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Abstract—Advanced Persistent Threats (APT) are a type of
sophisticated multistage cyber attack, and the defense against
APT is challenging. Existing studies apply signature-based or
behavior-based methods to analyze monitoring data to detect
APT, but little research has been dedicated to the important
problem of addressing APT detection with limited resources. In
order to maintain the primary functionality of a system, the
resources allocated for security purposes, for example logging
and examining the behavior of a system, are usually constrained.
Therefore, when facing multiple simultaneous powerful cyber
attacks like APT, the allocation of limited security resources
becomes critical. The research in this paper focuses on the
threat model where multiple simultaneous APT attacks exist in
the defender’s system, but the defender does not have sufficient
monitoring resources to check every running process. To capture
the footprint of multistage activities including APT attacks and
benign activities, this work leverages the provenance graph which
is constructed based on dependencies of processes. Furthermore,
this work studies the monitoring strategy to efficiently detect APT
attacks from incomplete information of paths on the provenance
graph, by considering both the “exploitation” effect and the
“exploration” effect. The contributions of this work are two-fold.
First, it extends the classic UCB algorithm in the domain of the
multi-armed bandit problem to solve cyber security problems,
and proposes to use the malevolence value of a path, which is
generated by a novel LSTM neural network as the exploitation
term. Second, the consideration of “exploration” is innovative in
the detection of APT attacks with limited monitoring resources.
The experimental results show that the use of the LSTM neural
network is beneficial to enforce the exploitation effect as it satisfies
the same property as the exploitation term in the classic UCB
algorithm and that by using the proposed monitoring strategy,
multiple simultaneous APT attacks are detected more efficiently
than using the random strategy and the greedy strategy, regarding
the time needed to detect same number of APT attacks.
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I. INTRODUCTION

Multiple malicious activities can happen simultaneously
on a host or system, especially when it performs mission-
critical tasks [1]. If the monitoring capacity (also referred to as
monitoring resources throughout this paper) is limited, without
thoughtful allocation of these resources, it is possible that
some malicious activities will not be captured and identified.
A generic way of allocating limited resources is to assign
the monitoring resources to the most important or suspicious
objects, which is also called a greedy strategy. One dilemma
of the greedy strategy, however, is that, if the early perceptions
about objects are not reliable, benign objects might consume
more monitoring resources than malicious objects. Unfor-
tunately, unreliable early detection of Advanced Persistent

Threats is common, because such advanced attacks are stealthy
and it is possible that an APT attack in its earlier stages is
less suspicious than a benign activity. When using a greedy
strategy to allocate resources, the Matthew Effect can cause
some of the attacks to be undetected, because less monitoring
resources are assigned to them. Therefore, an enhanced method
to allocate monitoring resources, compared with the greedy
strategy, is needed for the detection of simultaneous long-term
attacks with limited resources, because this threat model has
not been extensively addressed by existing works in the area
of anomaly detection.

The research in this paper focuses on the detection of a
sophisticated cyber attack, APT[2], and proposes a strategy to
allocate limited security resources for monitoring, in order to
efficiently detect APT activities when multiple APT activities
are ongoing concurrently in a system.

II. RELATED WORK

APT has attracted the attention of industry and academia
since the 2010s, when several unseen yet powerful APT
malware were discovered including Stuxnet, Duqu, Flame and
Gauss. Although it is a multistage, complicated attack, the
typical stages and behavioral patterns of APT are extracted
by existing studies. For example, attack chain models based
on Cyber Kill Chain [3] and the attack pyramid model [4]
are proposed to characterize multiple APT stages and their
relations. MITRE ATT&CK [5] constantly publish common
tactics, techniques, and procedures (TTP) of APT attacks.
Then according to the characteristics of APT, researchers use
different methods to effectively detect it from illegitimate
system access, suspicious network traffic patterns, and abnor-
mal system resource utilization. Based on the categories of
methods, APT detection studies are mainly divided into two
categories: signature-based and behavior-based.

