
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

271 | P a g e

www.ijacsa.thesai.org

An Algorithm Transform DNA Sequences to Improve

Accuracy in Similarity Search

Hoang Do Thanh Tung, Phuong Vuong Quang

Institute of Information Technology, Vietnam Academy of Science and Technology, HaNoi, Viet Nam

Abstract—Similarity search of DNA sequences is a

fundamental problem in the bioinformatics, serving as the basis

for many other problems. In this, the calculation of the similarity

value between sequences is the most important, with the Edit

distance (ED) commonly used due to its high accuracy, but slow

speed. With the advantage of transforming the original DNA

sequences into numerical vector form that retaining unique

features based on properties. The calculation processing on these

transformed data will be much faster, many times faster than a

direct comparison on the original sequence. Additionally, from a

long DNA sequence, after transformation, it typically has a lower

storage capacity, making it have good data compression. The

challenge of this job is to develop algorithms based on features

that maintain biological significance while ensuring search

accuracy, which is also the problem to be solved. Previous

methods often used pure mathematical statistics such as

frequency statistics and matrix transformations to construct

features. In this paper, an improved algorithm is proposed based

on both biological significances and mathematical statistics to

transforming gene data into numerical vectors for ease of storage

and to improve accuracy in similarity search between DNA

sequences. Based on the experimental results, the new algorithm

improves the accuracy of similarity calculations while

maintaining good performance.

Keywords—Similarity search; data transformation; DNA

sequence; big data

I. INTRODUCTION

Bioinformatics is an interdisciplinary field that develops
software methods and tools for understanding biological data,
especially when the data sets are large and complex. It
combines technologies of applied mathematics, statistics,
computer science, biology, chemistry, physics… and biological
mathematics. The term bioinformatics is a part of
computational biology, and the combination of these sciences
is intertwined and mutual. Thus, the research results in this
field not only contribute to biology, but also to other fields.
Biological data contains gene sequences (DNA -
Deoxyribonucleic Acid) and briefly describes which is made
up of four nucleotides: A, C, T and G. DNA is a crucial
molecule for all living things, not just humans. The application
of DNA in science and daily life is diverse and significant,
such as crossbreeding, genetic mutation, comparison of
species, prediction of phylogenetics, pedigree, genetic diseases,
predict disease risk, etc. The fundamental problem in
bioinformatics related to DNA sequence processing is
similarity search, which is finding subsequences that are the
same or similar to a sequence of interest. This leads to further
problems such as calculating the similarity value between
sequences to draw a phylogenetic tree and sequence alignment

to achieve maximum similarity between sequences. These
problems are manageable on small and medium data but
become complex with big data.

In similarity search, the commonly used method to
calculate similarity value between two sequences is Edit
Distance (ED) (also known as Levenshtein). The ED similarity
value between two sequences is the minimum number of steps
required to transform one sequence to other, based on three
transformations: adding, editing, and deleting each character in
the sequence [1]. For example, similarity value between LOVE
and MOVIE is ED(LOVE, MOVIE) = 2 because two steps of

LOVE → MOVE → MOVIE are needed. The advantage of

this method is can compare sequences of different lengths,
thereby flexibly being applied in many problems. However, its
computational complexity is O(n*m) where m, n are the
lengths of two sequences being compared. With long data, the
results take a long time to obtain, making comparisons in long
sequences less efficient. Due to the rapid advancements in
technology, biological databases generate vast amounts of
information and are continuously growing, resulting in a rapid
increase in their size.

The large size of the data leads to a high number of I/O
operations, resulting in a high cost of storage space and
decreased processing performance. To address this issue,
researchers are exploring various methods to index or
transform the gene data into numerical form to reduce database
access and improve query performance. One of the challenges
in this field is to develop algorithms for transforming the
sequence in a way that retains the biological significance of the
data while reducing its size. Previous methods often utilized
simple mathematical statistics, such as frequency statistics or
matrix transformations, to build features. In this study, an
improved algorithm is proposed that not only takes into
account frequency, position appearance, and correlation
between position and distance of the characters but also
considers the biological significance of the sequence, based on
the role and function of amino acids in proteins. This approach
helps to retain as many features of the sequence as possible,
leading to improved accuracy when searching for similarity
between two sequences.

