
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

286 | P a g e

www.ijacsa.thesai.org

Experimental Evaluation of Genetic Algorithms to

Solve the DNA Assembly Optimization Problem

Hachemi Bennaceur
1
, Meznah Almutairy

2
, Nora Alqhtani

3

Faculty of Computer and Information Sciences-Computer Science Department,

Al Imam Mohammad ibn Saud Islamic University (IMSIU),

Riyadh, Saudi Arabia
1, 2, 3

Abstract—This paper aims to highlight the motivations for

investigating genetic algorithms (GAs) to solve the DNA

Fragment Assembly (DNAFA) problem. DNAFA problem is an

optimization problem that attempts to reconstruct an original

DNA sequence by finding the shortest DNA sequence from a

given set of fragments. This paper is a continuation of our

previous research paper in which the existence of a polynomial-

time reduction of DNAFA into the Traveling Salesman Problem

(TSP) and the Quadratic Assignment Problem (QAP) was

discussed. Taking advantage of this reduction, this work

conceptually designed a genetic algorithm (GA) platform to solve

the DNAFA problem. This platform offers several ingredients

enabling us to create several variants of GA solvers for the

DNAFA optimization problems. The main contribution of this

paper is the designing of an efficient GA variant by carefully

integrating different GAs operators of the platform. For that,

this work individually studied the effects of different GAs

operators on the performance of solving the DNAFA problem.

This study has the advantage of benefiting from prior knowledge

of the performance of these operators in the contexts of the TSP

and QAP problems. The best designed GA variant shows a

significant improvement in accuracy (overlap score) reaching

more than 172% of what is reported in the literature.

Keywords—Genetic algorithms; traveling salesman problem;

quadratic assignment problem; DNA fragments assembly problem

I. INTRODUCTION

The DNA fragment assembly problem is the process of
reconstructing an original DNA sequence from a given set of
DNA fragments. This is achieved by ordering and aligning
these DNA fragments such that the resulting DNA sequence is
as short as possible. It is a complex combinatorial optimization
problem belonging to the class of NP-hard problems, where
there is a need to find the right order of the DNA fragments to
assemble them. Several metaheuristic techniques have been
developed to solve this problem [1], [2], [3]. This paper exploit
the genetic algorithm platform (GAP) developed in the former
preliminary paper [4], in which the existence of a polynomial-
time reduction of DNAFA into the Traveling Salesman
Problem and the Quadratic Assignment Problem was
discussed. Then, conceptually designed a GA platform for
solving the DNAFA problem, inspired by the existing efficient
GAs in the literature for solving the TSP and QAP problems.
This platform gathers and offers several GA operators designed
to solve hard optimization problems such as TSP, QAP, and
DNAFA. The GAP enables the researchers to easily design an
adequate variant GA algorithm for hard optimization problems

in particular. This work implementing and experimenting on
some GA variants judiciously built from the platform (GAP)
aims to identify the best variant that efficiently deals with the
DNAFA problem. Using this platform, this work is able to
individually study the effects of genetic algorithm components
on selected metrics, which were presented in terms of time and
overlap score. This work focused on examining and discussing
the effects of population size, population generation methods,
selection types, and crossover types and figure out which
component has the most impact on GA performance. Some of
these GA components have never been tested in the context of
the DNAFA problem, such as SCX crossover, which is worth
to be investigated experimentally. Other components have been
tested before, but when retest was done on them, a different
result was found, such as greedy as a population initialization
method. Because of SCX effectiveness in TSP and QAP, we
believe the SCX crossover is a smart crossover that will
outperform other crossovers. As a result of these
comprehensive experiments, this work identifies the best-
designed GA variant that outperforms the existing GA
algorithms in solving the DNAFA problem. This GA variant
features the use of 200 individuals for the population size,
along with the greedy method for initializing the population,
tournament selection, and SCX crossover. This GA variant
showed a significant increase in overlap score compared to
what is reported in the literature. The results showed that the
SCX crossover was the best crossover among the studied
crossovers and gave good results. Furthermore, the results
showed that the greedy method is a very powerful method that
improved the algorithm's performance by 37%, demonstrating
that the population generation method has the greatest impact
on improving the results than the other GA components. The
experimental results demonstrated the efficiency of the
designed approach, as it got a better result for the overlap score
ranging from 56.16% to 172.74% than the previous recorded
results for most data sets. This work demonstrate
experimentally that the best designed GA variant outperforms
existing GA algorithms in solving the DNAFA problem for
some data sets.

A. The DNAFA Problem

The DNAFA problem is defined as follows: Given a set of
fragments, f1, f2,…, fn, drawn from a finite alphabet Σ =
{𝐴,𝐶,𝐺,𝑇}, the goal is to find the shortest superstring that

contain all the input fragments

 that

maximizes the number of overlaps between every pair of two
consecutive fragments and thus minimizes the length of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

287 | P a g e

www.ijacsa.thesai.org

 𝐴
 ∑ (1)

 .

B. Assembly Process

To understand the assembly process, we've defined some
key terms.

 Fragment: A short sequence of DNA bases. It is also
called read.

 Coverage: The number of fragments at a specific
position in the DNA.

 Prefix: A substring from the first characters of a
fragment.

 Suffix: A substring from the last characters of a
fragment.

 Overlap: Common sequence between the suffix of one
fragment and the prefix of another.

 Layout: An arrangement of the collection of fragments
based on their overlapping order.

 Contig: Contiguous overlapped fragments without gaps.

 Scaffold: The overlapped contigs, which may contain
gaps.

 Consensus: Reconstruction of the complete sequence

In the assembly process, the input for the DNA fragment
assembly is a set of fragments. The traditional assembly
approach works in the following order: overlap, layout, and
consensus [5].

 Overlap stage: Finding the overlapping fragments and
computing their similarity score (overlap score). This
means finding the longest match between the suffix of
one fragment and the prefix of another.

 Layout stage: Finding the order of fragments based on
the computed overlap score.

 Consensus stage: Reconstructing the complete
sequence from the layout.