Signature-based detection methods match system behaviors
with known attack patterns, once a match is found, pre-
configured actions will be taken. Snort [6] is an example of
signature-based intrusion detection system, which generates
explicit rules from known attacks, if any rule is matched, it
will trigger actions such as SNMP traps, event logging, and
allow/deny traffic. The author [7] leverages the Intrusion Kill
Chain [8] model defining rules to identify each APT stage by
its attack mechanisms from multiple sources of logs and build
the kill chain by comparing the timestamps of found APT
stages. HOLMES [9] defines explicit rules to map a low-level
system event to an abstracted APT TTP of MITRE ATT&CK
and use the rules to identify each APT stage. As Command and
Control (C2) communication is common in an APT campaign,
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network packet inspection or network flow analysis is used in
some works to identify the C2 communication. The authors of
[10] found consistent patterns in the network traffic between
the APT malware of interest and the C2 server, and used
protocol-aware rules, special strings in a URL, and malformed
images to effectively detect C2 communication. Signature-
based detection methods are effective to attacks whose char-
acteristics are known and can be well-represented by a set
of matching rules, and when compared with behavior-based
methods, signature-based methods are less complicated and
easier to implement. However, the performance of signature-
based methods can degrade quickly when dealing with variants
of known attacks and novel or zero-day attacks.

Behavior-based detection methods do not rely on known
patterns, and they profile behaviors, either benign or malicious,
using statistical or machine learning methods [11]. The advan-
tage of such detection methods is being able to accommodate
variations and uncertainties of behaviors and characterize
behaviors that can not be represented by explicit matching
rules. To identify suspicious hosts that might be involved
in C&C communications, the authors in [12] characterized
each host periodically using features extracted from network
flows, then assigned a risk score to each host based on the
deviation from its historical positions, distances from other
hosts, and magnitude of increment in the feature space. The
authors [13][14] focus on detection of spear phishing emails
that are used for initial penetration in APT. The authors of
[13] extract static and dynamic features of PDF files attached
in emails, and propose a classification model using Support
Vector Machine, to detect malicious PDF files. Active learning
is also integrated in their model to cope with unseen PDF
files. The researchers in [14] used Naı̈ve Bayes theorem to
detect spam emails containing links that redirect the victim to
malicious websites, which could help APT attacker establish
backdoors inside the victim’s system. The study [15] proposes
an ensemble RNN-based model to detect different APT steps
by analyzing network traffic data. Host-level system logs are
analyzed in [16] to identify different APT phases. The authors
of [16] first translated system log sequences into abstracted
states by using the hidden Markov model, then fed high-level
state sequences to three multi-classification models: LSTM,
one-dimensional CNN, and SVM, to predict the APT phase.
Since the detection of a single APT stage does not necessarily
indicate a multistage APT activity, some works [4][17][18][19]
detect APT by correlating detection results of different APT
stages based on models that describe dependencies between
stages.

In existing studies on APT detection, the resource alloca-
tion problem is rarely addressed; whereas, it is a popular topic
in game-theoretic studies [20][21] on APT prevention. Re-
source constraints, however, do exist in APT detection, either
only a portion of CPU and memory can be used for monitoring
activities in a system, or only limited insights can be obtained
from enormous monitoring data in a timely manner. In a worse-
case scenario, if multiple attacks concurrently exist in a system,
and monitoring resources are not enough to cover all attacks,
it is critical that the system operator allocate limited resources
efficiently so that the most attacks possible are detected.
Therefore, this work focuses on multistage APT attacks, and
proposes a novel strategy that allocates monitoring resources,
not only based on the current malevolence of activities, but also

introducing an exploration mechanism to eliminate the side
effect of a greedy strategy when the malevolence calculation
based on early stage information of APT is not reliable.

