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Abstract—Similarity search of DNA sequences is a 

fundamental problem in the bioinformatics, serving as the basis 

for many other problems. In this, the calculation of the similarity 

value between sequences is the most important, with the Edit 

distance (ED) commonly used due to its high accuracy, but slow 

speed. With the advantage of transforming the original DNA 

sequences into numerical vector form that retaining unique 

features based on properties. The calculation processing on these 

transformed data will be much faster, many times faster than a 

direct comparison on the original sequence. Additionally, from a 

long DNA sequence, after transformation, it typically has a lower 

storage capacity, making it have good data compression. The 

challenge of this job is to develop algorithms based on features 

that maintain biological significance while ensuring search 

accuracy, which is also the problem to be solved. Previous 

methods often used pure mathematical statistics such as 

frequency statistics and matrix transformations to construct 

features. In this paper, an improved algorithm is proposed based 

on both biological significances and mathematical statistics to 

transforming gene data into numerical vectors for ease of storage 

and to improve accuracy in similarity search between DNA 

sequences. Based on the experimental results, the new algorithm 

improves the accuracy of similarity calculations while 

maintaining good performance. 

Keywords—Similarity search; data transformation; DNA 

sequence; big data 

I. INTRODUCTION 

Bioinformatics is an interdisciplinary field that develops 
software methods and tools for understanding biological data, 
especially when the data sets are large and complex. It 
combines technologies of applied mathematics, statistics, 
computer science, biology, chemistry, physics… and biological 
mathematics. The term bioinformatics is a part of 
computational biology, and the combination of these sciences 
is intertwined and mutual. Thus, the research results in this 
field not only contribute to biology, but also to other fields. 
Biological data contains gene sequences (DNA - 
Deoxyribonucleic Acid) and briefly describes which is made 
up of four nucleotides: A, C, T and G. DNA is a crucial 
molecule for all living things, not just humans. The application 
of DNA in science and daily life is diverse and significant, 
such as crossbreeding, genetic mutation, comparison of 
species, prediction of phylogenetics, pedigree, genetic diseases, 
predict disease risk, etc. The fundamental problem in 
bioinformatics related to DNA sequence processing is 
similarity search, which is finding subsequences that are the 
same or similar to a sequence of interest. This leads to further 
problems such as calculating the similarity value between 
sequences to draw a phylogenetic tree and sequence alignment 

to achieve maximum similarity between sequences. These 
problems are manageable on small and medium data but 
become complex with big data. 

In similarity search, the commonly used method to 
calculate similarity value between two sequences is Edit 
Distance (ED) (also known as Levenshtein). The ED similarity 
value between two sequences is the minimum number of steps 
required to transform one sequence to other, based on three 
transformations: adding, editing, and deleting each character in 
the sequence [1]. For example, similarity value between LOVE 
and MOVIE is ED(LOVE, MOVIE) = 2 because two steps of 

LOVE → MOVE → MOVIE are needed. The advantage of 

this method is can compare sequences of different lengths, 
thereby flexibly being applied in many problems. However, its 
computational complexity is O(n*m) where m, n are the 
lengths of two sequences being compared. With long data, the 
results take a long time to obtain, making comparisons in long 
sequences less efficient. Due to the rapid advancements in 
technology, biological databases generate vast amounts of 
information and are continuously growing, resulting in a rapid 
increase in their size. 

The large size of the data leads to a high number of I/O 
operations, resulting in a high cost of storage space and 
decreased processing performance. To address this issue, 
researchers are exploring various methods to index or 
transform the gene data into numerical form to reduce database 
access and improve query performance. One of the challenges 
in this field is to develop algorithms for transforming the 
sequence in a way that retains the biological significance of the 
data while reducing its size. Previous methods often utilized 
simple mathematical statistics, such as frequency statistics or 
matrix transformations, to build features. In this study, an 
improved algorithm is proposed that not only takes into 
account frequency, position appearance, and correlation 
between position and distance of the characters but also 
considers the biological significance of the sequence, based on 
the role and function of amino acids in proteins. This approach 
helps to retain as many features of the sequence as possible, 
leading to improved accuracy when searching for similarity 
between two sequences. 

