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Abstract—As the production speeds of factories increase, it 

becomes more and more challenging to inspect products in real 

time. The goal of this article is to come up with a computationally 

efficient texture discrimination algorithm by first testing their 

ability to localize defects and then increase their efficiency by 

removing less effective parts of them. Therefore, abilities of the 

most popular texture classification algorithms such as the 

GLCM, the LBP and the SDH to localize defects are tested on 

different datasets. These tests reveal that, on small windows 

GLCM and SDH perform better. Frequency properties of the 

textures are used to fine-tune the parameters of these algorithms. 

Further experiments on three different datasets prove that the 

accuracy of the algorithms are increased almost twice while 

decreasing the processing time considerably. 
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I. INTRODUCTION 

Despite being old, based on the yearly citations they 
receive, Haralick‟s grey level co-occurrence matrices 
(GLCM)[1], Unser‟s sum and difference histograms (SDH)[2] 
and Local Binary Patterns (LBP)[3] are the most popular 
texture classifiers in the literature. As shown in Fig. 1, great 
majority of machine vision systems inspect a product 
simultaneously while it is being produced. Usually, imaging 
sensors are stationary and the product moves under them. This 
causes the viewing angle of the cameras to always be static 
with respect to the product. The lighting conditions in a factory 
are usually under some degree of control and do not change 
radically. When used for such purpose, these algorithms are 
usually applied to the texture towards the same alignment 
because in a factory the camera is usually at a fixed position 
with respect to the production line or the conveyor belt. 
Therefore, throughout the experiments performed in this 
article, texture alignment is fixed. 

Another difference between the texture recognition and the 
discrimination is that the recognition applications process the 
entire image while the discrimination applications process 
smaller windows to localize where the defect is. Unfortunately, 
there are not many experimental studies in the literature that 
measures the effectiveness of algorithms on different (non-
overlapping) window sizes. Texture segmentation [4] 
applications use sliding windows which makes them very slow. 

Because of the rapid progress of technology, materials in 
factories are produced faster and faster. Flat surfaced products 
such as wood [5], fabric [6] and metal [7] require machine 

vision systems to detect production defects. Unfortunately, 
high-speed production of these goods combined with the 
availability of high-resolution cameras put great strain on the 
network and the computers that process those images in real 
time. A typical line-scan camera, employed in web inspection 
tasks for products such as film, paper and fabric, generates 
between 15 and 150 MB of data per second and half a dozen 
cameras are required to cover the entire width of the web, 
meaning that gigabytes of data must be reliably transferred and 
processed. One approach to this problem is to pre-process 
images inside the cameras and send the image data to the main 
computer only when the camera suspects that there might be a 
defect [8]. In this study, Brodatz texture set is experimented on 
with popular texture classification algorithms to see which one 
performs better on small windows. Based on these results, 
improvements to these existing algorithms are proposed. These 
modified algorithms are tested on three different datasets. 

 

Fig. 1. Simultaneous manufacturing and inspection of a flat product inside a 

factory. 

II. RELATED WORK 

GLCM are calculated by counting the relative pixel value 
occurrences that are away from each other (d) pixels. The 
result is a histogram matrix of size N×N. N is defined by the 
maximum number of gray levels in the image. Therefore, for 
greyscale images it is usually 256×256=64K elements. 
Haralick proposes 14 features that can be calculated from the 
GLCM, which requires processing of those 64K elements 14 
times. This not only requires considerable amount of 
processing power but also consumes several 64 KB of 
memory. Considering the fact that the GLCM was invented in 
1973, this was a problem for the computers back then. One 
solution to overcome this problem was to use 16 grey levels for 
the image. That solution reduces the matrix size to 16×16. 

Unser proposed another optimization to this problem. He 
mathematically proved that almost the same results could be 
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achieved by using the sum and difference histograms (SDH) of 
those pixel pairs. Instead of a matrix, his algorithm generates 
two vectors, one for the sum of the pixels and one for the 
difference for every given distance „d.‟ An image with 256 
gray levels produces two vectors with 512 elements. 
Calculating those 14 features that Haralick suggested becomes 
computationally simpler. This method's main advantage is the 
fact that it reduces the amount of memory. However, based on 
our experiments (see Section VIII) it increases the 
computational complexity compared to the GLCM if reduced 
number of gray levels are used. In the literature, SDH has been 
tested on many texture classification problems and it has been 
proved that it is a quite successful texture classifier. 