The rest of the paper is organized as follows, Section II will
present the related work to the research, Section III presents the
proposed improved algorithm, Section IV presents the
experimental results of the algorithm proposal, and Section V
is the conclusion.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

272 | P a g e

www.ijacsa.thesai.org

II. RELATED WORK

A lot of research has been carried out to calculate similarity
between sequences. Through the survey, a number of published
methods were found. Some typical algorithms such as: Smith -
Waterman [2] and BLAST [3] are well-known algorithms for
performing sequence comparisons through representative
sequences. This group of algorithms has high accuracy, but
limitation is inefficient when size of database is too large or
continuously added. Many other algorithms, improved from the
famous BLAST algorithm, also allow performing calculations
quickly such as Flash algorithm [4], ProperSearch tool [5],
CAFE method [6]. BIS (Bitmap indexing structure) [7], IDC
(Incrementally Decreasing Cover) [8], FRESCO (Framework
for REferential Sequence Compresion) [9], Modified HuffBit
Compress Algorithm [10]. These algorithms perform and
compression search by interfering with data structures such as
matrix analysis, genomic statistics, frequency changes, etc. In
addition, Metric space indexing techniques [4], Williams &
Zobel [11] and Ozturk and Ferhatosmanoglu [12] are indexing
methods that use special transformations that convert the input
DNA sequence into numerical vectors based on features. The
objective of these methods is to find the most effective features
to generate the vectors, so as to preserve the biological
information of the original sequence and perform efficient
similarity searches. Studies by Kahveci and Singh [13],
Yongkun Li et al [14] have found that using frequency and
position-distance characteristics resulted in better performance
compared to other features.

The Hfwd
2
 method [1] is a technique that partitions a long

DNA sequence into smaller subsequences using a window
length, and then transforms these windows into numerical
vectors that represent the frequency of appearance of the
characters (A, C, T, G) as well as their combinations (N-
grams). To enhance the features stored in the vector, this
method also incorporates the position of each character in the
sequence. To address the issue of uneven distribution of
characters in the DNA sequence, the authors divide the
sequence into two equal parts and generate the vectors based
on these two parts to ensure that the comparison is more equal.
While this method results in a lower accuracy compared to
direct comparison due to the noise introduced during the
transformation process, it offers a significant improvement in
performance and speed during similarity searches. However,
Hfwd

2
 has a few limitations, such as the use of a simple

positional parameter, and the lack of consideration for the
biological significance of the characters in the sequence.
Below, we propose an improved algorithm from Hfwd

2
, in

which numerical vectors transformation is not only built with
features based on frequency, position appearance, correlation
between position and distance way of characters, but also
interested in the biological significance of sequences based on
amino acids, applied on wavelet transform to increase features
stored after transformation. Theoretically, it is expected to
improve accuracy of calculating similarity value between
sequences.

Current methods are still continuing to research solutions to
improve accuracy of similarity search with transformation
vectors. In this paper, we propose an improved algorithm for
transforming gene sequences into numerical vectors. This

algorithm considers not only mathematical statistics such as
frequency and position appearance, but also the biological
significance of amino acids in the sequences. By doing so, we
aim to maintain as much information as possible from the
original sequence while improving the accuracy of similarity
searches.

III. PROPOSED METHOD

The transformation of original sequences into numerical
vectors has been discussed in the above sections. This
approach can optimize storage in databases and increase
computational performance. The challenge is to preserve the
biological meaning of the sequences in the numerical vectors
after transformation, in order to maintain search accuracy. To
address this, we propose an improved algorithm compared to
Hfwd

2
. This new algorithm considers not just the frequency,

position appearance, and correlation between position and
distance of characters, but also the biological significance of
the sequences based on amino acids. Additionally, the use of
wavelet transform increases the amount of information stored
in the numerical vectors. Theoretically, it is expected to
improve accuracy of calculating similarity value between
sequences.

In the pre-processing stage, we also partitioned the DNA
sequences into equal length windows and transform each
partition into numerical vectors using the feature parameters
we have proposed. These vectors are then stored in a
centralized database for later retrieval. When a new sequence
needs to be compared for similarity, it will undergo the same
pre-processing step and then be compared with the vectors in
the database. The resulting set of similarities will be outputted.
The general process of the method is shown in Fig. 1.

Fig. 1. General process of the method.