The rest of the paper is organized as follows, Section II will 
present the related work to the research, Section III presents the 
proposed improved algorithm, Section IV presents the 
experimental results of the algorithm proposal, and Section V 
is the conclusion. 
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II. RELATED WORK 

A lot of research has been carried out to calculate similarity 
between sequences. Through the survey, a number of published 
methods were found. Some typical algorithms such as: Smith - 
Waterman [2] and BLAST [3] are well-known algorithms for 
performing sequence comparisons through representative 
sequences. This group of algorithms has high accuracy, but 
limitation is inefficient when size of database is too large or 
continuously added. Many other algorithms, improved from the 
famous BLAST algorithm, also allow performing calculations 
quickly such as Flash algorithm [4], ProperSearch tool [5], 
CAFE method [6]. BIS (Bitmap indexing structure) [7], IDC 
(Incrementally Decreasing Cover) [8], FRESCO (Framework 
for REferential Sequence Compresion) [9], Modified HuffBit 
Compress Algorithm [10]. These algorithms perform and 
compression search by interfering with data structures such as 
matrix analysis, genomic statistics, frequency changes, etc. In 
addition, Metric space indexing techniques [4], Williams & 
Zobel [11] and Ozturk and Ferhatosmanoglu [12] are indexing 
methods that use special transformations that convert the input 
DNA sequence into numerical vectors based on features. The 
objective of these methods is to find the most effective features 
to generate the vectors, so as to preserve the biological 
information of the original sequence and perform efficient 
similarity searches. Studies by Kahveci and Singh [13], 
Yongkun Li et al [14] have found that using frequency and 
position-distance characteristics resulted in better performance 
compared to other features. 

The Hfwd
2
 method [1] is a technique that partitions a long 

DNA sequence into smaller subsequences using a window 
length, and then transforms these windows into numerical 
vectors that represent the frequency of appearance of the 
characters (A, C, T, G) as well as their combinations (N-
grams). To enhance the features stored in the vector, this 
method also incorporates the position of each character in the 
sequence. To address the issue of uneven distribution of 
characters in the DNA sequence, the authors divide the 
sequence into two equal parts and generate the vectors based 
on these two parts to ensure that the comparison is more equal. 
While this method results in a lower accuracy compared to 
direct comparison due to the noise introduced during the 
transformation process, it offers a significant improvement in 
performance and speed during similarity searches. However, 
Hfwd

2
 has a few limitations, such as the use of a simple 

positional parameter, and the lack of consideration for the 
biological significance of the characters in the sequence. 
Below, we propose an improved algorithm from Hfwd

2
, in 

which numerical vectors transformation is not only built with 
features based on frequency, position appearance, correlation 
between position and distance way of characters, but also 
interested in the biological significance of sequences based on 
amino acids, applied on wavelet transform to increase features 
stored after transformation. Theoretically, it is expected to 
improve accuracy of calculating similarity value between 
sequences. 

Current methods are still continuing to research solutions to 
improve accuracy of similarity search with transformation 
vectors. In this paper, we propose an improved algorithm for 
transforming gene sequences into numerical vectors. This 

algorithm considers not only mathematical statistics such as 
frequency and position appearance, but also the biological 
significance of amino acids in the sequences. By doing so, we 
aim to maintain as much information as possible from the 
original sequence while improving the accuracy of similarity 
searches. 

III. PROPOSED METHOD 

The transformation of original sequences into numerical 
vectors has been discussed in the above sections. This 
approach can optimize storage in databases and increase 
computational performance. The challenge is to preserve the 
biological meaning of the sequences in the numerical vectors 
after transformation, in order to maintain search accuracy. To 
address this, we propose an improved algorithm compared to 
Hfwd

2
. This new algorithm considers not just the frequency, 

position appearance, and correlation between position and 
distance of characters, but also the biological significance of 
the sequences based on amino acids. Additionally, the use of 
wavelet transform increases the amount of information stored 
in the numerical vectors. Theoretically, it is expected to 
improve accuracy of calculating similarity value between 
sequences. 

In the pre-processing stage, we also partitioned the DNA 
sequences into equal length windows and transform each 
partition into numerical vectors using the feature parameters 
we have proposed. These vectors are then stored in a 
centralized database for later retrieval. When a new sequence 
needs to be compared for similarity, it will undergo the same 
pre-processing step and then be compared with the vectors in 
the database. The resulting set of similarities will be outputted.  
The general process of the method is shown in Fig. 1. 

 
Fig. 1. General process of the method. 