 Texture analysis has been the focus of numerous studies 
over the years and as a result, over two dozen algorithms have 
been invented to classify texture. In volume II of “Handbook of 
Computer Vision and Applications,” Wagner [9] experimented 
on seven different texture sets using 18 different texture 
classification algorithms. His experiments showed that Unser's 
SDH is not only the most successful among the 18 algorithms, 
but also the second fastest. Based on the measurements of that 
study, the only algorithm faster than the SDH is the Local 
Textural Features [10]. However, that algorithm had the second 
lowest success rate. Therefore, according to that study, SDH is 
computationally the most efficient texture classifier. However, 
it should be noted that the GLCM was probably calculated 
using the full 256 gray levels making it much slower compared 
to the SDH. The second most successful algorithm is Chen‟s 
geometric features [11] which is the slowest among the 18 
algorithms (30 times slower than the SDH). The third 
successful algorithm is the Gabor Filters [12], which is the 
second most popular algorithm used for fabric defect detection 
in the literature. Gabor Filters compare energy of the specific 
frequency bands on fabric images to detect defects. Our 
method to select pixel distance and the orientation is 
mathematically related to Gabor Filters. Another popular 
algorithm in the literature is Law's Masks [13]. Laws has 
suggested five 1-D convolution masks for feature extraction. 
From these masks 25 2-D filter masks can be constructed and 
features are calculated from them. According to Wagner [9], 
Law's Masks performed slightly worse than the SDH, but is 
eight times slower. Galloway‟s Run-Length Matrices [14] 
should also be mentioned because of their speed. His technique 
calculates characteristic textural features from gray-level run 
lengths in different image directions and then calculates five 
features from them for each direction. However his algorithm 
did not score as high as the previously mentioned algorithms 
according to Wagner. 

The literature still lacks a mathematical definition of the 
texture. Therefore, humans are the only referee when it comes 
to judging which texture is the same or different. That is why 
an interesting experiment conducted by Petrou [15], comparing 
human perception to the texture classification algorithms is so 
important. In this study, classification performance of 
numerous algorithms were compared to a group of humans. 
Variants of both the GLCM and the SDH, with different gray 
levels were experimented with. These experiments showed that 

direct use of GLCM or SDH as input to a classifier resembles 
to human perception much closer than using only the features 
derived from them. SDH was measured as one of the fastest. 
SDH using16 gray levels is closer to human perception than 
the GLCM as well. In his exhaustive experiments, Gonzales-
Rufino [16] shows that GLCM and SDH perform better against 
the Local Binary Patterns, and the Neighboring Grey Level 
Dependence Statistics [17]. In the literature, there is abundant 
evidence that second order pixel statistics based texture 
classification is one of the most successful and the most 
efficient method. All this evidence suggests that, further 
improving SDH might give us computationally the most 
efficient texture discrimination method. 

III. PERFORMANCE COMPARISON ON SMALL WINDOWS 

In the literature, mathematical definitions of the texture is 
very vague: “A region in an image has a constant texture if a 
set of local statistics or other local properties of the picture 
function are constant, slowly varying, or approximately 
periodic” [18]. Because of the fact that a texture is defined in 
terms of “statistics” and “periodicity,” a texture can exist only 
as a group of pixels, or in other words as a window. As 
mentioned before, texture discrimination requires localization 
of texture aberrance. Therefore, we need to measure the 
performance of texture classifiers on varying size of windows. 

For this experiment, four different size windows were used 
on 13 different Brodatz textures. The size of the windows are 
240×240, 120×120, 60×60 and 30×30. As shown in Fig. 2, the 
right half of the images are used for training and the left halves 
are used for testing. Overlapping blue squares represent 
training locations and green squares represent non-overlapping 
test locations. The ones at the top use 120x120 pixel windows 
and the ones at the bottom use 30x30 pixel windows. Green 
boxes indicate correctly classified windows and red ones 
indicate falsely classified windows. The numbers inside the red 
boxes indicate which of the 13 textures that window was 
misclassified as. 

For this experiment, six different feature sets were used. 
The first two feature set is the four features obtained from the 
GLCM. In the literature GLCM is mostly used in either 256 
color mode or 16 color mode. Therefore, both versions were 
tried. The third feature set is the 32 gray level histogram plus 
Unser‟s difference histograms with 16 colors (H-32+DH-16). 
The final three feature sets are LBP with (r=1;P=8), 
(r=1,2;P=8) and (r,P)={(1,8);(2,8)};(3,12)}. Either Artificial 
Neural Networks (ANN) or Support Vector Machine (SVM) 
were used as classifiers. Table I shows that ANN is slightly 
more successful than the SVM. While LBP is more successful 
on larger windows, 16 color GLCM and (H-32+DH-16) are 
more successful on smaller windows. In other words, these 
algorithms are more suitable for defect localization or texture 
segmentation applications. However, readers must keep in 
mind that “window size” is a relative value, which depends on 
the image resolution. If the image of the texture is high 
resolution, than these window sizes must be increased. More 
detailed results of this experiment were shared in a conference 
article [19]. 
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Fig. 2. Top: 120×120 pixel size window test. Bottom: 30×30 pixel size window test. Left half of the images are used for training. Overlapping blue boxes are 
training areas. Non-overlapping green windows on the right half of images are correctly classified windows. 