Files containing DNA sequences after being collected will
be sent to the data pre-processing module. The system will
remove any characters that are not A, C, T, G from the
sequence, and partitioned the original sequence into equal
length windows. The length of these windows can be adjusted
to meet the user's needs, and we will explore the optimal range
for best results in the experimental section. These operations
can be easily performed using support functions from the C#
language's String library. Finally, the partitions are subjected to
transformation algorithms to generate multidimensional
numerical vectors.

These vectors will be indexed so that when making
comparisons based on similarity, they will be much faster than

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

273 | P a g e

www.ijacsa.thesai.org

the original sequence. The pre-processing model is depicted in
Fig. 2.

Fig. 2. Data pre-processing and indexing model.

A. Algorithms Feature Extraction for DNA Sequence

Transformation

Just like feature extraction in natural language processing,
the goal of this step is to show how to transform text data into
vectors with numerical values. This is often the most important
step that determines whether the final approach is successful
for a real problem [15]. Here, we will present a proposal of
four features that can be used to generate a numerical vector
from the input DNA sequence. These features help to capture
important information about the DNA sequence for perform
similarity calculation.

Given the sequence S = {s0, s1, s2, ..., sl-1} where l is the
length of the S, the algorithms to build feature of the sequence
S are as follows:

1) Algorithm transform based on combinatoric: Let Ꞷ =

{a1, a2, ..., aα} where N-grams is the combination of characters

built in the sequence S, α is length of the combination of

characters. The DNA sequence S will only includes four

nucleotides A, C, G, T, so when choosing N=1 we have the

combination Ꞷ = {A, C, G, T}, when N=2 the combination Ꞷ

= { AA, AC, AG, AT, TA, TC, TG, TT, GA, GC, GG, GT,

TA, TC, TG, TT}, and so on. The larger N gets, the

combination grows exponentially. Each element in the Ꞷ

combination may or may not appear in the original sequence

S, and may appear in different positions, which creates unique

characteristics for each DNA sequence. This algorithm adds a

parameter to calculate the correlation between position and

distance compared to Hfwd
2
. The purpose is to store the

parameters of frequency, position, and correlation between

position and distance of characters that appear in the sequence,

and use them as unique features of each sequence to calculate

the similarity value later.

a) Frequency appearance

0
W

1,

,

i

x

i

x

x

s

s












 
 (1)

Where i = 1,2…, l; xα ∈ Ꞷ; if character xα appear in

position si under consideration, it has 1, otherwise it has 0.

1

()w
l

x

i

x ia s 


 (2)

axα ≥ 0 is total appearance of the xα in the sequence S.

b) Position appearance

1

i * w ()
l

x ix

i

b s 


 (3)

bxα ≥ 0 is sum of position values of xα in the sequence S..

c) Correlation between position and distance

_

1

 () ()(i * w)*(i * w * w)()
l

x i x i pre x i pre

i
x

x

c
a

s s i s  












 (4)

caα ≥ 0 is average of (position * distance), distance
calculated as the difference between the current position and
the previous position of xα in the sequence S.

 N-grams selection

With DNA sequences, when N=1 the combination of
characters has the value 4

1
 = 4, when N=2 the combination has

the value 4
2
=16, when N=3 the combination has the value

4
3
=64, etc. Increasing N can increase the amount of

information stored in the vectors, but it also increases the
computational cost of generating the vectors and calculating
the similarity. According to a suggestion in [1], and based on
our own experiments selecting N=1,2,3,4, we has been found
that N=2 gives good results for comparisons and is also
computationally efficient.

Algorithm 1. CombinatoricTranform(subsequence S)

INPUT: subsequence S

OUTPUT: a vector combinatoric 48 dimensions

BEGIN

Initialize Ꞷ = {AA, AC, AG, AT, TA, TC, TG, TT, GA,
GC, GG, GT, TA, TC, TG, TT}.

Initialize vector vCombinatoric 48 dimensions

FOR (i=0 to 15) {

vCombinatoric[i] = Count frequency of element in Ꞷ
(by fomula(2)) }

FOR (i=16 to 31) {

vCombinatoric[i] = Calculate sum of localtion of
element in Ꞷ (by fomula(3)) }

FOR (i=32 to 47) {

vCombinatoric[i] = Calculate value of correlation
between position and distance of element in Ꞷ (by
fomula(4)) }

RETURN vCombinatoric

END

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

274 | P a g e

www.ijacsa.thesai.org

The pseudocode for Algorithm 1 outlines the steps to
transform an input DNA subsequence into a 48-dimensional
numerical vector based on the formulas (1), (2), (3), and (4).