Files containing DNA sequences after being collected will 
be sent to the data pre-processing module. The system will 
remove any characters that are not A, C, T, G from the 
sequence, and partitioned the original sequence into equal 
length windows. The length of these windows can be adjusted 
to meet the user's needs, and we will explore the optimal range 
for best results in the experimental section. These operations 
can be easily performed using support functions from the C# 
language's String library. Finally, the partitions are subjected to 
transformation algorithms to generate multidimensional 
numerical vectors. 

These vectors will be indexed so that when making 
comparisons based on similarity, they will be much faster than 
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the original sequence. The pre-processing model is depicted in 
Fig. 2. 

 
Fig. 2. Data pre-processing and indexing model. 

A. Algorithms Feature Extraction for DNA Sequence 

Transformation 

Just like feature extraction in natural language processing, 
the goal of this step is to show how to transform text data into 
vectors with numerical values. This is often the most important 
step that determines whether the final approach is successful 
for a real problem [15]. Here, we will present a proposal of 
four features that can be used to generate a numerical vector 
from the input DNA sequence. These features help to capture 
important information about the DNA sequence for perform 
similarity calculation. 

Given the sequence S = {s0, s1, s2, ..., sl-1} where l is the 
length of the S, the algorithms to build feature of the sequence 
S are as follows: 

1) Algorithm transform based on combinatoric: Let Ꞷ = 

{a1, a2, ..., aα} where N-grams is the combination of characters 

built in the sequence S, α is length of the combination of 

characters. The DNA sequence S will only includes four 

nucleotides A, C, G, T, so when choosing N=1 we have the 

combination Ꞷ = {A, C, G, T}, when N=2 the combination Ꞷ 

= { AA, AC, AG, AT, TA, TC, TG, TT, GA, GC, GG, GT, 

TA, TC, TG, TT}, and so on. The larger N gets, the 

combination grows exponentially. Each element in the Ꞷ 

combination may or may not appear in the original sequence 

S, and may appear in different positions, which creates unique 

characteristics for each DNA sequence. This algorithm adds a 

parameter to calculate the correlation between position and 

distance compared to Hfwd
2
. The purpose is to store the 

parameters of frequency, position, and correlation between 

position and distance of characters that appear in the sequence, 

and use them as unique features of each sequence to calculate 

the similarity value later. 

a) Frequency appearance 
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axα ≥ 0 is total appearance of the xα in the sequence S. 

b) Position appearance 
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bxα ≥ 0 is sum of position values of xα in the sequence S.. 

c) Correlation between position and distance 
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caα ≥ 0 is average of (position * distance), distance 
calculated as the difference between the current position and 
the previous position of xα in the sequence S. 

 N-grams selection 

With DNA sequences, when N=1 the combination of 
characters has the value 4

1
 = 4, when N=2 the combination has 

the value 4
2
=16, when N=3 the combination has the value 

4
3
=64, etc. Increasing N can increase the amount of 

information stored in the vectors, but it also increases the 
computational cost of generating the vectors and calculating 
the similarity. According to a suggestion in [1], and based on 
our own experiments selecting N=1,2,3,4, we has been found 
that N=2 gives good results for comparisons and is also 
computationally efficient. 

Algorithm 1. CombinatoricTranform(subsequence S)  

INPUT: subsequence S  

OUTPUT: a vector combinatoric 48 dimensions 

BEGIN 

Initialize Ꞷ = {AA, AC, AG, AT, TA, TC, TG, TT, GA, 
GC, GG, GT, TA, TC, TG, TT}. 

Initialize vector vCombinatoric 48 dimensions 

FOR (i=0 to 15) { 

vCombinatoric[i] = Count frequency of element in Ꞷ 
(by fomula(2))    } 

FOR (i=16 to 31) { 

vCombinatoric[i] = Calculate sum of localtion of 
element in Ꞷ (by fomula(3))      } 

FOR (i=32 to 47) { 

vCombinatoric[i] = Calculate value of correlation 
between position and distance of element in Ꞷ (by 
fomula(4))            } 

RETURN vCombinatoric 

END 
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The pseudocode for Algorithm 1 outlines the steps to 
transform an input DNA subsequence into a 48-dimensional 
numerical vector based on the formulas (1), (2), (3), and (4). 