This paper is organized as follows: the second section
discusses the related works, then the proposed design is
discussed in detail in the third section. In the fourth section, the
experiments and the method of conducting the investigations
are detailed, and then the results are listed in the fifth section.
The sixth section discusses these results by comparing them
with previous works, and finally, the paper is concluded in the
seventh section.

II. RELATED WORKS

This section presents the previous related works organized
into two subsections: the first subsection summarizes the works
solving the DNAFA with GA, and the second subsection
introduces the works solving the TSP and QAP with GA.

A. Genetic Algorithm for DNAFA Problem

The basic genetic algorithm schema contains various
concepts such as population encoding, population initialization,
fitness function, selection, crossover, and mutation. Each
concept has its own importance in the algorithm. By studying
previous works, it can be noted that each concept can be done
in a different way. In more detail, the population can be
encoded in different ways in the GA, one such way is through
segmented permutation [6], identity permutation [7]. Random
generation, as in [8], the greedy approach, and the 2-opt
heuristics, as proposed by Minetti et al. [8] and [9], are
common strategies for generating the initial populations.

For the fitness function, the most commonly used fitness
function is to maximize the overlap score, where the smith-
waterman algorithm is used to calculate the overlap between
the fragments [7]. The smith water man algorithm takes a lot of
time but, even though it is the most precise algorithm for
identifying similarity regions between fragments. Overlap
score is considered the best measure for measuring the quality
of the solution. It was used in most of the previous works [7],
[8], and [9].

The crossover operator is the main operator of GA, as it
plays a crucial role in efficiently exploring the search space of
the optimization problem. The parents' characteristics are
mainly inherited by crossover operators. Among the
crossovers that were used in solving DNAFA, there was the
order-based crossover (OX) as in [5], [10], [6], the edge-
recombination (ER) [5], and the partially mapped crossover
(PMX) [7], [9]. For the mutation, inversion mutation operators
[10], and swap mutation [7], [9]were used for the DNAFA.

GA can be combined with other metaheuristics to achieve
good results. For this purpose, Minetti et al. [10] designed a
hybrid method named SAX that combined the GA with a
simulated annealing metaheuristic. Another work, by Hughes
et al. [7] combines different variations of GA in different ways.
Also, the authors in [5] applied multiple algorithms, such as
simulated annealing and scatter search with the GA. Another
recent work is provided by Uzma and Halim [9] they combine
GA and Power Aware Local Search (PALS).

The studies of Bucur [6], [11] focus on minimizing the total
length of the scaffold (summing the length of the overlapped
contigs). Unlike previous works, Bucur used simulated data
sets where the fragments were of uniform length, they were
able to measure the accuracy since they had the reference
genome. However, as they mentioned, the main disadvantage
of their method is its increased time complexity.

B. Genetic Algorithm for TSP and QAP

This section reviews GA algorithms designed to solve the
TSP and QAP problems. Different types of encoding were used
for the optimization problems TSP and QAP. Most works of
the wide literatures used the identity permutation such as for
TSP in [12], [13] and QAP in [14]. Another advanced types of
population encoding were used for TSP such as value encoding
[15], and real number encoding [16]. The common strategies of
generating the initial populations are the random generation as
investigated for TSP in [16] and the greedy method as in [17].
Recently, more advanced strategies have been developed, the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

288 | P a g e

www.ijacsa.thesai.org

author in [13] proposed Multi-Agent Reinforcement Learning
(MARL) for solving TSP problems, and [14] implemented the
sequential sampling method for solving QAP problems.

For the selection, the roulette wheel is the common
selection operator used for optimization problems [15], [13],
[18], [16], the tournament selection was implemented for TSP
[17], and the stochastic remainder selection was used for QAP
[19]. More recently, in [16], a greedy method was designed as
a selection operator for TSP.

Several advanced crossover operators have been designed
for solving TSP as well as QAP using GA algorithms. The
Sequential Constructive Crossover (SCX) is an intelligent
crossover designed by Ahmed [12] to solve the TSP. Recently,
a modified version of sequential constructive crossover, named
greedy SCX (GSCX), was proposed for solving TSP [20]. The
reverse greedy sequential constructive crossover (RGSCX) and
the comprehensive sequential constructive crossover (CSCX)
are two new crossover operators that enhance SCX for solving
TSP [21]. Other types of advanced crossover operators were
designed in [18] to solve the QAP, relying on the idea of a
frequency model. Three crossover operators were introduced
for enhancing GA, namely, the Highest Frequency Crossover
(HFX), the Greedy HFX (GHFX), and the Highest Frequency
Minimum Cost Crossover (HFMCX).

Various types of mutations have been investigated for the
TSP and QAP problems, including the exchange mutation [13],
[16], [17], and the reciprocal exchange mutation [12]. More
advanced mutation operators have been designed for the TSP
and QAP problems, such as the interchange mutation in [15],
and the inversion mutation in [17]. In [22], the adaptive and
combined mutation operators were proposed for solving QAP.

C. Other Metaheuristics Algorithms for DNA Fragments

Assembly

Particle swarm optimization (PSO) was reported in the
literature for the DNA fragment assembly problem. Verma and
Kumar [2] used the PSO with the smallest position value
(SPV) rule. The PSO can be enhanced when combined with
other algorithms, such as in Huang et al. [23], who proposed a
hybrid particle swarm optimization algorithm (HPSO). The
algorithm was divided into two parts: (1) Tabu search
combined with PSO to improve solution quality and (2)
simulated annealing combined with variable neighborhood
local search (VNS). Additionally, the parallel approach can
reduce the computation time, so, Mallén-Fullerton and
Fernández-Anaya [2] presented a parallel heuristic based on
the PSO and the differential evolution (DE), which is similar to
GA, but DE relies on mutation operation, while GA relies on
crossover operation to assemble better solutions. Mallén-
Fullerton and Fernández-Anaya used a variation of the TSP
(the Lin-Kernighan algorithm [24]) with some modifications to
be applied for DNA fragment assembly. Another study is that
of Huang et al [25], who presented a memetic PSO algorithm
with a variable neighborhood search (VNS) approach as well
as TS and SA, each of these algorithms is used in different
ways and in different combinations. Indumathy and Maheswari

[26] used a variant of the standard PSO called the constriction
factor PSO (CPSO). Another proposed metaheuristic algorithm
for solving the DNA fragment assembly problem is the
problem aware local search (PALS) [27]. The main drawback
of PALS is its quick convergence to local optima but
combining it with other algorithms can overcome this
drawback. Minetti et al. [28] used PALS by combining it with
SA, this suggested method shows improved performance on
the largest data sets when compared with SA and PALS
separately. Another algorithm founded for the DNA fragment
assembly is the bee colony, Firoz et al. [29] presented the
artificial bee colony (ABC) algorithm and the queen bee
evolution based on the genetic algorithm (QEGA). Majid al-
Rifaie [30] investigated a new algorithm, stochastic diffusion
search (SDS), which follows a different strategy for calculating
the overlaps, picking a model from given fragments and trying
to find the same model in the rest of the fragments. Among the
fragments containing the model, the one with the highest
similarity is picked, assembled, and then removed from the
search space.