For example, with the sequence S = {AGTAGTGCTA}.
We can calculate CombinatoricTranform(S) = {0, 0, 1, 0, 2, 0,
0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 4, 0, 6, 0, 0, 0,
0, 0, 0, 0, 0, 25, 0, 0, 0, 0, 4, 0, 6, 0, 0, 0, 0}.

2) Algorithm transform based on covariance: Covariance

is a measure of how much two random variables vary

together. It’s similar to variance, but where variance tells you

how a single variable varies, covariance tells you how two

variables vary together. Theoretically, covariance is used by

analysts as a way to look at the overall for one or more related

variables. In the context of biological and genetic data,

variables are specific positions of nucleotides in the gene.

Genetic covariance studies whether two positions of

nucleotides on the gene evolve independently or they evolve

together [16]. The authors in [17] also presented the idea of

using covariance as a feature represented when transform the

DNA sequence. This feature could provide additional

information about the correlation between nucleotides in the

gene, which could be useful in further analysis and

comparison with other DNA sequences.

  
,

1

i i

x y

x x y y
cov

N


 




 (5)

Where
(,)x y ∈ {(A,T); (A;G); (A,C); (T,G); (T,C);

(G,C)}, ,i ix y is position of ,x y on the sequence,
,x y

 is

average position value of ,x y in the sequence.

We use the covariance formula to build features through the

vector {
, , , , , ,, , , , ,A C A G A T T C T G G Ccov cov cov cov cov cov }

showing correlation between the positions of the nucleotides
together.

The pseudocode for Algorithm 2 explains how to transform
an input subsequence into a 6-dimensional vector based on
formula (5).

Algorithm 2. CovarianceTranform(subsequence S)

INPUT: subsequence S
OUTPUT: a vector covariance 6 dimensions
BEGIN

Initialize Ꞷ = {(A,T); (A;G); (A,C); (T,G); (T,C); (G,C)}.
Initialize vector vCovariance 6 dimensions
FOR (i=0 to 15) {

vCovariance[i] = Calculate value of correlation
between position and distance of element in Ꞷ (by
fomula(5))

}
RETURN vCovariance

END

For example, with the given sequence S, we can calculate
CovarianceTranform(S) = { -1.33, -2.3, -3, -1.6, -2.8, -1.24}.

3) Algorithm transform based on Haar wavelet: The

Discrete Wavelet Transform (DWT) is a widely used method

in digital signal processing, data mining, information retrieval,

text clustering and classification, digital image processing, etc.

due to its simplicity and efficiency. DWT involves dividing a

signal into two parts: high frequency and low frequency. The

low frequency part is further divided into high and low

frequency parts through a process called downsampling. The

encoding complexity is linear and allows for multiple

resolution levels. The Haar filter, being the simplest possible

wavelet, is often used in the analysis of signals with abrupt

transitions and is commonly used in analyzing time series or

ordinal data. We use Haar filter to divide the original sequence

into two parts: approximation (by summing) and detail (by

subtracting) in pairs of values in in two vectors.

In the case that a character is unevenly distributed in
different regions of the DNA sequence, for example, if
character A is abundant in the first half but scarce in the second
half, the algorithm for transforming based on these features can
have lower efficiency. The goal of applying Haar wavelet is to
overcome this limitation, improve the accuracy when
calculating and comparing the similarity values of the
transformed sequences. The pseudocode for Algorithm 3
presents the process of using Haar wavelet to transform
vectors.

Algorithm 3. WaveletHaarTranform(vector u, vector v,
integer l)

INPUT: vector u,v have l dimensions
OUTPUT: a vector l*2 dimensions
BEGIN

Initialize vector vHigh, vLow l dimensions
FOR (i=0 to l-1) {

vHigh[i] = u[i] + v[i]
vLow[i] = u[i] - v[i]

}
Initialize vector vWavelet l*2 dimensions
FOR (i=0 to l-1) {

vWavelet[i] = vHigh[i]
}
FOR (i=l to l*2 - 1) {

vWavelet[i] = vLow[i]
}
RETURN vWavelet

END

4) Algorithm transform based on codon: The human

body, along with other organisms, produces proteins through a

process called transcription. Genes in biological cells store the

information needed to construct proteins in the form of DNA

sequences. During transcription, the DNA information is

transcribed into messenger RNA (mRNA), which carries the

genetic information. This mRNA sequence is then translated

into a sequence of amino acids, which make up the proteins.