For example, with the sequence S = {AGTAGTGCTA}. 
We can calculate CombinatoricTranform(S) = {0, 0, 1, 0, 2, 0, 
0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 4, 0, 6, 0, 0, 0, 
0, 0, 0, 0, 0, 25, 0, 0, 0, 0, 4, 0, 6, 0, 0, 0, 0}. 

2) Algorithm transform based on covariance: Covariance 

is a measure of how much two random variables vary 

together. It’s similar to variance, but where variance tells you 

how a single variable varies, covariance tells you how two 

variables vary together. Theoretically, covariance is used by 

analysts as a way to look at the overall for one or more related 

variables. In the context of biological and genetic data, 

variables are specific positions of nucleotides in the gene. 

Genetic covariance studies whether two positions of 

nucleotides on the gene evolve independently or they evolve 

together [16].  The authors in [17] also presented the idea of 

using covariance as a feature represented when transform the 

DNA sequence. This feature could provide additional 

information about the correlation between nucleotides in the 

gene, which could be useful in further analysis and 

comparison with other DNA sequences. 

  
,

1

i i

x y

x x y y
cov

N


 




                    (5) 

Where
( , )x y ∈ {(A,T); (A;G); (A,C); (T,G); (T,C); 

(G,C)}, ,i ix y  is position of ,x y on the sequence, 
,x y

 is 

average position value of ,x y  in the sequence. 

We use the covariance formula to build features through the 

vector {
, , , , , ,, , , , ,A C A G A T T C T G G Ccov cov cov cov cov cov } 

showing correlation between the positions of the nucleotides 
together. 

The pseudocode for Algorithm 2 explains how to transform 
an input subsequence into a 6-dimensional vector based on 
formula (5). 

Algorithm 2. CovarianceTranform(subsequence S)  

INPUT: subsequence S  
OUTPUT: a vector covariance 6 dimensions 
BEGIN 

Initialize Ꞷ = {(A,T); (A;G); (A,C); (T,G); (T,C); (G,C)}. 
Initialize vector vCovariance 6 dimensions 
FOR (i=0 to 15) { 

vCovariance[i] = Calculate value of correlation 
between position and distance of element in Ꞷ (by 
fomula(5)) 

} 
RETURN vCovariance 

END 

For example, with the given sequence S, we can calculate 
CovarianceTranform(S) = { -1.33, -2.3, -3, -1.6, -2.8, -1.24}. 

3) Algorithm transform based on Haar wavelet: The 

Discrete Wavelet Transform (DWT) is a widely used method 

in digital signal processing, data mining, information retrieval, 

text clustering and classification, digital image processing, etc. 

due to its simplicity and efficiency. DWT involves dividing a 

signal into two parts: high frequency and low frequency. The 

low frequency part is further divided into high and low 

frequency parts through a process called downsampling. The 

encoding complexity is linear and allows for multiple 

resolution levels. The Haar filter, being the simplest possible 

wavelet, is often used in the analysis of signals with abrupt 

transitions and is commonly used in analyzing time series or 

ordinal data. We use Haar filter to divide the original sequence 

into two parts: approximation (by summing) and detail (by 

subtracting) in pairs of values in in two vectors. 

In the case that a character is unevenly distributed in 
different regions of the DNA sequence, for example, if 
character A is abundant in the first half but scarce in the second 
half, the algorithm for transforming based on these features can 
have lower efficiency. The goal of applying Haar wavelet is to 
overcome this limitation, improve the accuracy when 
calculating and comparing the similarity values of the 
transformed sequences. The pseudocode for Algorithm 3 
presents the process of using Haar wavelet to transform 
vectors. 

Algorithm 3. WaveletHaarTranform(vector u, vector v, 
integer l)  

INPUT: vector u,v have l dimensions 
OUTPUT: a vector l*2 dimensions 
BEGIN 

Initialize vector vHigh, vLow l dimensions 
FOR (i=0 to l-1) { 

vHigh[i] = u[i] + v[i] 
vLow[i] = u[i] - v[i] 

} 
Initialize vector vWavelet l*2 dimensions 
FOR (i=0 to l-1) { 

vWavelet[i] = vHigh[i] 
} 
FOR (i=l to l*2 - 1) { 

vWavelet[i] = vLow[i] 
} 
RETURN vWavelet 

END 

4) Algorithm transform based on codon: The human 

body, along with other organisms, produces proteins through a 

process called transcription. Genes in biological cells store the 

information needed to construct proteins in the form of DNA 

sequences. During transcription, the DNA information is 

transcribed into messenger RNA (mRNA), which carries the 

genetic information. This mRNA sequence is then translated 

into a sequence of amino acids, which make up the proteins. 