The previous paper [4] showed that the DNAFA
optimization problem is a special case of two well-known
optimization problems: the traveling salesman problem and the
quadratic assignment problem. Particularly, that paper
theoretically demonstrated that all three optimization problems
have a similar topological structure and that they need to
explore a search space of solutions with the same complexity
to find an optimal solution. For this reason, the GA platform
designed to solve the DNAFA problem is inspired by the
efficient GA approaches developed for the famous
combinatorial optimization problems, TSP and QAP. The GA
platform gathers several advanced GA operators and tools that
have demonstrated their effectiveness in the context of TSP
and QAP.

Table I illustrates the GA parameters’ settings from the
literature for DNA, TSP, and QAP.

III. THE GA PLATFORM

The GA platform consists of the best and most advanced
GA tools for the DNAFA problem (shown in Fig. 1.). One
could build several variants of the GA to solve it by judiciously
integrating the ingredients of this platform in different ways.

A. The GA Operations of the Designed Platform

This section describe the different GA operations involved
in the platform that suggested earlier [4]. This paper will study
all these operations, test them experimentally, and try different
versions by combining different tools from the platform to
create the best version that will be compared with other
algorithms from the literature.

1) Encoding: For the encoding, the work will use the

integer encoding, where the fragments encode as numbers,

such that fragment one encodes as “1”, fragment two encodes

as “2” and so on.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

289 | P a g e

www.ijacsa.thesai.org

TABLE I. GA PARAMETERS SETTING FROM THE LITERATURE FOR DNA, TSP AND QAP

GA Design and Experimental

Settings
DNA_FA TSP QAP

 Individual encoding

Integer numbers

(an ordered sequence of integer

numbers, each of which represents a
fragment number).

Integer numbers

(an ordered sequence of integer

numbers, each of which represents
a city to be visited)

Integer numbers

(an ordered sequence of integer numbers,

each of which represents an assignment of
a task to a resource).

Population initialization
Random, greedy, 2-opt heuristics

Random, greedy, MARL

(Multiagent Reinforcement

Learning) [13].

Sequential sampling, random

Population size Varies from 11 to 2500 Individuals. Varies from 20 to 200 individuals. Varies from 30 to 200 individuals.

Selection Tournament.
Roulette wheel, tournament,
greedy [31]

Roulette wheel, stochastic reminder
selection.

Crossover OX, ER, PMX, one-point order. CX

SCX, ERX, GNX, PMX, smart

multi point crossover, order insert
crossover.

SCX, OPX, SPX, HFX, GHFX, HFMCX,

MPX.

Mutation Inversion mutation, swap mutation

Reciprocal mutation, exchange

mutation, interchange mutation,

inversion mutation

Reciprocal exchange mutation, combined

mutation, adaptive mutation, swap

mutation [12], [14].

Crossover probability Varies from (60% to 100%) Varies from (90% to 100%) 100%

Mutation probability 2% Varies from (1% to 20%) Varies from (5% to 15%)

Stopping condition
No improvement for number of

iterations.

Optimal rout, number of

generations.
Number of generations, CPU time.

Number of runs From 5 runs to 30 runs From 10 runs to 30 runs. 20 runs.

Number of generations
Varying from (1000 to 512 K)
generations

Varying from (20 to 10,000)
generations.

Varying from (5000 to 10k) generations.

Fig. 1. GA platform design for the DNA fragments assembly problem.

2) Initial Population: Initial population includes the

population size and the population generation method. For the

population size, the work selects two sizes (200 and 500

individuals) and discusses how much time is saved if the

population is small and how accurate it is.
For the population generation method, the GA platform

design includes the random, greedy, and 2-opt heuristic
strategies that have previously yielded good performances as
shown in [7], [31], and [9]. Since the primary results showed

that the greedy initialization method gave the best solutions,
this paper displays its results. However, because the greedy
method searches and generates populations intelligently,
further experiments will investigate whether the greedy can
find the solution from the beginning without relying on the rest
of the GA operator.

3) Fitness Functions: As the fitness function is repeatedly

applied to each individual of each generation, it should be

relatively easy to compute and should also accurately evaluate

the quality of each individual [12]. A simple fitness function

aims to maximize the overlap score by summing the overlap

for each of the adjacent fragment pairs, as expressed by the

expression (2) in [9].

 ∑ []
 (2)

where [, + 1] is the overlap score between fragment i
and fragment i + 1. F is simple in complexity since it takes
O().

To measure the solution quality, the work will use the
following formula, which is often used in TSP and QAP
problems to measure the solution quality.

Gap = ((ASV-BSV)/BSV) *100

Where ASV refers to the average solution value (average
overlap) and BSV refers to the best-known solution value
reported in the literature.

4) Selection operators: As roulette wheel selection is

widely used and consumes the least amount of time and

tournament selection can maintain diversity by giving an equal

chance to all the individuals to compete [32], the roulette

wheel and the tournament selections are selected to be added

to the platform.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

290 | P a g e

www.ijacsa.thesai.org

5) Crossover operators: Several crossover operators,

including SCX, OX, CX, PMX, and ERX, have been chosen

for inclusion in the platform. Special attention should be paid

to SCX, as it is a smart crossover and was one of the best

operators for the TSP and QAP problems and is expected to

have the same performance in the DNA_FA context.