Researchers have discovered that a group of three nucleotides

encodes a single amino acid [18]. With four nucleotides, A, C,

T, and G, there are 64 possible codons and 20 different amino

acids.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

275 | P a g e

www.ijacsa.thesai.org

Fig. 3. Table mapping three nucleotides to codon.

Fig. 3 shows how the various combinations of three bases
in the coding strand of DNA are used to code for individual
amino acids - shown by their three letter abbreviation. The
combination of codons determines the sequence of amino acids
in the resulting protein, which ultimately determines its
structure and function. In this way, codons are the key to
translating genetic information stored in DNA into the
functional proteins that carry out vital cellular processes in all
living organisms. Almost the same as above, we will use
frequency appearance and correlation of position and distance
to store the feature. The goal is to capture features related to
biological significance and store them in vectors after
transforming the input sequences. Thereby improving the
efficiency when calculating and comparing the similarity
value.

Let ꞵ a collection of amino acids, ꞵ = {Phe, Leu, Ile, Met,
Val, Ser, Pro, Thr, Ala, Tyr, His, Gln, Asn, Lys, Asp, Glu, Cys,
Trp, Arg, Gly}.

a) Frequency appearance

1

()w
l

y

i

y id s 


 (6)

dyα ≥ 0 is total appearance of the yα in the sequence S..

b) Correlation between position and distance

_

1

 () ()(i * w)*(i * w * w)()
l

y i y i pre y i pre

i
y

y

e
d

s s i s  












 (7)

eyα ≥ 0 is average of (position * distance), distance
calculated as the difference between the current position and
the previous position of yα in the sequence S.

The pseudocode of Algorithm 4 explains how to transform
an input subsequence into a 40-dimensional vector based on
formulas (6) and (7).

Algorithm 4. CodonTranform(subsequence S)

INPUT: subsequence S
OUTPUT: a vector codon 6 dimensions
BEGIN

Initialize ꞵ = {Trp, Phe, Tyr, His, Asn, Asp, Cys, Gln, Lys,
Glu, Ile, Val, Pro, Thr, Ala, Gly, Ser, Leu, Arg }.
Initialize vector vCodon 40 dimensions
FOR (i=0 to 19) {

vCodon [i] = Count frequency of element in ꞵ (by
fomula(6))

 }
FOR (i=20 to 39) {

vCodon [i] = Count frequency of element in ꞵ (by
fomula(6))

 }
RETURN vCodon

END

For example, with the given sequence S, will be calculate
CodonTranform(S) = {0, 1, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 7, 0, 0, 6.5, 4.5, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0}.

B. The Combine Algorithm Transforms DNA Sequences into

Vectors

In Part A, we have presented four algorithms that will be
used in vector transformation, this section will present an
algorithm that combines the above algorithms to generate the
final feature vector. Algorithm to calculate similarity value will
be performed on these feature vectors.

Definition 1. Given the sequence S = {s0, s1, s2, ..., sl-1}
where l is length of S, we define the vector FCC(S) as follows:

FCC(S) = [CombinatoricTranform(S),

CovarianceTranform(S), CodonTranform(S)] (8)

The final feature vector FCC(S) is generated by merging
the vectors produced by Algorithms 1, 2, and 4. Example, for
sequence S = {AGTAGTGCTA}, we have FCC(S) = { 0, 0, 1,
0, 2, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 4, 0, 6,
0, 0, 0, 0, 0, 0, 0, 0, 25, 0, 0, 0, 0, 4, 0, 6, 0, 0, 0, 0, 0, 1, 0, 0, 2,
2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 7, 0, 0, 6.5, 4.5, 0, 0, 6,
0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, -1.33, -2.33, -3, -1.6, -2.8, -1.24}

Definition 2. Given the sequence S = {s0, s1, s2, ..., sl-1}
where l is length of S, split S into Sa, Sb have equal length, we
define the vector FCCW(S) as follows:

Va = [FCC(Sa)]