III. THREAT MODEL

In this work, simultaneous and continuous APT attack
activities exist in the defender’s system. For each multistage
APT attack, each of its stages can be detected if relevant
behavior is monitored. It is assumed that a whole-system
provenance graph is used to obtain all paths including non-
APT paths and APT paths. However, to reflect a real-world
scenario, the monitoring capability of the defender’s system
is limited, so that only the activity on some, but not all,
paths can be monitored and analyzed at each timestamp.
Every monitoring timestamp provides a classification result
indicating that the monitored activity is benign or one of APT
stages. Therefore, for each path on the provenance graph, the
defender has a sequence of temporal but incomplete detection
results about the activities on the path. Thus, the goal of the
defender is to efficiently detect as many simultaneous APT
attacks as possible, while utilizing limited resources.

IV. PROBLEM SETTING

To capture the footprint of system activities, this work
leverages the provenance graph which is constructed based
on the dependencies of processes. It is assumed that the
provenance graph is complete and not compromised in this
paper. Therefore, the movement of a multistage APT attack
is represented by one of the paths on the provenance graph,
and in the threat model of this paper, the defender needs to
detect those attack paths efficiently with limited resources.
In addition, to decide the identity of a path, benign or APT,
monitoring and investigation is used to check the state of nodes
on a path. At each timestamp, however, not all running nodes
can be checked because the monitoring resources are limited.
Therefore, the research question addressed in this paper is,
how to allocate limited monitoring resources, (i.e. select which
running nodes should be evaluated at each timestamp), so
APT attacks are detected effectively in terms of the number
of detected attacks, and efficiently in terms of time needed?
And a strategic monitoring model which considers both the
estimated malevolence of system activities and the uncertainty
of that estimation is proposed to solve the problem.

The problem setting of this paper is described as follows.
There are n processes running on a host, which correspond
to n paths on the provenance graph, but at each timestamp,
only k (k < n) processes can be monitored and investigated
to get the current state of the corresponding path. In this paper,
when a process is chosen to be monitored, its local structure is
fed into the detection engine developed by [11] which outputs
a classification result. Mathematically, for each path i (i ∈
[1, n]), at time j, if the process corresponding to path i is
monitored, the current state of path sij is obtained from the
detection engine and sij = {0, 1, 2, 3, 4, 5, 6}; if the process
corresponding to path i is not monitored, the current state of
path sij is unknown and is represented by sij = −1. In this
paper, the defender decides which k processes are selected
to be monitored at each timestamp, based on historical and
temporal state information of each path.
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V. STRATEGIC MONITORING MODEL

In this paper, a scoring mechanism is proposed to decide
which k processes to monitor at each timestamp, in other
words, to solve a sequential decision making problem to
identify all simultaneous APT attacks as early as possible. The
proposed scoring rule is derived from a classic multi-armed
bandit algorithm Upper Confidence Bound (UCB) [22]. The
purpose of a multi-armed bandit problem is to maximize the
cumulative reward by sequentially selecting arms to pull, by
assuming the existence of uncertainties in the reward of each
arm [23]. The UCB algorithm integrate both the exploitation
effect (observed mean reward of each arm so far) and the
exploration effect (number of times each arm has been pulled)
when prioritizing arms. The index of arm i at time t is
calculated as follows:

Ii(t) = θ̄i(t) +

√
2
log t

τi(t)
(1)

where θ̄i(t) is the sample mean reward of arm i, which is
the exploitation factor meaning that arms with higher historical
reward are prioritized; τi(t) is the number of times arm i has
been pulled, which is the exploration factor meaning that the
less pulled arms are prioritized.