Moreover, SCX has never been used to solve the DNA

assembly problem before; therefore, this paper will present the

results related to this crossover.

6) Mutation operator: The swap mutation operator and its

variants were widely used for DNA_FA, TSP, and QAP [9]

and [17]. Combined and adaptive mutations were designed for

the QAP problem [22]. These three mutation types are

included in the platform.

7) Stopping condition: The GA platform will stop if the

solution is not improved at all during a certain number of

iterations or a time limit is reached.

IV. EXPERIMENTS

This section describes the data sets, the experimental
setting, and the variable’s values in this study.

A. Data Sets

The GA platform will be assessed on data sets produced by
next-generation sequencing, the data sets are obtained from the
National Center for Biotechnology Information (NCBI)

1
. These

data sets are the same benchmarks used in the previous works
mentioned in the related works section. This work used 17 data
sets with a varying number of fragments, from 25 fragments to
352 fragments. The mean length of the fragment varies
between 286 and 512 pb, the description of these data sets is
given in Table II.

B. Experimental Setting

The designed algorithm has been implemented in C++ on a
Windows 10 computer with a 2 GHz CPU and 16 GB of RAM.
The work maintained the parameter values used in TSP and
QAP that led to the best results. Based on Table I, this work
chose the values for the GA operators, which are described in
detail in Table III. The work applied to each data set 60
experiments using different GA parameters and operators. In
detail, it applied two types of population size, three types of
initialization, two types of selection, and five types of
crossover (2*3*2*5 = 60). Since the GA is a stochastic
process, each experiment was run 30 times to ensure the
satiability of the given results (30*60=1800 experiments).
Since there were 17 datasets, the total number of experiments
reached more than 30 thousand (17 * 1800=30,600
experiments)

1 The National Center for Biotechnology Information (NCBI) is part of

the United States National Library of Medicine (NLM), a branch of the

National Institutes of Health (NIH). The NCBI houses a series of databases
relevant to biotechnology and biomedicine and is an important resource for

bioinformatics tools and services. Major databases include GenBank for DNA

sequences. https://www.ncbi.nlm.nih.gov/guide/

TABLE II. BENCHMARKS’ DATASETS, WHERE TOTAL DATA SIZE IS

NUMBER OF FRAGMENTS * MEAN FRAGMENT LENGTH

Benchmark Mean fragment

length

Number of

fragments

Total data size

x60189 4 395 39 15405

x60189 5 286 48 13728

x60189 6 343 66 22638

x60189 7 387 68 26316

m15421 5 398 127 50546

m15421 6 350 173 60550

m15421 7 383 177 67791

j02459 7 405 352 142560

f25_305 307 25 7675

f25_400 400 25 10000

f25_500 500 27 13500

f50_315 315 50 15750

f50_412 412 50 20600

f50_498 498 50 24900

f100_307 307 100 30700

f100_415 415 100 41500

f100_512 512 100 51200

TABLE III. PARAMETERS’ AND OPERATORS’ VALUES USED IN THE

EXPERIMENTS

Parameter Value

Population size 200, 500 individuals.

Initialize type Randomly, 2-opt heuristics, and greedy

Number of runs 30 runs.

Stopping condition No improvement for 300 consecutive generations or

running time < 5 second.

Selection type Tournament with size 5, roulette wheel

crossover SCX, OX, CX, PMX, ERX.

mutation Randomly pick one of (Swap, adaptive, and combined

mutation)

Mutation

probability

0.001

Crossover

probability

1.0

Total experiments 30,600

https://en.wikipedia.org/wiki/United_States_National_Library_of_Medicine
https://en.wikipedia.org/wiki/National_Institutes_of_Health
https://en.wikipedia.org/wiki/Biotechnology
https://en.wikipedia.org/wiki/Biomedicine
https://en.wikipedia.org/wiki/GenBank
https://www.ncbi.nlm.nih.gov/guide/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

291 | P a g e

www.ijacsa.thesai.org

C. Evaluation Metrics

The performance of the GA algorithm will be measured in
terms of the following:

 Overlapping scores: should be high. The overlap score
measured by calculating the length of the overlap
between each fragment and all the existing fragments.
The overlap scores were computed using the Smith-
Waterman algorithm. Two forms of overlap scores
were reported in the results: the best overlap scores out
of 30 runs, and the average overlap score for 30 runs.

 Computational complexity (time complexity): should
be minimized. The time for the complete assembly
process was divided into two stages: the time for
calculating the overlap score in the preprocessing
stage, and the time for the GA to find the best solution.
This paper only showed the time of the GA because
this work studying the change in the performance of
the GA and also because the time for SW is constant
for each dataset regardless of which GA variant is
studying.

D. Aspects of Investigations

This work study the effect of some algorithm components
on two metrics: the GA running time and the overlap score. It
will discuss the effect of population generation, including the
population size and the population generation method, the
effect of the crossover types, as well as the effect of the
selection types. According to the comprehensive experiments,
below are the major interesting investigations aspects.

 Crossover types on overlap score when varying the
population generation method.

 Population size on overlap score and GA running time.

 Selection types on overlap score and GA running time
when varying the population generation method.

V. RESULTS

This section presents and discusses the results obtained
from the experiments conducted in this study. The results in
this section are organized in subsections. Each subsection
reports the results of a specific investigation, as mentioned
earlier. In each subsection, the results will be illustrated with
tables or pictures and discussed, in addition to summarizing the
findings at the end of each subsection.

A. The Effect of Crossover Type on Overlap Score when

Varying the Population Generation Method

This section studies the effect of the crossover types on the
overlap score when varying the population generation methods
while the other GA operators remain constant. For simplicity,
the type of selection operation is the tournament, and the
population size is 200.

Each of the figures below represents the effect of a specific
population generation method on the best overlap score.

Fig. 2. The effect of crossover types on overlap score when generation

population method is random.

Fig. 3. The effect of crossover types on overlap score when generation

population method is 2-opt heuristics.

Fig. 4. The effect of crossover types on overlap score when generation

population method is greedy.