Vb = [FCC(Sb)]

FCCW(S) = [Va + Vb, Va - Vb] (9)

In case where S has an odd number of characters then
length Sb = Sa+1, that is the last odd character will be in the

subsequence Sb. The vectors Va, Vb can be calculated from the

FCC formula in Definition 1. Applying the Haar wavelet filter

according to Algorithm 3, concatenate 2 vectors Va, Vb to

generate an FCCW vector containing the features of the
original sequence. In this vector, it will contain information
about the frequency, the position and the correlation between
position and distance of the features mentioned above, through

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

276 | P a g e

www.ijacsa.thesai.org

which the vector will be able to store the unique feature of the
original sequence. In this way, an original subsequence of any
length will be stored under a fixed length vector have 188
dimensions. Pseudocode for Algorithm 5 describes how to
transform an input DNA sequence into a list of output final
vectors.

Algorithm 5. TranformDNA(sequence S)

INPUT: DNA sequence S need tranform, window size W
OUTPUT: feature vectors
BEGIN

//Calculate the number of windows will be cut from the
Input string

IF (Length(S) % W > 0){wCount = Length(S)/W +1}
ELSE { wCount = Length(S)/W }
//Partition sequence S into subsequences with window size
FOR (i=0 to (wCount – 1)) {

position = i*W
listSub += Substring(S, position, W)

}
//Transform subsequences to vectors
FOR (each subsequence in listSub) {

Devide a subsequence into two areas Sa, Sb
Calculation Va = [FCC(Sa)], Vb = [FCC(Sb)] (by
fomula(8))
vectors += WaveletHaarTranform(Va,Vb) (by
fomula(9)) }

RETURN listVectors

END

Algorithm 6. FCCWD(vector u, vector v)

INPUT: vector u, v
OUTPUT: similarity FCCWD between u and v
BEGIN

posDis = 0; negDis = 0;
FOR EACH (each vector ui, vi in u, v){
IF(ui > vi) {

posDis += ui - vi }
ELSE {

negDis += abs(ui - vi) } }
m = min (posDis, negDis)
µ = | posDis - negDis | / 2
IF(m < µ) {

RETURN µ/N }
ELSE {

RETURN (µ + (m - µ))/N }

END

The similarity value of two vectors is determined by the
distance between the two vectors. To calculate this distance,
the algorithm presented in [1] is employed. This algorithm
calculates the distance between two vectors by finding the
maximum number of operations required to transform from
vector u to vector v. Algorithm 6 will calculate these values for
each pair of (u,v) and storing the result in the variables posDis
and negDis.

 Algorithmic complexity

The generated vectors will only contain numbers, which
results in a computational complexity of O(l), much improved
compared to O(l

2
) of the ED algorithm.

IV. EXPERIMENTAL RESULTS

In test model, we will take a text input DNA sequence and
partition it into smaller subsequences using a selected window
length. Next, we will use the FCCWD and Hfwd

2
 algorithms to

transform these subsequences into a set of vectors, which will
be stored in a general database. With these vectors, it will be
possible to calculate the similarity values between them, and
obtain the results. Lastly, we will compare the average results
of the improved algorithm with the reference ED algorithm to
evaluate the efficiency improvement achieved, as illustrated in
Fig. 4.

We employed the use of Visual Studio 2019 and the C#
programming language, as well as SQL Server 2019 for
database management. The tests were conducted on a computer
with the following configuration: CPU: Intel Xeon E2224G at
3.5 GHz, RAM: 16 GB, Hard Disk: Intel SSD 250 GB,
Operating System: Windows Server 2019.

The test dataset is 171 genes of the family Poxviridae virus
(32.9 MB), 172 genes of the family Asfarviridae virus (31.4
MB), 203 genes of the family Herpesviridae virus (32.6 MB),
23 genes of the family Corona virus (0.9 MB) available for
download at the website https://www.ncbi.nlm.nih.gov/.