Researchers have discovered that a group of three nucleotides 

encodes a single amino acid [18]. With four nucleotides, A, C, 

T, and G, there are 64 possible codons and 20 different amino 

acids. 
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Fig. 3. Table mapping three nucleotides to codon. 

Fig. 3 shows how the various combinations of three bases 
in the coding strand of DNA are used to code for individual 
amino acids - shown by their three letter abbreviation. The 
combination of codons determines the sequence of amino acids 
in the resulting protein, which ultimately determines its 
structure and function. In this way, codons are the key to 
translating genetic information stored in DNA into the 
functional proteins that carry out vital cellular processes in all 
living organisms. Almost the same as above, we will use 
frequency appearance and correlation of position and distance 
to store the feature. The goal is to capture features related to 
biological significance and store them in vectors after 
transforming the input sequences. Thereby improving the 
efficiency when calculating and comparing the similarity 
value. 

Let ꞵ a collection of amino acids, ꞵ = {Phe, Leu, Ile, Met, 
Val, Ser, Pro, Thr, Ala, Tyr, His, Gln, Asn, Lys, Asp, Glu, Cys, 
Trp, Arg, Gly}. 

a) Frequency appearance 

1

( )w
l

y

i

y id s 


                      (6) 
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eyα ≥ 0 is average of (position * distance), distance 
calculated as the difference between the current position and 
the previous position of yα in the sequence S. 

The pseudocode of Algorithm 4 explains how to transform 
an input subsequence into a 40-dimensional vector based on 
formulas (6) and (7). 

Algorithm 4. CodonTranform(subsequence S)  

INPUT: subsequence S  
OUTPUT: a vector codon 6 dimensions 
BEGIN 

Initialize ꞵ = {Trp, Phe, Tyr, His, Asn, Asp, Cys, Gln, Lys, 
Glu, Ile, Val, Pro, Thr, Ala, Gly, Ser, Leu, Arg }.  
Initialize vector vCodon 40 dimensions 
FOR (i=0 to 19) { 

vCodon [i] = Count frequency of element in ꞵ (by 
fomula(6))     

        } 
FOR (i=20 to 39) { 

vCodon [i] = Count frequency of element in ꞵ (by 
fomula(6))     

        } 
RETURN vCodon 

END 

For example, with the given sequence S, will be calculate 
CodonTranform(S) = {0, 1, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 
1, 0, 0, 0, 0, 7, 0, 0, 6.5, 4.5, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0}.  

B. The Combine Algorithm Transforms DNA Sequences into 

Vectors  

In Part A, we have presented four algorithms that will be 
used in vector transformation, this section will present an 
algorithm that combines the above algorithms to generate the 
final feature vector. Algorithm to calculate similarity value will 
be performed on these feature vectors. 

Definition 1. Given the sequence S = {s0, s1, s2, ..., sl-1} 
where l is length of S, we define the vector FCC(S) as follows: 

FCC(S) = [CombinatoricTranform(S), 

CovarianceTranform(S), CodonTranform(S)]       (8) 

The final feature vector FCC(S) is generated by merging 
the vectors produced by Algorithms 1, 2, and 4. Example, for 
sequence S = {AGTAGTGCTA}, we have FCC(S) = { 0, 0, 1, 
0, 2, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 4, 0, 6, 
0, 0, 0, 0, 0, 0, 0, 0, 25, 0, 0, 0, 0, 4, 0, 6, 0, 0, 0, 0, 0, 1, 0, 0, 2, 
2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 7, 0, 0, 6.5, 4.5, 0, 0, 6, 
0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, -1.33, -2.33, -3, -1.6, -2.8, -1.24} 

Definition 2. Given the sequence S = {s0, s1, s2, ..., sl-1} 
where l is length of S, split S into Sa, Sb have equal length, we 
define the vector FCCW(S) as follows: 

Va = [FCC(Sa)] 

Vb = [FCC(Sb)] 

FCCW(S) = [Va + Vb, Va - Vb]         (9) 

In case where S has an odd number of characters then 
length Sb = Sa+1, that is the last odd character will be in the 

subsequence Sb. The vectors Va, Vb can be calculated from the 

FCC formula in Definition 1. Applying the Haar wavelet filter 

according to Algorithm 3, concatenate 2 vectors Va, Vb to 

generate an FCCW vector containing the features of the 
original sequence. In this vector, it will contain information 
about the frequency, the position and the correlation between 
position and distance of the features mentioned above, through 
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which the vector will be able to store the unique feature of the 
original sequence. In this way, an original subsequence of any 
length will be stored under a fixed length vector have 188 
dimensions. Pseudocode for Algorithm 5 describes how to 
transform an input DNA sequence into a list of output final 
vectors. 