From Fig. 2, Fig. 3, and Fig. 4, it can be seen that the
greedy initialization type is the one that gives the highest
overlap score for all the data sets. Moreover, the 2-opt
heuristics and random method gave different results but clearly
showed that SCX is the best crossover in the majority of cases.
Clearly, the SCX has the best accuracy regardless of the
population generation methods. SCX is less sensitive to the
type of initialization, whatever the type of initialization, it
gives good results in every case. Also, the greedy approach

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

292 | P a g e

www.ijacsa.thesai.org

improves the performance of all crossover operators. It seems
only when population generation method is greedy, it is not
clear if SCX is still the best. This reveals the impact of the
population generation method and how creating the population
in a smart way from the beginning has been a strong factor in
improving the results and reducing the differences between the
types of crossovers. In more detail, the greedy improved the
SCX overlap results by 11.7% compared to random and 2_opt
heuristics, also improved the OX and CX results by 25.9% and
31.01%, respectively. And improve the PMX and ERX by
22.01% and 37.7%, respectively. This demonstrates that the
SCX was the least sensitive crossover to the population
generation method among the crossover types and maintained
the highest overlap score. Thus, further investigation is done by
checking the time cost for the greedy method using small and
large population sizes.

The results of this study are summarized as follows:

 SCX is not sensitive to the type of initialization,
whatever the type of initialization, it gives good results
in every case.

 OX, CX, PMX, and ERX are sensitive to the type of
generating population, as they perform better with the
greedy initialization than with the random and the 2-
opt heuristics. Because the greedy is good at generating
a good initial population.

 The population generation method has a strong impact
on improving the results.

B. The Effect of the Population Size on Overlap Score and GA

Running Time

This subsection investigates the effect of population size on
the overlap score, including the best overlap score and average
overlap score. In addition, the effect of population size on the
GA’s running time.

1) The effect of population size on overlap score: Recall

that this paper only report for the SCX; Table IV shows the

effect when the initialization method is greedy, the crossover

type is SCX, and the selection type is tournament. The “gap”

column represents the gap on overlap which calculated by the

formula in Section III and the “absolute difference” represents

the pure difference between 500 and 200 individuals.
In this investigation, when the crossover is SCX, and the

generation method is greedy, and the selection type is
tournament, the results show that when the initial population is
60% less, the GA still gives high overlap score in all datasets
with an average difference of 0.14%. This is important since
decreasing the initial population size decreases the computation
significantly.

Moreover, for datasets (f*) this work show a significant
increase in accuracy compared to what is reported in the
literature. The increase reaches 172.57%, with the 200-
population size, and 171.9% with the 500-population size.
Moreover, when computing the difference between the best
overlap score and average overlap score, there was not a
significant difference in performance, where the best overlap
score is only 0.44% and 0.42% better than the average overlap
score on 200 and 500, respectively. Thus, the paper only
reports the best overlap score in the rest of the paper. With
regard to the gap, the table shows that our results are better in 9
data sets out of 17. When the absolute difference is negative,
that means the 200 size is better than the 500. This was clear
for eight data sets, and their performance was equal in four data
sets, this makes the smaller size more suitable.

The results of this study are summarized as follows:

 Increase the size of the population increase the
computational time, however it may give chance to
have good results for the big data sets.

 The population sizes of 200 and 500 individuals do not
have a noticeable difference in the quality of the
solution; therefore, it is preferable to take the smaller
size.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

293 | P a g e

www.ijacsa.thesai.org

TABLE IV. THE EFFECT OF POPULATION SIZE ON OVERLAP SCORE FOR SCX WHEN THE GENERATION METHOD IS GREEDY AND SELECTION TYPE IS

TOURNAMENT

Data set BSV 200 individuals-greedy 500 individuals-greedy Gap on the overlap (%) Absolute

difference

(500, 200)
Best

overlap

Average

overlap

Standard

deviation

Best

overlap

Average

overlap

Standard

deviation

200-

individuals

500-

individuals

x60189 4 11478 11298 11203.8 46.99 11272 11195.9 41.95 -2.39 -2.46 -26

x60189 5 14161 13594 13498.4 67.11 13540 13478.4 12.38 -4.68 -4.82 -54

x60189 6 18301 17401 17318.9 41.02 17304 17273.8 6.96 -5.37 -5.61 -97

x60189 7 21271 20546 20433.8 30.40 20527 20431.6 30.03 -3.94 -3.95 -19

m15421 5 38746 36972 36916.6 20.08 36975 36908 12.55 -4.72 -4.74 3

m15421 6 48052 46304 46226.2 32.61 46240 46233.7 18.38 -3.80 -3.78 -64

m15421 7 55171 52069 51977.7 74.56 52077 52005.6 37.98 -5.79 -5.74 8

j02459 7 116700 109043 108855 58.85 109056 108876 76.40 -6.72 -6.70 13

f25_305 2271 5594 5594 0 5594 5594 0 146.32 146.32 0

f25_400 3139 6307 6307 0 6307 6307 0 100.92 100.92 0

f25_500 5777 9170 9021.5 71.45 9170 8974.13 45.71 56.16 55.34 0

f50_315 4013 9076 9072.87 16.87 9076 9076 0 126.09 126.16 0

f50_412 5835 12990 12896.4 29.14 13095 12915.3 48.60 121.02 121.34 105

f50_498 9050 17070 16935.8 54.22 17012 16910 27.48 87.14 86.85 -58

f100_307 7035 14319 14265.3 16.78 14282 14260.7 3.96 102.78 102.71 -37

f100_415 9202 23008 22896.5 45.55 22993 22894.2 27.49 148.82 148.80 -15

f100_512 11881 32384 32285.2 41.36 32340 32305 26.11 172.57 171.90 1

2) The effect of population size on GA running time: This

section studies the effect of population size on the GA running

time. The following tables reveal this effect when the type of

crossover is SCX, the type of initialization is greedy, and the

selection type is tournament. In addition, Table VI compare

the use of complex SCX crossover operators with small

population size to the use of simple PMX, ERX, OX and CX

crossover operators with large population sizes. The 200 and

500 refer to small and large population sizes, respectively.

 The “GA time” column represents the time for the
whole GA to find the result,

 The “greedy time” column represents the time for

initializing the population with the greedy method.