As the scenario has been built, we will compare the results
of the similarity value calculation using three methods, with the
standard ED method being the target to aim for. We will
partition the data file into subsequences of different window
lengths W = (1000, 2500, 5000, 7500, 10000, 15000, 20000)
and evaluate the efficiency based on the average of the
calculations. Since the parameters differ, the similarity values
may not be on the same frame of reference. To compare the
results, we will use the k nearest neighbor method on the
resulting data. This means, given an input DNA sequence, we
will find the cluster of k sequences with the closest similarity
value for each method. The intersection of the resulting
FCCWD clusters with ED and Hfwd

2
 with ED will represent

the accuracy of the algorithms. As an example, if we search for
similarities using the standard ED method, the result will be a
set A with k elements having minimum values. The FCCWD
method will find a set B also with k elements. The intersection

of A and B (A ∩ B) will be the elements that FCCWD

correctly found compared to ED as illustrated in Fig. 5.

Fig. 4. Model of experiment.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

277 | P a g e

www.ijacsa.thesai.org

Fig. 5. Example of intersection of 2 result sets.

Fig. 6 and Fig. 7 illustrate the results for scenarios where k
equals 5 and 10. The average true positive rate of FCCWD is
higher than Hfwd

2
 under these scenarios. The efficiency of

method is highest when the window length is between 5000
and 10000, but noticeably decreases when the window length
is smaller than 5000 or larger than 10000.

Fig. 8 and Fig. 9 present the results for scenarios where k is
equal to 15 and 20. Although performing worse than Hfwd

2
 at

W = 1000 with k=20, but the average true positive rate of
FCCWD still better than Hfwd

2
 in the remaining cases. The

efficiency of method remains low for window lengths smaller
than 5000, but proves to be stable when window lengths are
larger than 5000.

The results indicate that when the window length is small,
accuracy is lower and gradually improves as the window length
increases. With small window lengths, the small number of
characters creates high noise levels, leading to larger errors.
When the sequence is longer, the accuracy of FCCWD is
higher because we have added more parameters to store the
eigenstate better than the Hfwd

2
 method. Therefore, this

method is also more efficient when comparing large sequences
than Hfwd

2
 tested on small windows from 100 to 1000. The

best accuracy of the proposed method is the windows length
from 5000 to 10000.

Fig. 6. Compare result with k = 5.

Fig. 7. Compare result with k = 10.

Fig. 8. Compare result with k = 15.

Fig. 9. Compare result with k = 20.

TABLE I. EXECUTION TIME OF METHODS (SECONDS)

 W size

Method
1000 2500 5000 7500

ED 25.0029 155.7917 619.9818 1387.816

FCCWD 0.0003 0.0007 0.0014 0.0021

Hfwd2 0.0003 0.0007 0.0013 0.002

 W size

Method
10000 15000 20000

ED 2457.2346 5496.9212 9730.9857

FCCWD 0.0028 0.0042 0.0055

Hfwd2 0.0027 0.004 0.0053

Regarding the computational performance shown in Table I
and Fig. 10, the computational performance of both FCCWD
and Hfwd

2
 methods is observed to be highly efficient, with

computation times only being a few hundredths of a second.
On the other hand, ED is significantly slower, ranging from a
few tens to tens of thousands of seconds. Although FCCWD
uses more parameters and has a larger vector dimension, the
similarity algorithm has linear complexity, making the increase
in cost minimal compared to Hfwd

2
. As the window length of

the data increases, the computation time of FCCWD increases
very little, while ED increases very quickly.

The experiment also shows that the data compression ratio
is quite good, with the larger window length the more
compression, as shown in Fig. 11. Because how large a
window is, it will also be transformed into a vector with 188-
dimensions. This can help the data after transformation to be
easily stored and reused in the next times.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

278 | P a g e

www.ijacsa.thesai.org

Fig. 10. Time comparison results.

Fig. 11. Compare files size after transformation.

V. CONCLUSION

With the goal of improving the accuracy of similarity
search, this paper propose an improved algorithm that
transforms DNA sequences into numerical vectors using
multiple feature parameters. These features are a blend of
mathematical statistics and biological characteristics of genetic
genes, allowing for a better representation of the original
sequence information in the transformed vectors. Additionally,
the method also enables efficient storage and reuse of the
transformed data through reduction of its size. Experimental
results demonstrate that the new algorithm improves similarity
calculation accuracy while maintaining good performance.
Although some cases of high noise still affect accuracy, the
algorithm performs better in the case of long window length. In
the future, we will continue to look for valuable parameters to
further improve accuracy, as well as apply other indexing
methods to process large data better.