 NUMBER OF CORRECTLY CLASSIFIED WINDOWS TABLE I.

Window Size (pixels) 

(total test windows) 
GLCM-256 GLCM-16 H-32+DH-16 LBP(r=1;P=8) LBP(r=1;P=8) LBP(r=1;P=8) 

ANN SVM ANN SVM ANN SVM ANN SVM ANN SVM ANN SVM 

240×240 (26) 26 17 26 18 26 19 26 26 26 26 26 26 

120×120 (104) 102 73 102 94 101 74 104 99 104 99 104 99 

60×60 (416) 393 367 408 378 402 253 401 399 396 400 375 400 

30×30 (1664) 1558 1480 1575 1536 1552 1556 1459 1483 1503 1519 1431 1526 

TOTAL (2444) 2079 1937 2111 2026 2081 1902 1990 2006 2029 2044 1936 2051 

IV. PROPOSED MODIFICATIONS 

Despite the growing popularity of the LBP, the previous 
test shows that on smaller windows (patches), performance of 
GLCM and “histogram plus difference histograms” are 
superior. In his article, Unser proves that his sum and 
difference histograms (SDH) are mathematically equivalent of 
the GLCM. The reason why he proposes them is because SDH 
requires less memory and processing power. Since one of the 
main objectives of this study is to come up with a texture 
discrimination (defect detection) algorithm that can fit inside a 
camera, it is natural that we chose to continue with Unser‟s 
sum and difference algorithms. Unser also states that %99 of 
the texture information comes from the difference histogram 
rather than the sum histograms. 

Another reason why difference histograms are used is that 
they are immune against illumination changes. Despite the fact 
that illumination conditions are under control in factory 
settings, we would still want our algorithm to be as robust as 
possible to illumination changes. This can be explained using 
the mathematical model of the light absorption. Let‟s assume 
that a light source is sending photons to a textured surface at an 
illumination strength of 200. Let the first area corresponding to 
the pixel-1 has a reflectivity of %90 and the second area 
corresponding to the pixel-2 has reflectivity of %50. Then the 
camera would detect the photons coming from these two areas 
at a strength of 180 and 100 respectively. The sum of these 
pixels would be 280, and their difference would be 80. If the 
illumination is increased by %20, then these pixels would be 
registered as gray levels of 240×0.9=216 and 240×0.5=120. 
Their sum would be 346 and their difference would be 96. The 
fluctuation for the difference histogram would be much lower 
because the increase in the intensities would cancel each other 
out. If we use 16 gray levels instead of 256, then the difference 
values for those two different illumination conditions would be 

5 and 6. This is only one level shift for %20 change in the 
illumination, which means that for lower illumination changes 
or for pixels with less contrast difference, it would not be 
noticeable at all. Nevertheless, applying the histogram 
equalization would be enough for this algorithm to withstand 
any reasonable illumination fluctuations. On the other hand, 
even with the histogram equalization, sum vectors would be 
very sensitive to any illumination change. 

A. Frequency Domain Fine Tuning 

There are dozens of articles in the literature that present 
successful results of both Haralick‟s and Unser‟s method on 
texture classification and discrimination problems. As Haralick 
and Unser both did, almost every one of those studies set the 
pixel distance “d” to 1. There is no explanation in Haralick‟s 
paper why he used d=1. Using 1 for the pixel distance has 
become so common that some articles don‟t even mention 
what distance they used [20]. The rest of them either use 1 or 
use 1 along with some other pixel distance, such as 5s. For 
example, a fabric defect detection experiment done by Latif-
Amet [21] also set pixel distance to 1. A defect detection study 
on aluminium surfaces conducted by Chondronasios [22] 
selects d=1 and Georgieva [23] uses two different pixel 
distances, d=1 and d=5 to classify the cork tiles. 

Because the texture pixels are defined as “a region slowly 
varying, or approximately periodic” [6], we will build our 
mathematical model based on this. If we scan a texture through 
a straight line at any given angle, the one dimensional signal 
obtained should be: 

 ( )     ∑       (  
 

 
   )   ( )

 

   
 (1) 

Where  ( )  is the noise. Since we want to calculate 
histograms of pixels that are “d” pixels apart, and assuming 
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that the texture has frequencies that are integer multiple of 
themselves, the values of the two pixels that are “d” pixels 
apart would be: 
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If our eyes can detect obvious periodicity in a texture, such 
as the ones created by periodic weavings of a fabric, then we 
can assume that most of the cosine terms have frequencies that 
are integer multiple of the main repetition. This means that, 
when the pixel distance “d” is equal to exactly one period of 
the texture, the difference of these two pixels will cancel out all 
of the cosine terms: 

 (   )   (   )    (  )   (    ) (4) 

Naturally, we assume that the biases cancel each other out 
as well and all that remains are the two random variables. If the 
pixel distance does not equal to one period of the sinusoid, 
there will always be cosine terms in (4), meaning that the 
signal's variance would be much higher. High variance is not a 
desired property for a feature. This is the main reason why we 
use difference histograms (DH). 