 The “overlap after greedy” column represents the

overlap score after creating the population.

 The “ overlap after GA ” column represents the

overlap score when the algorithm is done.

 The “ Increase in overlap “ column represents the

percentage increase in the overlap score between the
overlap score after greedy and the overlap score at the
end of the GA.

 The “Absolute difference in time” column shows the

difference in time between 500 and 200 individuals for
the GA time.

As indicated earlier, the question posed for discussion is
whether the greedy might override the algorithm's
performance, is the solution comes from the greedy or the GA
finds the solution, is the time spent in creating the population
or in finding the solution. For this matter, the following table
illustrate the overlap score after creating the population with
the greedy method, as well as the overlap score when the
algorithm is done. In addition to the time taken to create the
population and the time taken by the algorithm to find the
solution, the least time and the best solution for every data set
are marked in bold.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

294 | P a g e

www.ijacsa.thesai.org

TABLE V. THE EFFECT OF POPULATION SIZE ON GA RUNNING TIME (IN SEC.). FOR SCX WHEN THE GENERATION METHOD IS GREEDY AND SELECTION

TYPE IS TOURNAMENT

Data sets 200 individual-greedy 500 individual-greedy Absolute

difference

in time

(500-200)

GA

time

Greedy

initialization

time

Overlap

after greedy

Overlap

after GA

Increase

in overlap

(%)

GA time Greedy

initialization

time

Overlap

after

greedy

Overlap

after

GA

Increase

in overlap

(%)

x60189 4 1.93 0.36 10765 11298 4.72% 1.07 0.81 10865 11252 3.44% -0.86

x60189 5 1.6 0.59 12250 13594 9.89% 1.83 1.4 12250 13493 9.21% 0.23

x60189 6 2.5 0.99 16272 17401 6.49% 2.5 2.2 16275 17295 5.90% 0

x60189 7 1.9 1.1 19419 20546 5.49% 3.3 2.6 19529 20641 5.39% 1.4

m15421

5

5.1 4.1 36606 36972 0.99% 6.9 6.4 36616 36951 0.91% 1.8

m15421

6

6.4 4.7 46154 46304 0.32% 13.1 12.3 46154 46262 0.23% 6.7

m15421

7

5.4 3.6 51708 52069 0.69% 13.7 12.5 51738 52012 0.53% 8.3

j02459

7

27.4 23.1 107398 109094 1.55% 60.2 56.7 107504 109051 1.42% 32.8

f25_305 0.2 0.1 5594 5594 0.00% 0.43 0.36 5594 5594 0.00% 0.23

f25_400 0.23 0.17 6107 6307 3.17% 0.5 0.4 6307 6307 0.00% 0.27

f25_500 1.6 0.2 8550 9170 6.76% 1.2 0.5 8640 9170 5.78% -0.4

f50_315 0.7 0.6 8576 9076 5.51% 1.6 1.4 8576 8982 4.52% 0.9

f50_412 1.03 0.7 12486 12990 3.88% 2.3 1.8 12492 13011 3.99% 1.27

f50_498 1.5 0.8 16802 17051 1.46% 2.2 1.9 16802 17014 1.25% 0.5

f100_307 2.6 2 14100 14319 1.53% 5.5 5.3 14103 14260 1.10% 2.9

f100_415 3.6 1.9 22154 23008 3.71% 6.2 4.7 22154 22993 3.65% 2.6

f100_512 4.8 2.9 31187 32384 3.56% 8.6 7.6 31189 32339 3.56% 3.8

The table above shows that a small population size takes
less time in the majority of the data sets and gives more
opportunity for the algorithm to improve the solution.
However, the larger population size takes more time to
generate but less time to find the solution. In the case of small
data sets, most of the time is taken to create population, while
the time taken to find the solution is very small. These results
showed that when using a larger population size with the
greedy method, the improvement in the solution is small and
may be nonexistent in the case of small data sets such as
(f25_305, f25_400). Small population sizes are better suited to
the greedy method because they allow the algorithm to
improve the solution while also taking less time. When the
datasets (x60189_4 and f25_500) are excluded, the results in
Table V for total time show that there is a 49.21% reduction in
time when using a 40% smaller population. Moreover, this
table showed us that the greedy method contributed 95% to
improving the solution, and the GA improved the solution by
3.51% for the 200-population size and 2.99% for the 500 size.
This supports the previous investigation, that SCX with a
smaller population size is better.

But it may come to mind that if we choose the larger
population size with a simple crossover, could it give an

overlap higher than the SCX with the small population size in a
reasonable time? So, recalling what previously raised for
discussion the following table compare SCX with the smaller
population size, with other types of crossovers with a larger
population size, for time and overlap score.

The results in Table VI show in 14 out of 17 data sets,
using SCX with 40% less population size leads to better results
than other crossovers with larger size. In addition to having a
40% smaller population size but comparable accuracy, SCX is
also significantly faster than the other crossovers. The results
show that SCX is 26.92% faster than PMX in all data sets,
except for “x60189 _6” and “f25_500” datasets, and in some
datasets, it is 59.46% faster (as in f50_498). Also, SCX is
38.38% faster than ERX in all data sets, except for “x60189
_4” and “f25_500” datasets, and in some datasets, it is 68.75%
faster (as in f50_498). Also, SCX is 34.64% faster than OX in
all data sets except for x60189_4, and SCX is 32.89% faster
than CX in all data sets except for “x60189_4”, “x60189_6”,
and “f25_500”. There is a similarity in the performance of all
crossovers in the small data sets. But the SCX is still the
dominant one. This confirms the results obtained previously
that with smallest population size SCX still gives the best
solution.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

295 | P a g e

www.ijacsa.thesai.org

TABLE VI. COMPARING SCX WITH THE SMALLER POPULATION SIZE, WITH OTHER CROSSOVERS WITH A LARGER POPULATION SIZE

Data sets SCX- 200 individual PMX-500 individual ERX-500 individual OX-500 individual CX-500 individual