ACKNOWLEDGMENT

This paper is supported by project CSCL02.06/22-23 of
Institute of Information Technology (IoIT) - Vietnam Academy
of Science and Technology (VAST), Hanoi, Vietnam.

REFERENCES

[1] In-Seon Jeong, Kyoung-Wook Park, Seung-Ho Kang, Hyeong-Seok
Lim, “An efficient similarity search based on indexing in large DNA
databases,” Computational Biology and Chemistry, vol 34, pp.131-136,
2010.

[2] Zeyu Xia, Yingbo Cui, Ang Zhang, Tao Tang, Lin Peng, Chun Huang,
Canqun Yang & Xiangke Liao, “A Review of Parallel Implementations
for the Smith–Waterman Algorithm,” Interdisciplinary Sciences:
Computational Life Sciences, vol 14, pp.1–14, 2022.

[3] Samer Mahmoud Wohoush, Mahmoud Hassan Saheb, “Indexing for
Large DNA Database Sequenes,” International Journal of Biometrics
and Bioinformatics (IJBB), vol 5, pp.202-215, 2011.

[4] T. Magoc and S. Salzberg, “FLASH: Fast length adjustment of short
reads to improve genome assemblies,” Bioinformatics, pp.2957-2963,
2011.

[5] Xianyang Jiang, Peiheng Zhang, Xinchun Liu, Stephen S.-T.Yau,
“Survey on index based homology search algorithms,” Springer Science
+ Business Media, LLC, pp.185-212, 2007.

[6] Hugh Williams, Justin Zobel, “Compression of nucleotide databases for
fast searching,” Bioinformatics, pp.549–554,1997.

[7] Ooi BC, Pang HH, Wang H, Wong L, Yu C, “Fast filter-and-refine
algorithms for subsequence selection,” Proceedings of the 6th
international database engineering and applications symposium
(IDEAS’02), Edmonton, Canada, pp.243–254, July 2002.

[8] Lee HP, Tsai YT, Sheu TF, Tang CT, “An IDC-based algorithm for
efficient homology filtration with guaranteed seriate coverage,” Fourth
IEEE symposium on bioinformatics and bioengineering (BIBE’04),
Taichung, Taiwan, pp.395-402, 2004.

[9] Jim Dowling, KTH, “Reference Based Compression Algorithm”,
Scalable, Secure Storage of Biobank Data, Work Package 2, pp.23 – 44,
June 2014.

[10] Nahida Habib, Kawsar Ahmed , Iffat Jabin, Mohammad Motiur
Rahman, “Modified HuffBit Compress Algorithm - An Application of
R,” Journal of Integrative Bioinformatics, pp.1-13, Feb 2018 .

[11] Williams, Zobel, “Indexing and retrieval for genomic databases,” IEEE
Transactions on Knowledge and Data Engineering Vol 14, pp.63–78,
2002.

[12] Ozturk, Ferhatosmanoglu, “Effective indexing and filtering for similarity
search in large biosequence database,” Third IEEE Symposium on
Bioinformatics and Bioengineering, Proceedings, pp.359–366, 2003.

[13] Kahveci, Singh, “An efficient index structure for string databases,”
Proceedings of 27th International Conference on Very Large Data Base,
Roma, Italy, pp.351–360, 2001.

[14] Yongkun Li, Lily He, Rong Lucy He & Stephen S.-T.Yau, “A novel fast
vector method for genetic sequence comparison,” Scientific Reports,
pp.1-11, 2017.

[15] Qing Zhou and Jun S. Liu, “Extracting sequence features to predict
protein–DNA interactions: a comparative study,” Nucleic Acids
Research, 36(12), pp.4137–4148, 2008.

[16] Stanley Maloy. Kelly Hughes, “Brenner's Encyclopedia of Genetics
(Second Edition) ,” Elsevier, pp.242-245, 2013.

[17] Rui Dong, Lily He, Rong Lucy He, and Stephen S.-T. Yau1, “A Novel
Approach to Clustering Genome Sequences Using Inter-nucleotide
Covariance,” Frontiers in Genetics, pp.1-12, 2019.

[18] N. N. Kozlov, “The Study of the Secrets of the Genetic Code,” Journal
of Computer and Communications, pp.64-83, 2018.

https://www.sciencedirect.com/science/referenceworks/9780080961569
https://www.sciencedirect.com/science/referenceworks/9780080961569