As shown in Fig. 3, if we scan through the texture image in 
four different orientations and calculate the magnitude of the 
Fourier Transform (FT) of that signal, the highest peaks in the 
magnitude of the FT will tell us which direction and distance 
must be used for the calculation of difference histogram. 

We can use another method to verify our approach. If we 
have large number of defective samples (or areas), we can 
perform Fisher‟s Discriminant Analysis (FDA). The difference 
histogram vectors must be calculated on non-defective and 
defective windows for a range of “d” (let‟s say from 1 to 25) 
and for all of the orientations. Then the FDA of each element 
must be calculated and summed. The pixel distance and the 
orientation with the highest FDA sum should give us the 
optimum pixel distance “d”. Fisher‟s Discriminant Ratio 
(FDR) is defined as: 

    
(     )

 

  
    

  (5) 

In this equation, m1 and m2 are the respective mean values, 
and σ1 and σ2 are the respective deviations associated with the 
values of a feature in defective and non-defective classes. 
Collectively these modifications will be referred to as 
“Diftogram.” The following sections will show how this is 
done through a few examples. 

 

 

Fig. 3. Magnitude FFTs of the signals obtained by scanning the fabric image 

horizontally, vertically, at +45 and -45 degree angle. 

V. DATASET-I 

A typical fabric sample is used for the first experiment. 
Fabric defect detection is one of the areas of industrial machine 
vision where texture discrimination is widely used. In this 
experiment, 12 images with natural fabric defects such as 
broken thread, missing thread, stuck thread, weaving error, 
punctures, and lubricant oil stains are used. In order to compare 
the effects of modifications, the co-occurrence matrices are 
used as in the conventional way. In order to increase robustness 
against illumination changes, histogram equalization is applied 
to the area of interest. This can be noticed by the slight increase 
of contrast around the perimeter of the white boxes in all of the 
fabric images. GLCM are calculated for each of the 80×80 
pixel windows on 1024×720 pixel images with pixel distance 
set as d=1. Co-occurrence matrices are calculated for 
orientations of 0, +45, +90 and -45 degrees using reduced gray 
levels of 16. Alongside the 14 features proposed by Haralick, 
the two features proposed by Clausi [24] and the three features 
proposed by Soh [25] are also calculated. This is necessary to 
prevent possible criticism that GLCM method is incomplete 
without the newly added features and that the results could 
have been better. In Section 3, the ANN performed better than 
the SVM. Therefore, a feed forward ANN with 25 neurons in 
hidden layer is used for all of the experiments. 

Total of 19 features, 14 from Haralick, 2 from Clausi and 3 
from Soh are calculated from every matrix. Since there is one 
matrix per each of the four directions, a total of 76 features are 
calculated to be used as input to the neural network. The 
training and the test sets are the same. The Neural Network 
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toolbox of the Matlab software was used to train the ANN. The 
ANN training process is not a deterministic one. Every time a 
neural net is trained, even with the same training set and the 
parameters, results will be slightly different. Because of that, 
the experiment was conducted more than 30 times and the most 
successful ANN among them was selected. Results of this 
experiment are shown in Table II and Fig. 4. The white 
windows represent 80×80 pixel squares that are defined as 
“normal” by the ground truth and are also correctly classified 
as non-defective by the algorithm. The green boxes are drawn 
if both the ground truth and the algorithm classifies them as 
defective. In other words, correctly classified areas are marked 
as either white or green boxes. The black color window 
represents that the window was marked as defective but the 
algorithm failed to detect it. If the window is red, this means 
that a non-defective area was incorrectly classified by the 
algorithm as defective. Table II reveals that the GLCM 
algorithm using d=1 and using four orientations was able to 
detect 14 defects out of 42, and misclassified 1 or 2 areas as 
defective. 

In order to see the effect of using Unser‟s difference 
matrices as direct input only, without applying the method to 
find the most effective pixel distance and orientation, the 
experiment was repeated using Unser‟s difference histograms 
with d=1 and in the four orientations. It was observed that the 
ANN had a very low margin to distinguish defective and 
normal areas. Because of this, two different outcomes were 
observed. In some of the trials, ANN recognized 37 of the 42 
defective regions with 27 misclassification of normal areas 
whereas in the other trials it recognized 28 defective areas with 
19 misclassification of non-defective areas. Both of these 
results are given in Table II. 

To measure the success rate of the proposed method against 
other algorithms, the most effective pixel distance „d‟ needs to 
be calculated. In order to achieve that, a fabric image without 
any defects must be scanned through four directions to obtain 
one dimensional signals. Afterwards, the magnitude of the 
Fourier transform of these signals should be calculated as 
shown in Fig. 3. Each signal has one dominant peak. The pixel 
period corresponding to those peaks should be used as the pixel 
distance. 