Algorithm 5. TranformDNA(sequence S) 

INPUT: DNA sequence S need tranform, window size W 
OUTPUT: feature vectors 
BEGIN 

//Calculate the number of windows will be cut from the 
Input string 

IF (Length(S) % W > 0){wCount = Length(S)/W +1} 
ELSE { wCount = Length(S)/W } 
//Partition sequence S into subsequences with window size 
FOR (i=0 to (wCount – 1))  { 

position = i*W 
listSub += Substring(S, position, W) 

} 
//Transform subsequences to vectors 
FOR (each subsequence in listSub)   { 

Devide a subsequence into two areas Sa, Sb 
Calculation Va = [FCC(Sa)], Vb = [FCC(Sb)] (by  
fomula(8)) 
vectors += WaveletHaarTranform(Va,Vb) (by  
fomula(9)) } 

RETURN listVectors 

END 
 

Algorithm 6. FCCWD(vector u, vector v) 

INPUT: vector u, v 
OUTPUT: similarity FCCWD between u and v 
BEGIN 

posDis = 0; negDis = 0; 
FOR EACH (each vector ui, vi in u, v){ 
IF(ui > vi) {  

posDis += ui - vi }  
ELSE { 

negDis += abs(ui - vi) } } 
m = min (posDis, negDis) 
µ = | posDis  - negDis | / 2 
IF(m < µ) { 

RETURN µ/N   } 
ELSE { 

RETURN (µ + (m - µ))/N    } 

END 

The similarity value of two vectors is determined by the 
distance between the two vectors. To calculate this distance, 
the algorithm presented in [1] is employed. This algorithm 
calculates the distance between two vectors by finding the 
maximum number of operations required to transform from 
vector u to vector v. Algorithm 6 will calculate these values for 
each pair of (u,v) and storing the result in the variables posDis 
and negDis. 

 Algorithmic complexity 

The generated vectors will only contain numbers, which 
results in a computational complexity of O(l), much improved 
compared to O(l

2
) of the ED algorithm. 

IV. EXPERIMENTAL RESULTS 

In test model, we will take a text input DNA sequence and 
partition it into smaller subsequences using a selected window 
length. Next, we will use the FCCWD and Hfwd

2
 algorithms to 

transform these subsequences into a set of vectors, which will 
be stored in a general database. With these vectors, it will be 
possible to calculate the similarity values between them, and 
obtain the results. Lastly, we will compare the average results 
of the improved algorithm with the reference ED algorithm to 
evaluate the efficiency improvement achieved, as illustrated in 
Fig. 4. 

We employed the use of Visual Studio 2019 and the C# 
programming language, as well as SQL Server 2019 for 
database management. The tests were conducted on a computer 
with the following configuration: CPU: Intel Xeon E2224G at 
3.5 GHz, RAM: 16 GB, Hard Disk: Intel SSD 250 GB, 
Operating System: Windows Server 2019. 

The test dataset is 171 genes of the family Poxviridae virus 
(32.9 MB), 172 genes of the family Asfarviridae virus (31.4 
MB), 203 genes of the family Herpesviridae virus (32.6 MB), 
23 genes of the family Corona virus (0.9 MB) available for 
download at the website https://www.ncbi.nlm.nih.gov/. 