Best

overlap

Time Best

overlap

Time Best

overlap

Time Best

overlap

time Best

overlap

time

x60189 4 11298 1.93 11318 2.2 10817 1.4 11316 1.4 11252 1.6

x60189 5 13594 1.6 13304 1.8 12942 1.7 13474 2.1 13324 1.7

x60189 6 17401 2.5 16997 1.8 16997 3.5 17344 2.6 16272 1.4

x60189 7 20546 1.9 20536 2.9 19898 3.3 20467 2.8 20477 2.8

m15421 5 36972 5.1 36964 6.2 36662 6.4 36922 7.3 36899 7

m15421 6 46304 6.4 46240 7.3 46162 7.4 46287 9.3 46240 7.3

m15421 7 52069 5.4 52011 11.1 51728 11.9 52011 8.1 52011 11.4

j02459 7 109094 27.4 108832 34.8 107557 52.1 108832 50 109012 36.3

f25_305 5594 0.2 5594 0.3 5594 0.3 5594 0.4 5594 0.3

f25_400 6307 0.2 6307 0.3 6114 0.4 6307 0.4 6307 0.4

f25_500 9170 1.6 9013 0.8 8650 0.4 9130 2 9122 0.7

f50_315 9076 0.6 9076 1.4 8585 1.7 9076 1.5 9076 1.4

f50_412 12990 1.03 12960 1.3 12564 1.5 12192 1.7 12886 1.3

f50_498 17051 1.5 17163 3.7 16868 4.8 17089 4.3 17163 3.2

f100_307 14319 2.6 14260 3.9 14105 4.8 14314 4.6 14314 6.5

f100_415 23008 3.6 22854 3.6 22163 6.3 22854 3.7 22878 3.9

f100_512 32384 4.8 32352 5.1 31823 6.5 32266 6.3 32254 6.3

The results of this study are summarized as follows:

 The greedy method had a clear impact on the GA
performance and contributed to improving the solution
by 95%.

 Most of the time is spent on creating the population
especially with the large population size.

 Smart crossover like SCX with small population size is
better than simple crossovers with large population size.

C. The Effect of Selection Types Varying the Population

Generation on the Overlap Score

This section studies the effect of the initialization and
selection types on the overlap score. The following figures
show this effect when the type of crossover is SCX and the
population size is 200, since previous investigations show that
a small population size is more suitable.

Fig. 5, Fig. 6, and Fig. 7 show the effect of initialization
types and selection types on the best overlap score. Clearly, the
greedy initialization type gives a better overlap score than the
random and 2-opt heuristics in 15 data sets out of 17.

Fig. 5. Effect of selection types with random initialization on best overlap

score.

Fig. 6. Effect of selection types with 2-opt heuristics initialization on best

overlap score.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

296 | P a g e

www.ijacsa.thesai.org

Fig. 7. Effect of selection types with greedy initialization on best overlap

score.

Fig. 8, Fig. 9, and Fig. 10 show the effect of initialization
and selection types on the average overlap score. The greedy
initialization still dominates the random and 2-opt heuristics for
the average overlap score as well, giving a higher average in 16
out of 17 data sets. Additionally, the roulette wheel selection is
still better than the tournament with the random and 2-opt
heuristics. However, with the greedy initialization, the
tournament is better.

Fig. 8. Effect of selection types with random initialization on average

overlap score.

Fig. 9. Effect of selection types with 2-opt heuristics initialization on

average overlap score.

Fig. 10. Effect of selection types with greedy initialization on average overlap

score.

The results of this study are summarized as follows:

 The greedy initialization type is the best among the
majority of the data sets for the best overlap scores and
the best among all the data sets for the average overlap
scores.

 The random initialization type is better than the 2-opt
for the best overlap score, but their performance is
almost similar for the average overlap score.

 The tournament selection type is better than the
roulette wheel selection for the best and average
overlap scores with the greedy.

D. The Effect of Selection Types Varying the Population

Generation Method on GA Running Time

Table VII illustrates the results obtained when studying the
effect of initialization and selection types on the GA running
time. It shows this effect when the type of crossover is SCX,
and the population size is 200. The GA time column represents
the time it took for the GA to find the result. The least time for
every data set is marked in bold green when the selection type
is the tournament and marked in bold blue if the selection type
is the roulette wheel. The gap column shows the difference in
time between the generating methods (i.e., greedy, random, 2-
opt heuristic).

Table VII shows that the greedy initialization type is the
best from the viewpoint of time complexity. The random and
2-opt heuristics types take more time than the greedy, but the
random-type records less time for 12 data sets out of 17, while
the 2-opt heuristics record less time for three data sets and
equal time for two. As for the selection type, the roulette wheel
selection dominates the tournament selection by recording the
least time for 14 data sets out of 17. The gap confirms as in the
previous section that the greedy generating method is better
than the random and 2-opt, and the random is better than 2-opt.
In more detail, the results show that the greedy initialization
results are fast compared to both random and the 2-opt
heuristic in most of the datasets. Except for datasets M15421_7
and J02459_7, the greedy approach is 47.39% and 48.17%
faster than random, and 2-opt heuristics when selection type is
tournament. Also, greedy approach is 66.90% and 67.19%
faster than random, and 2-opt heuristics when selection type is
roulette. For the other crossovers OX, CX, PMX, and ERX, the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

297 | P a g e

www.ijacsa.thesai.org

tournament was the best in terms of solution quality, and the
roulette was the fastest, because the tournament chose multiple
parents every time and compared them to pick the better one.

The results of this study are summarized as follows:

 The greedy initialization type takes less time than the
random and the 2-opt heuristics in almost all cases
except for the large data set (J02459_7), because the
greedy method takes time to create the population, the

larger the data, the more comparisons that greedy
makes, and therefore it takes longer time.

 The random initialization type is faster than the 2-opt
heuristics in 12 data sets out of 17, this is an expected
result.

 The roulette wheel selection type is faster than the
tournament selection, but the tournament is better for
solution quality.