To verify, or perhaps to get a second opinion, Fisher‟s 
Discriminant Analysis should also be used. As the first step, 
we calculate all of the DH for each of the 80×80 pixel windows 
for all of the twelve fabric images, using all possible pixel 
distances between one and twenty five. Afterwards we 
calculate the FDR value for each element in the difference 
vector using (5), and then sum these FDR values. The pixel 
distance and orientation with the highest FDR sum value is the 
one that should be used for texture discrimination. Below are 
the FDR sums for the elements of the vectors obtained for 25 
different distances and four orientations. For 0-degree 
orientation: 

             1       2        3      4       5       6       7       8       
FDR(Θ = 0)=[ 0.39  0.26  0.76  1.12  2.20  3.02  3.94  4.23  
  9      10    11    12     13     14      15       16        17     18    

19 

3.99 3.93 3.75 4.07 7.22 13.81 21.88 25.34 17.65 10.89 
6.66  

  20      21    22     23    24      25 
4.48 3.93 4.48 5.23 5.63 5.33] 

The largest FDR sum values are for d=15 and d=16 for  Θ 
equals 0 degrees (horizontal direction). When we look at the 
Fourier transform of the horizontal signals in Fig. 3, we see 
that the peak magnitude is exactly at d=16. Proceeding with the 
vertical direction,  

                      1      2      3      4       5       6       7      8       
FDR (Θ = 90) = [ 2.76 4.65 5.43 6.02 5.51 4.58  3.44  3.00  
 9      10     11    12    13    14    15    16    17    18     19   20   

21 
3.21 3.51 3.53 2.47 2.70 3.75 5.02 5.66 4.54 2.62 2.87 3.68 

1.74 1.15 2.49 3.03 2.82] 

FDR sum values reach their maximum at d=(4,5) and 
d=(15,16). As seen in the Fourier analysis of the vertical signal, 
there is a small peak at d=5 but the most important peak at 
d=10 has no effect on the FDR values and instead of the flat 
peak around d=19 we the values at d=15 and 16 of the FDR are 
higher. It is possible that the very narrow peak at d=10 is not 
detected and the defects have their own characteristics that is 
altering the values of the FDR. Because there are more than 
one significant cosine components in the vertical signal, the 
FDR values in the vertical direction are far smaller than that of 
the horizontal. This increases the variance of the signal and as a 
result, reduces the FDR values. For +45 orientation we get d=9, 
and for -45 degree orientation we get d=10. 

                                  1       2      3      4       5      6      7      8 
FDR (Θ = + 45)=[ 2.70 4.28 5.48 6.00 5.70 5.52 5.47 5.78  
    9       10    11     12    13… 
10.49 6.78 1.26 1.92 3.31 4.25 5.03 5.43 3.92 3.61 6.10 

2.38 0.76 1.36 2.81 3.55 3.56]  
                                  1       2      3      4       5      6      7      8 
FDR (Θ = - 45)=[ 1.57 3.01 4.39 5.80 7.10 8.08 7.38 5.70  
  9       10     11    12    13… 
5.62 7.98 3.24 0.61 1.59 3.88 5.32 5.74 4.69 2.67 2.39 4.05 

3.29 1.47 1.68 3.45 4.12] 

The FDR values for 0 degree orientation clearly indicate 
that difference histogram should be applied in the horizontal 
direction and the pixel distances should be set as d=15 and 
d=16. Using these parameters Diftogram‟s success rate is 
shown in Table II. The algorithm classified 37 defective areas 
out of 42 correctly and misclassified 6 areas as defective. That 
is almost 2.5 times (37/14=%264) higher defect recognition 
rate than the GLCM experiment. 

As shown in Table II and Fig. 4, the results are 
considerably superior against the LBP. Some readers might be 
confused that the training and test sets are the same. The 
purpose of this study is not to measure the actual success rate 
of a single algorithm but to measure relative success rate of 
several algorithms with respect to each other. As long as the 
training conditions are the same, these results will give us 
which algorithm performs relatively better. This will be proven 
in Section VII (Dataset III) where we perform training on 
different training and test sets and the relative success rates 
remain similar. 
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 DİSCRİMİNATİON RESULTS FOR DATASET-I TABLE II.

Algorithm 
Defects False + 

Accuracy Precision 
Max 42 Max 678 

GLCM-256 d=1; 4 orientations 14 2 0.9583 0.8750 

GLCM-256 d=1; 4 orientations 15 1 0.9611 0.9375 

LBP (r=1,p=8) (r=2, p=8) 20 1 0.9681 0.9524 

LBPri 25 2 0.9736 0.9259 

DH d=1; 

4 orientations 
37 27 0.9556 0.5781 

DH d=1; 

4 orientations 
28 19 0.9542 0.5957 

DH d=15,16 

Horizontal 
37 6 0.9847 0.8605 

Fig. 4. Two of the defective fabric samples: Broken thread (top) and stuck thread (bottom). White boxes are correctly classified normal areas and green ones are 

correctly discriminated defective ones. Black ones indicate the regions that the algorithm failed to discriminate and red ones are incorrectly classified defects. 