It is appropriate to apply UCB to solve the monitoring
strategy in the threat model of this paper, because the de-
tection of multistage APT relies on sequential decisions of
monitoring to obtain temporal state of each system behavior
path. Therefore, the proposed scoring mechanism is a variation
of the UCB algorithm, replacing the sample mean reward
with the current malevolence value of a path. One novelty
of this paper is that, it extends the UCB algorithm to the
multistage APT detection scenario by proposing to use a long
short-term memory (LSTM) based malevolence value as the
exploitation driver, and showing that this modification to the
UCB algorithm is reasonable. The proposed scoring rule is
formulated as follows:

Ii(t) = α · fi([si1, si2, ..., sit]) + (1− α) ·

√
2
log t

τi(t)
(2)

where Ii(t) is the index or score of path i at time t
which is a weighted sum of an exploitation term and an
exploration term; f(·) is a neural network that takes the
temporal state information of path i as input and outputs the
current malevolence value the path i; the exploration term is
the same as in Equation 1; and α is a constant in [0, 1].

2 1 3 4 4

2 0 0 4 4

0 1 3 4 0

Complete states:

Sample 1:

Sample 2:

Fig. 1. Different samples generated from a sequence of complete states of a
system behavior path.

A LSTM neural network is used to assign a malevolence
value to a system behavior path based on its temporal states

information. Samples of paths with various temporal states
are used to train the neural network. In this paper, these
samples are generated from complete state sequences of both
benign behavior paths and APT behavior paths, by randomly
selecting some states and making them unknown. For example,
as shown in Fig. 1, the top row indicates that the state of
an “APT attack” path at every timestamp is known, thus the
sequence of states is complete (1 represents the state is benign,
2-4 represent different APT stages). To generate samples
e.g. “Sample 1” and “Sample 2” resulted from incomplete
monitoring in a scenario where resource constraints exist, some
timestamps of the complete sequence are masked with value
0 representing that the state information at those timestamps
become unknown. Note that, the class of “Sample 1” and
“Sample 2” is still “APT attack”. By choosing different values
for the number of timestamps that are masked, samples with
different incompleteness are generated, and together with their
classes they are used to train the LSTM model which outputs
how likely a sequence of states is an APT attack. There are two
classes in the data: “1” for APT attack behavior paths; “0” for
benign behavior paths. The LSTM neural network is trained to
output a value in [0, 1]. A higher LSTM output value indicates
a more suspicious behavior path, and this value is used as
the exploitation factor in Equation 2: the more suspicious
the behavior path is, the more likely it would be monitored
next time. The second term in Equation 2 is the exploration
factor, meaning that the less frequently the behavior path was
monitored, the more likely it would be monitored next time.

VI. EXPERIMENTS

To evaluate the performance of the proposed monitoring
strategy developed in this research, synthetic behavior paths
with temporal states for both benign scenario and APT attack
scenario are generated and implemented. Two principles are
followed when generating the synthetic data: (1) all states
at a timestamp ({1: “benign”; 2: “APT stage 1”; 3: “APT
stage 2”; 4: “APT stage 3”; 5: “APT stage 4”; 6: “APT stage
5”; 7: “APT stage 6”}) can appear on a behavior path of
benign scenario and APT attack scenario; (2) the temporal
order of states is differentiated on a behavior path of benign
scenario and on a behavior path of APT attack scenario. More
specifically, the states corresponding to APT stages on the
behavior path of a benign scenario are uncorrelated; however,
the states corresponding to APT stages on the behavior path of
an APT attack scenario are correlated in the sense that, without
interruption an APT attacker gradually moves from lower APT
stages to higher stages because the attacker does not have
incentive to move from higher APT stages to lower stages.
In addition, a random number of benign states appear between
APT related states on behavior paths of both benign scenarios
and APT attack scenarios. By following these principles, 100
attack paths and 100 benign paths with 80 complete temporal
states are generated. Then, each complete path generates 79
incomplete paths by randomly hiding i (i ∈ [1, 79]) states.
Eventually, 8000 APT attack paths and 8000 benign paths with
various degrees of incompleteness are generated and used to
train and test the LSTM model in this paper.

