the 
papers [148] and [149]. 

B. Challenges with DNN 

1) Training time: Training a deep neural network (DNN) 

requires significant time and effort to extract the necessary 

features and enhance performance. 
Solutions to improve the efficiency of DNN training 

include: (a) implementing batch normalization; (b) using 
pooling layers to reduce image size and the number of 
parameters, and employing the early stopping technique to 
minimize unnecessary training time and avoid overfitting. 

2) Overfitting: Deep learning algorithms are susceptible to 

overfitting, where a model becomes too tailored to the training 

data and memorizes both meaningful patterns and random 

noise and fluctuations. This can result in poor generalization 

and low performance on unseen test data. 
To prevent overfitting, various techniques can be utilized, 

as outlined in [150]. These include training with more data, 
implementing data augmentation, adding noise to input data, 
performing feature selection, utilizing cross-validation, 
simplifying data, applying regularization, using ensembling 
methods, employing early stopping, and incorporating dropout 
layers. 

3) Gradient vanishing: Gradients tend to decrease in 

magnitude as back propagation be activated in a deep neural 
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network (DNN). This means that the updates performed by 

Gradient Descent have limited impact on the weights of these 

layers, making convergence difficult and potentially leading to 

poor performance of the DNN. This phenomenon is referred to 

as the Vanishing Gradients problem. 
To address the Vanishing Gradients problem, there are two 

main approaches: (a) Preprocessing, appropriate activation 
function selection, and proper weight initialization. (b) Using 
residual blocks and skip connections along the encoder-
decoder path, as described in [151]. 

4) Computational complexity: Deep learning algorithms 

often involve complex calculations, and the training process is 

typically performed on high-performance hardware such as 

GPUs or supercomputers. 
To address this, it is important to construct compact and 

portable models with a reduced number of parameters while 
still maintaining high performance for the intended task [152]. 
This can be achieved through various techniques such as 
regularization, model pruning, and efficient architectures 

5) The "black box" nature of AI models: The "black box" 

nature of artificial intelligence raises important ethical, 

transparent, and explainability concerns in clinical medical 

applications. Despite numerous efforts in the field of XAI, this 

problem remains a significant challenge for researchers to 

address. 
To address the challenges of explainability in AI, there are 

several solutions available, beyond those mentioned in Section 
III, such as CAM, LIME, and SHAP. Other measures include 
SAU-Net [153], saliency map, and others. 

Building on the progress made by the XAI community, 
Seibold et al. [154] have proposed an indirect segmentation 
method that leverages Layer Relevancy Propagation (LRP) to 
extract binary segmentation maps at the pixel level. This 
approach demonstrates comparable results to UNet while only 
using image-level labeled data. 

6) Early segmentation problems: This approach 

represents a new and promising opportunity for application in 

clinical settings. It has the potential to drive advancements in 

both medicine and AI, and ultimately contribute to better 

protection of human health. This is a significant breakthrough 

that holds great promise for the future. 
 

Solutions: 

In the early stages of tumor development, it can be 
difficult to detect small tumors due to their size. To address 
this challenge, it is important to build highly sensitive models 
that are capable of accurately segmenting small regions of 
interest, such as the TransUNet+ model described in [50]. 

To predict the progression of a disease in patients, one 
approach is to conduct a follow-up study that combines 
previous and current results to forecast future segmentation 
outcomes. In practical experience, malignant tumors often 
grow abnormally and out of control, making early and 
accurate detection and segmentation critical for reducing the 
risk of patient mortality. To achieve this goal, it is crucial to 

develop early and precise auto-segmentation technology. The 
use of past observations to predict future events is a key 
method for making informed decisions, as described in [155]. 

VI. CONCLUSIONS AND FUTURE WORK 

Over the past decade, AI-assisted automated medical 
image segmentation has gained significant attention from the 
computer vision community. This study provides a 
comprehensive overview of the state-of-the-art solutions in 
terms of network architecture, data, loss functions, and 
performance metrics. With a focus on network architecture, 
this research categorizes the solutions into three levels of 
intelligent vision systems. The study also considers the 
"intelligence" level of the DIKIW hierarchy. 

The paper also highlights two issues that are currently 
gaining significant attention, which are Explainable AI (XAI) 
and Medical Image Segmentation (MIS)-based early 
prediction. Both of these topics are considered hot research 
areas due to their practical and humanistic values. By 
addressing XAI and early prediction, the level of the DIKIW 
hierarchy can be raised from "intelligence" to "wisdom". 
Despite some progress in these areas, there are still numerous 
challenges that remain for researchers to tackle. 

The next step in the research direction of this paper is to 
develop a trusted XAI-based early diagnosis support system 
that can be used in hospitals by both patients and doctors. 

The aim of the paper is to advance the use of AI in disease 
diagnosis to a level of wisdom and, as a result, improve the 
well-being of society. 
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