VI. DATASET-II 

A slightly more challenging fabric sample is selected for 
this experiment. The thread used for weaving this fabric has an 
alternating colour making the noise level of the texture 
extremely high. The lighting conditions were also altered. For 
this experiment, multiple light sources were used. The first 
three fabric samples in the set were taken under %20 higher 
illumination then the rest to demonstrate illumination change‟s 
effect. Another challenging part of this experiment is that the 
defects were artificially created to make them extra difficult to 
detect. The defects are so mild that even the human eye can 
barely notice them. In order to do so, 15 different images of the 
fabric were taken and then using the GNU Image Manipulation 
Software, GIMP (https://www.gimp.org), different kind of 
defects were created using blurring, Gaussian and salt and 
pepper noise, contrast altering, spatial compression, pixel 
smearing and etc. 

Table III and Fig. 5 shows the results of the GLCM 
algorithm using 256 and 16 grey levels, four orientations and 
19 features calculated from each orientation. Pixel distance was 

set to d=1, similar to almost every GLCM experiment 
published in the literature. The classifier is the same ANN used 
for the previous experiments, a feed forward network with 25 
neurons in hidden layers. The training set and the test set are 
the same, the training was repeated more than a dozen times 
and the most successful one is shown here. This combination 
of algorithms classified 20 defects correctly out of 64. Zero or 
two normal areas were misclassified as defective. 

 DİSCRİMİNATİON RESULTS FOR DATASET-II TABLE III.

Algorithm 
Defects False + 

Accuracy Precision 
Max 64 Max 836 

GLCM-256 d=1; 4 

orientations 
20 0 0.9511 1.00 

GLCM-16 d=1; 4 
orientations 

22 2 0.9511 0.9167 

LBP (r=1,p=8) 

(r=2, p=8) 
28 0 0.96 1.00 

LBPri 28 1 0.9589 0.9655 

DH d=1; 
0 & 90 degrees 

59 1 0.9933 0.9833 

   

   
GLCM-256 with 4 orientations d=1.     LBPri           DH, horizontal, d=15 &16 
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Fig. 5. Samples from dataset II. Above: A different kind of weaving was cut and paste on it as defect. Below: Added salt and pepper noise. Green boxes are 

correctly discriminated defective areas and black boxes are the ones that the algorithm failed. Images on the right shows zoomed defects. 

Before proceeding to the second part of the experiment, the 
Fourier analysis of the fabric image must be performed. The 
absolute value of the FFT obtained by combining many lines 
from several images shows that there isn‟t any salient sinusoid 
in this signal. The FFT results are similar in other directions 
therefore they are not shown. Under such circumstances, the 
highest peak is usually obtained at zero frequency. This means 
that the FDR analysis should give us d=1. When we perform 
the FDR analysis that is exactly what we get: 

FDR( Θ = 0)=[ 5.97 2.37 1.41 1.39 1.68 2.00 2.17 2.19 
2.18 2.05 1.97 1.99 2.03 1.91 1.71 1.64 1.50 1.34 1.25 1.26 
1.32 1.29 1.24 1.22 1.12] 

FDR( Θ = 90)=[ 5.50 1.89 0.57 0.52 0.77 1.25 1.58 1.94 
2.18 2.33 2.43 2.47 2.29 2.01 1.80 1.81 2.03 2.24 2.63 2.97 
3.42 3.58 3.67 3.58 3.43] 

Similar results are obtained for 45 and -45-degree 
orientations. It seems that selection of pixel distance as 1 is not 
a bad choice if the texture has a lot of noise or there are more 
than a few high amplitude periodic components in the texture. 

For the next part of the experiment, Unser‟s difference 
histograms are directly used as the texture features. The grey 
levels are reduced to 16, pixel distance is set to one, and only 
two orientations, horizontal and vertical are selected. In the 
first part of the experiment where GLCM was used, same 
parameters were used except for the fact that, 45 and -45-
degree orientations were also used with the GLCM. These two 
directions, 45 and -45 are skipped to demonstrate the power of 
the proposed method and also to make the algorithm twice as 
fast. The elements of the two difference vectors are directly fed 
to the same ANN used for the previous experiments. As shown 
in Table III, this algorithm recognized 59 defective regions out 
of 64 and misclassified one normal area as defective. 
Compared to the defect detection rate of the GLCM algorithm, 

this is almost %300 higher. Against the LBP variants, it is 
almost %200 more successful. 