The first part of the experiment is to demonstrate that using
the output of a novel LSTM neural network as the exploitation
term in the proposed model is effective, in other words, the
trained neural network should satisfy the same property as the
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exploitation term defined in the classic UCB algorithm. In the
classic UCB algorithm, the property of the exploitation term is
that, as an arm is pulled more often, the estimation to its reward
becomes more accurate. Therefore, the proposed LSTM neural
network is tested on behavior paths of which the defender has
different degrees of information incompleteness. If the LSTM
neural network is effective, it is desired that its estimation to
the malevolence of paths is more accurate as the defender’s
information incompleteness of paths decreases.

The second part of the experiment is to demonstrate
the performance of the proposed monitoring strategy. Before
evaluation, 20 behavior paths are randomly selected from the
data set, including four APT attack paths and 16 benign paths.
Then, the the proposed monitoring strategy, a random strategy
and a greedy strategy are evaluated respectively, in terms of
when the attack paths are detected and the number of false
positives. In the experiment setting, only five paths can be
monitored at each timestamp, a random strategy means that the
five monitored paths are randomly selected; a greedy strategy
means that the paths with five highest malevolence scores are
selected, in other words, only the exploitation effect in the
proposed strategy is considered; the proposed strategy selects
the 5 paths with the highest scores where the score is defined as
the weighed sum of the exploitation factor and the exploration
factor are selected. In addition, two termination conditions are
applied when implementing the proposed strategy: (1) when
the malevolence score of a path is greater than β, the path is
determined as an APT attack and will no longer be a candidate
of being monitored; (2) when the malevolence score of a path
is smaller than γ, the path is determined as a benign scenario
and will no longer be a candidate to be monitored. By testing
different sets of parameter values, the best parameter values
of the proposed strategy are used to compare the proposed
strategy with other strategies, including the weight parameter
α in Equation 2 (α = 0.82), and two threshold parameters β
(β = 0.9) and γ (γ = 0.05).

VII. RESULTS AND ANALYSIS

Fig. 2 shows the performance of the LSTM neural network
in the proposed strategic monitoring model. From Fig. 2(a)
to Fig. 2(d), the number of known states of paths increases,
in other words, the defender’s information incompleteness of
paths decreases. The red line represents the true malevolence
of paths, and the blue line represents the predicted malevolence
of paths by the LSTM neural network. It can be seen that the
difference between the true malevolence values and predicted
malevolence values by the LSTM neural network becomes
smaller, when the number of known states increases. Therefore,
the estimation of the LSTM neural network to the malevolence
of a behavior path becomes more accurate along the path that
is monitored more frequently, making the output of the LSTM
neural network an effective exploitation term in the proposed
monitoring strategy model.

To demonstrate the performance of the proposed moni-
toring strategy, it is compared with a random strategy and a
greedy strategy, and the results of the three strategies including
the paths monitored at each timestamp as well as when attacks
are detected are visualized in Fig. 3, Fig. 4, Fig. 5 respectively.
Note that, in Fig. 3 to 5, each row i represents a behavior path
and the rows with light red shade means that the row represents
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Fig. 2. Comparison of true and predicted malevolence of paths with various
number of known states.

an APT path. Each column j represents a timestamp, and at
each time j, the defender can pick max(5, uj) paths to monitor
where uj is the number of undetermined paths at time j. For
a position (i, j) where i ∈ [1, 20] and j ∈ [1, 80], if it is in
blue, it means path i is monitored at timestamp j; if it is in
red, it means path i is classified as an APT attack scenario
at timestamp j and it will no longer be monitored which is
represented by marking its future states as grey; if it is in green,
it means path i is classified as a benign scenario at timestamp
j and it will no longer be monitored which is represented by
marking its future states as grey. Therefore, the number of
undetermined paths uj is the number of paths that are not in
grey at time j.

Fig. 3 shows the results of using a random strategy, which
means that the defender randomly picks paths to monitor at
each timestamp. The four APT attacks paths are detected at
timestamp 57, 50, 49 and 41. In addition, the number of false
positives is 2.