As the scenario has been built, we will compare the results 
of the similarity value calculation using three methods, with the 
standard ED method being the target to aim for. We will 
partition the data file into subsequences of different window 
lengths W = (1000, 2500, 5000, 7500, 10000, 15000, 20000) 
and evaluate the efficiency based on the average of the 
calculations. Since the parameters differ, the similarity values 
may not be on the same frame of reference. To compare the 
results, we will use the k nearest neighbor method on the 
resulting data. This means, given an input DNA sequence, we 
will find the cluster of k sequences with the closest similarity 
value for each method. The intersection of the resulting 
FCCWD clusters with ED and Hfwd

2
 with ED will represent 

the accuracy of the algorithms. As an example, if we search for 
similarities using the standard ED method, the result will be a 
set A with k elements having minimum values. The FCCWD 
method will find a set B also with k elements. The intersection 

of A and B (A ∩  B) will be the elements that FCCWD 

correctly found compared to ED as illustrated in Fig. 5. 

 
Fig. 4. Model of experiment. 
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Fig. 5. Example of intersection of 2 result sets. 

Fig. 6 and Fig. 7 illustrate the results for scenarios where k 
equals 5 and 10. The average true positive rate of FCCWD is 
higher than Hfwd

2
 under these scenarios. The efficiency of 

method is highest when the window length is between 5000 
and 10000, but noticeably decreases when the window length 
is smaller than 5000 or larger than 10000. 

Fig. 8 and Fig. 9 present the results for scenarios where k is 
equal to 15 and 20. Although performing worse than Hfwd

2
 at 

W = 1000 with k=20, but the average true positive rate of 
FCCWD still better than Hfwd

2
 in the remaining cases. The 

efficiency of method remains low for window lengths smaller 
than 5000, but proves to be stable when window lengths are 
larger than 5000. 

The results indicate that when the window length is small, 
accuracy is lower and gradually improves as the window length 
increases. With small window lengths, the small number of 
characters creates high noise levels, leading to larger errors. 
When the sequence is longer, the accuracy of FCCWD is 
higher because we have added more parameters to store the 
eigenstate better than the Hfwd

2
 method. Therefore, this 

method is also more efficient when comparing large sequences 
than Hfwd

2
 tested on small windows from 100 to 1000. The 

best accuracy of the proposed method is the windows length 
from 5000 to 10000. 

 
Fig. 6. Compare result with k = 5. 

 

Fig. 7. Compare result with k = 10. 

 
Fig. 8. Compare result with k = 15. 

 
Fig. 9. Compare result with k = 20. 

TABLE I. EXECUTION TIME OF METHODS (SECONDS) 

             W size 

Method 
1000 2500 5000 7500 

ED 25.0029 155.7917 619.9818 1387.816 

FCCWD 0.0003 0.0007 0.0014 0.0021 

Hfwd2 0.0003 0.0007 0.0013 0.002 

            W size 

Method 
10000 15000 20000  

ED 2457.2346 5496.9212 9730.9857  

FCCWD 0.0028 0.0042 0.0055  

Hfwd2 0.0027 0.004 0.0053  

Regarding the computational performance shown in Table I 
and Fig. 10, the computational performance of both FCCWD 
and Hfwd

2
 methods is observed to be highly efficient, with 

computation times only being a few hundredths of a second. 
On the other hand, ED is significantly slower, ranging from a 
few tens to tens of thousands of seconds. Although FCCWD 
uses more parameters and has a larger vector dimension, the 
similarity algorithm has linear complexity, making the increase 
in cost minimal compared to Hfwd

2
. As the window length of 

the data increases, the computation time of FCCWD increases 
very little, while ED increases very quickly. 

The experiment also shows that the data compression ratio 
is quite good, with the larger window length the more 
compression, as shown in Fig. 11. Because how large a 
window is, it will also be transformed into a vector with 188-
dimensions. This can help the data after transformation to be 
easily stored and reused in the next times. 
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Fig. 10. Time comparison results. 

 

Fig. 11. Compare files size after transformation. 

V. CONCLUSION 

With the goal of improving the accuracy of similarity 
search, this paper propose an improved algorithm that 
transforms DNA sequences into numerical vectors using 
multiple feature parameters. These features are a blend of 
mathematical statistics and biological characteristics of genetic 
genes, allowing for a better representation of the original 
sequence information in the transformed vectors. Additionally, 
the method also enables efficient storage and reuse of the 
transformed data through reduction of its size. Experimental 
results demonstrate that the new algorithm improves similarity 
calculation accuracy while maintaining good performance. 
Although some cases of high noise still affect accuracy, the 
algorithm performs better in the case of long window length. In 
the future, we will continue to look for valuable parameters to 
further improve accuracy, as well as apply other indexing 
methods to process large data better. 
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