VII. DATASET-III 

For the third experiment, a fabric sample with a patterned 
weaving is used. The fabric is weaved to display a repeating 
pattern, which creates a secondary pattern on top of the pattern 
created by the threads of the fabric. Lighting conditions were 
slightly altered for many of the 45 image samples of this fabric. 
The defects were created using the GIMP software, but this 
time with increased variety and larger surface area. These 
defects vary in strength; about half of them are easily 
noticeable by the human eye. The frequency analysis in Fig 6 
shows that this fabric has a major component at a period of 
around 27 pixels in the horizontal direction. At 45 degrees, the 
major component is at 13 pixels (not shown) and for the 
vertical direction, there are three peaks at 9, 14 and 25 pixels. 
The FDR analysis show consistent results with these findings: 

FDR( Θ = 0)=[ 3.63 2.11 1.60 0.56 2.12 0.46 1.55 0.76 
0.54 1.03 0.79 1.35 2.07 1.79 1.66 1.13 1.09 0.43 0.6 0.53 0.30 

1.24 1.29 0.86 1.12 2.18 6.10 4.92 1.89 0.95] 

FDR( Θ = 45)=[ 3.75 2.57 2.60 0.75 0.51 1.51 2.66 0.75 

0.47 0.55 1.32 1.97 6.41 4.25 1.21 1.55 1.17 0.74 0.69 0.90 
0.56 0.3814 0.73 1.03 1.66 2.30 2.06 0.95 0.50 0.51] 

  

Fig. 6. Magnitude of the FFT of the signal obtained by scanning the fabric 

of dataset III, horizontally and vertically. 

   

   
      GLCM-256 with 4 orientations d=1.            LBPri            DH d=1, 0 & 90 degrees 
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FDR( Θ = 90)=[ 6.16 2.65 1.21 0.86 0.82 1.08 1.18 1.57 
1.85 1.56 1.40 1.19 1.07 1.54 2.01 1.91 1.68 1.18 0.87 0.72 
0.64 1.15 2.11 3.14 3.87 2.83 1.52 0.78 0.76 1.17] 

Because of the abundance of distinct frequency 
components in the vertical direction, (Θ = 90), the FDR 
analysis show that there is no advantageous pixel distance in 
the vertical direction other than d=1. For the 0-degree 
orientation, d=27 and for the 45-degree orientation d=13. Fig. 7 
and Table IV shows the results of discrimination tests for the 
GLCM with d=1 in four directions, Diftogram with d=27 for 
the horizontal and d=one for the vertical orientations and the 
LBP. Diftogram is approximately %250 more successful than 
the GLCMs and %200 more successful than the LBPs. Notice 
also that the number of false positives are smaller than both the 
GLCMs and the LBPs. This result is slightly lower than the 
previous examples. The reason for that is because the fabric 
has two different patterns on it and the defects are stronger. 
Much higher results could be obtained by adding more 
orientations and pixel distances to the Diftogram if 
computational efficiency is not essential. 

Because we are testing the reliability of different kind of 
features against each other, there is nothing wrong about using 
the same images for both training the ANN and testing it as 
long as the ANN is trained the same amount for each feature 
set and the ANN is not trained excessively to the point where it 
memorizes the samples. In other words, if the ANN has enough 
generalization capability, it will measure how well the features 
separate the defects from the background. The default 
parameters of the ANN trainer in Matlab has very good 
balance between memorizing and generalizing therefore, the 
experiments conducted so far has measured the reliability of 
the features quite well. Unfortunately, there might be people 
who do not trust such findings and demand that the training 
and the test sets should be different. For those people the third 
experiment is conducted again, this time using the odd 
numbered 23 images (1, 3, 5, ... 45) for training and the other 
22 for testing. Table V shows that the Diftogram is still about 
two times more successful than both the GLCMs and the 
LBPs. 

 

Fig. 7. A sample from dataset III, with optical distortions on it. Black boxes indicate the regions that the algorithm failed to discriminate. White boxes are 

correctly classified normal areas and green ones are correctly discriminated defective ones. Red boxes are false positives. 

 DİSCRİMİNATİON RESULTS FOR DATASET-III TABLE IV.

Algorithm 
Defects False + 

Accuracy Precision 
Max 361 Max 2339 

GLCM-256 d=1; 4 orientations 124 16 0.9063 0.8857 

GLCM-16 d=1; 4 orientations 118 17 0.9037 0.8741 

LBP (r=1,p=8) (r=2, p=8) 159 33 0.9130 0.8281 

LBPri 150 29 0.9111 0.8380 

DH d=27; 0 deg. 

d=1; 90 degree 
292 6 0.9722 0.9799 

 DİSCRİMİNATİON RESULTS FOR DATASET-III (SEPARATE TRAİNİNG SET) TABLE V.