Fig. 4 shows the result of using a greedy strategy, which
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Fig. 3. Performance of the random monitoring strategy.
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Fig. 4. Performance of the greedy monitoring strategy.
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Fig. 5. Performance of the proposed monitoring strategy.

means that the defender picks paths with the highest malev-
olence values predicted by the LSTM neural network. The 4
APT attacks paths are detected at timestamp 47, 34, 54 and
53. In addition, the number of false positives is 11.

Fig. 5 shows the result of using the strategy developed by
this paper, which means the defender considers both exploita-
tion and exploration then picks paths with the highest values
calculated by Equation 2. The 4 APT attacks paths are detected
at timestamp 27, 31, 33 and 39. In addition, the number of false
positives is 6.

Compared with the other two strategies, the monitoring
strategy proposed in this paper detects all 4 APT attacks
significantly earlier, specifically nearly 17 timestamps earlier
than the random strategy, and 15 timestamps earlier than
the greedy strategy. The key to the efficiency of the pro-
posed strategy is that by considering exploration when the
malevolence estimation is not as accurate in early timestamps,
the defender is able to identify some benign paths quickly,
which reduces the number of competitors of limited monitoring
resources. However, the random strategy treats benign paths
and attacks paths equally and the greedy strategy can be misled
by inaccurate malevolence in earlier stamps, thus they are less
efficient in the detection of simultaneous APT attacks.

When facing advanced attacks like APT, false positive is
more acceptable compared to false negative, because missing
an APT attack is more devastating than looking into a benign
activity which is falsely classified as attack. Regarding the
number of false positives in the experiments, the proposed
strategy is better than the greedy strategy, but is worse than the
random strategy. This is as expected, because from Fig. 3, it
takes longer and relies on more information for the defender
to determine the identity of a path when using the random
strategy. With more information, the malevolence estimation to
a path is more accurate at shown in Fig. 2, however, the random
strategy is the least efficient regarding the time needed to detect
simultaneous APT attacks. Therefore, overall the proposed
strategy outperforms the other two strategies regarding the
metric of efficient detection of simultaneous APT attacks with
limited resources. And the improvement on other metrics is
left as a future extension.

VIII. CONCLUSION

The work in this paper addresses the issue of resource
constraints in the detection of multiple simultaneous APT
attacks. It proposes a monitoring strategy to efficiently detect
APT attacks with incomplete information about activities in a
system. The key of the proposed strategy is that it considers

www.ijacsa.thesai.org 23 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 3, 2023

both the “exploitation” effect and the “exploration” effect in
resource allocation, which is beneficial for finding the optimal
strategy in circumstances with high uncertainties. The novel
contributions of this work to address the research question are
as follows.

First, differing from existing works that allocate security
resources based on the estimated malevolence of system activi-
ties only, this work emphasizes the importance of “exploration”
in APT detection, because the perception to advanced and
stealthy attacks based on its earlier stage information is usually
not accurate. This work is the seminal paper to consider both
the “exploitation” effect and the “exploration” effect in mon-
itoring resource allocation, and apply the classic multi-armed
bandit algorithm, UCB, to solve optimal resource allocation
problems in APT defense.

Second, this work proposes a novel LSTM neural network
to measure the malevolence of a path on the provenance graph
based on its incomplete temporal information, and replaces
the exploitation term in the classic UCB algorithm with this
malevolence value. The experimental results show that by
using the proposed monitoring strategy, multiple simultaneous
APT attacks are detected more efficiently than using a random
strategy and a greedy strategy, regarding the time needed to
detect same number of attacks.

Although the proposed model shows the advantage of
detecting simultaneous APT attacks efficiently with limited
resources, a future extension to this work is to enhance the
model in terms of more metrics, for example, reducing false
positives by exploring more features of APT to differentiate it
from benign activities more effectively.
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