Algorithm 
Defects False + 

Accuracy Precision 
Max 361 Max 2339 

GLCM-256 d=1; 4 orientations 67 21 0.8871 0.7614 

GLCM-16 d=1; 4 orientations 68 20 0.8886 0.7727 

LBP (r=1,p=8) (r=2, p=8) 66 22 0.8856 0.7500 

LBPri 69 25 0.8856 0.7340 

DH d=27; 0 deg. 

d=1; 90 degree 
141 11 0.9508 0.9276 

   

      GLCM-256 with 4 orient. d=1.             LBPri              DH d=27, horizontal & d=1 vertical 
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VIII. COMPLEXITY MEASUREMENTS 

In order to measure the computational complexity of each 
method, a C++ program was written. Measuring the processing 
time per one image is not possible on today‟s fast computers. 
To get an accurate measurement of how long each method 
takes to compute, 10 images were processed 500 times and 
then the total duration was divided to 5000. The computer was 
programmed to run a loop 5000 times, processing one of the 10 
images in each iteration. This was done to prevent the CPU 
from copying an entire image in its cache. Processing the same 
image from the cache repeatedly would yield wrong results. 
Using The Microsoft Visual Studio compiler, with full 
optimization, measurements show that the calculation of the 
GLCM in one direction using 16 grey levels takes 
approximately the same amount of time with calculating the 
difference histogram in one direction with the same grey 
levels. Calculation of the difference histogram takes %98.5 of 
that of the GLCM. A few of the features that Haralick 
proposed were also implemented. The time required for their 
completion was negligible compared to the time required for 
the computation of a 16×16 GLCM. Over all, it seems that it 
takes %3-5 percent longer for the GLCM and its features to be 
calculated. However, for 256 grey levels, the GLCM becomes 
256×256, making the calculation time for the features far 
longer. In Matlab, overall time for the calculation of 256 grey 
level GLCM takes 32 times longer compared to 16 grey level 
GLCM. 

In order to compute the speed of LBP, a pure Matlab code 
is used. LBP (R=1, 2 p=8) took %43 longer to calculate than 
the GLCM-16 (Matlab code) in one direction. Therefore, it is 
computationally more efficient than the GLCM because it is 
more successful than the GLCM calculated in four directions. 
LBPri is % 419 slower than the GLCM-16 in one direction 
therefore it is only slightly more efficient than the GLCM. 
However, it should be noted that the LBP is cheating by using 
a gigantic; 16 MB look up table to speed up its calculations. It 
is essentially creating a processor inside the memory. Based on 
these numbers, Diftogram is computationally more efficient 
than both of the LBP algorithms are. According to a recent 
comparative study [26], among the LBP algorithms, LBPri is 
the fastest among all of them and it is only %15 less successful 
than the most successful variants such as the MRELBP [27]. 
Considering that the most successful ones are at least five times 
slower than the LBPri, (MRELBP is 9 times slower) it is seems 
that Diftogram is still computationally more efficient, even if it 
is not as reliable as the newest versions of the LBP. 

In both of the previous experiments, GLCM was computed 
in four directions. On the other hand, based on our proposed 
method, the difference matrix (DM) was calculated in only two 
directions. Therefore, the proposed method is not only more 
successful at recognizing the defects, but also twice faster 
against GLCM-16. 

IX. RESULTS AND CONCLUSION 

In this article, two new approaches were proposed. The first 
one suggests that the use of Unser‟s difference histograms as 
input to a classifier yields better results at discriminating the 
texture than Haralick‟s method. Usually texture discrimination 

is a far more challenging problem then the texture 
classification; therefore, by using this method, similar superior 
results should be expected for classification as well. The 
second approach is that the orientation and the pixel distance to 
calculate the second order histograms must be selected based 
on the frequency properties of the texture. Two methods are 
proposed for the selection of these parameters. Another 
suggestion is the use of pixel average as an extra feature for 
more challenging patterns. Based on this design, three 
experiments are conducted. 

Many of the defects used in the experiments are so faint 
that the human eye can barely notice them. In each of the 
experiments, the proposed set of methods performed 
approximately %250-%300 better at discriminating the texture, 
compared to the GLCM method with 19 features. The C++ 
implementation of the proposed algorithm, based on the 
parameters used for these experiments, should be 
approximately twice faster than the GLCM-16, which means, 
at least %500 improvement in efficiency. Against the LBP 
variants, the Diftogram is almost %200 more successful. The 
computational efficiency of the rotation variant plain LBP is 
comparable to that of the Diftogram while both the success rate 
and the efficiency of the LBPri is less. 

Majority of the recent articles study rotation invariant 
texture recognition and discrimination algorithms. Therefore, 
the improvements discussed here might seem not very 
important for many academicians. However, engineering is 
performed to solve the problems of humanity, not the ones that 
we create in our own labs. Considering the fact that, every 
second, quality inspection is being performed on thousands of 
factories across the planet, hopefully, the improvements 
proposed in this article will find much greater use than many 
others published in the literature. 
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