TABLE VII. THE EFFECT OF INITIALIZATION TYPES AND SELECTION TYPES ON THE GA RUNNING TIME (IN SEC.) FOR SCX CROSSOVER ON REAL

DATASETS THE BOLD GREEN COLOR REFERS TO THE LEAST TIME FOR THE CORRESPONDING DATA SET WHEN THE SELECTION TYPE IS TOURNAMENT,
AND THE BOLD BLUE COLOR REFERS TO THE LEAST TIME WHEN THE SELECTION IS ROULETTE

Data set Select random 2-opt greedy gap gap gap

GA time GA time GA time Greedy-random Greedy-2-opt Random-2-opt

X60189_4 Tournament 4.27 4.3 2.17 -2.1 -2.13 -0.03

Roulette 4.27 4.43 0.93 -3.34 -3.5 -0.16

X60189_5 Tournament 4.4 4.57 3.63 -0.77 -0.94 -0.17

Roulette 4.7 4.77 1.37 -3.33 -3.4 -0.07

X60189_6 Tournament 4.6 4.73 3.63 -0.97 -1.1 -0.13

Roulette 4.73 4.77 1.27 -3.46 -3.5 -0.04

X60189_7 Tournament 4.7 4.7 2.57 -2.13 -2.13 0

Roulette 4.8 4.8 1.3 -3.5 -3.5 0

M15421_5 Tournament 4.87 4.97 4.1 -0.77 -0.87 -0.1

Roulette 5 5 3.7 -1.3 -1.3 0

M15421_6 Tournament 5.03 5 5 -0.03 0 0.03

Roulette 4.87 5 4.13 -0.74 -0.87 -0.13

M15421_7 Tournament 4.93 4.93 6.13 1.2 1.2 0

Roulette 4.77 5 4.77 0 -0.23 -0.23

J02459_7 Tournament 5.1 5.1 25.97 20.87 20.87 0

Roulette 5.17 5.17 38.27 33.1 33.1 0

F25_305 Tournament 4 4.07 0.23 -3.77 -3.84 -0.07

Roulette 4.57 4.4 0.2 -4.37 -4.2 0.17

F25_400 Tournament 4.33 4.4 0.2 -4.13 -4.2 -0.07

Roulette 4.47 4.53 0.2 -4.27 -4.33 -0.06

F25_500 Tournament 4.3 4.47 1.6 -2.7 -2.87 -0.17

Roulette 4.6 4.5 1.13 -3.47 -3.37 0.1

F50_315 Tournament 4.4 4.53 0.87 -3.53 -3.66 -0.13

Roulette 4.47 4.63 0.73 -3.74 -3.9 -0.16

F50_412 Tournament 4.3 4.63 1.17 -3.13 -3.46 -0.33

Roulette 4.6 4.67 1.23 -3.37 -3.44 -0.07

F50_498 Tournament 4.47 4.63 2.37 -2.1 -2.26 -0.16

Roulette 4.73 4.63 0.8 -3.93 -3.83 0.1

F100_307 Tournament 4.77 4.67 2.53 -2.24 -2.14 0.1

Roulette 4.93 4.97 2.97 -1.96 -2 -0.04

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

298 | P a g e

www.ijacsa.thesai.org

F100_415 Tournament 4.8 4.77 4.1 -0.7 -0.67 0.03

Roulette 4.93 4.93 2.27 -2.66 -2.66 0

F100_512 Tournament 4.77 4.8 4.53 -0.24 -0.27 -0.03

Roulette 4.93 4.97 3.8 -1.13 -1.17 -0.04

VI. DISCUSSION

This section discusses the findings that emerged from the
results presented in the Results section. And conclude that the
small population size (i.e., 200 individuals) is more suitable for
most cases. And the greedy type of initialization is the best
when look for good overlap score results and time.
Furthermore, the results show that the roulette wheel selection
type is more suitable than the tournament selection in the
context of time, but the tournament is better in the quality of
the solution. Also, this work shows that the SCX crossover is
the best in the context of best overlap score and average
overlap score.

This study has multiple GA versions, but in comparison to
the previous works, we selected the best version we got.
Moreover, the comparisons are divided as follows:

 Previous works that used the GA, the comparison is
presented in Table VIII.

 Previous works that used other metaheuristics
algorithms, the comparison is presented in Table IX.

Table VIII compares the designed GA results and the other
previous GA work’s results in the context of the overlap score.
The best results are marked in bold. The “difference in
percentage” column shows the difference between our best
results and those of the previous works. Clearly, our results for
the F-series data sets (from F25_305 to F100_512) dominate
all the previous work’s results. This work got less than the best
results of previous works in eight data sets out of 17, however,
our results are still better than [23], [25], and [9] for these data
sets.

Moreover, this work obtained better results than the results
of all the previous works in nine data sets out of 17.

With regard to the time, the results were given in a
reasonable time and there is no significant change or difference
in time, because the dominant time is actually not the GA time
but the assembly time (i.e., in our case, the Smith-Waterman
algorithm.). GA is useful when the data set is large, and this is
expected because GA avoids large search space. The results
show that the designed GA gives the results in less time for
large data sets such as M15421_6, M15421_7, and J02459_7,
which have several fragments that vary from 173 to 352
characters.

TABLE VIII. COMPARISON OF BEST SOLUTIONS BETWEEN OUR GA RESULTS AND OTHER GA ALGORITHMS RESULTS FROM THE LITERATURE IN THE

CONTEXT OF OVERLAP SCORE

Data sets Our best GA REF. [9] REF. [10] REF. [31] Difference in

percentage %

X60189_4 11272 6488 11478 11478 -1.79%

X60189_5 13475 8655 14027 14161 -4.84%

X60189_6 17357 9943 18301 18301 -5.16%

X60189_7 20559 11546 21268 21212 -3.33%

M15421_5 36972 22598 38726 38694 -4.53%

M15421_6 46240 29469 48048 48052 -3.77%

M15421_7 52077 32744 55072 55071 -5.44%

J02459_7 109043 68736 115301 116487 -6.39%

F25_305 5594 2271 - 596 146.32%

F25_400 6307 3139 - 777 100.92%

F25_500 9170 5777 - 921 58.73%

F50_315 9076 4013 - 1578 126.16%

F50_412 12967 5835 - 1572 122.23%

F50_498 16902 9050 - 1570 86.76%

F100_307 14318 7035 - 2780 103.53%

F100_415 22911 9202 - 2846 148.98%

F100_512 32384 11881 - 2717 172.57%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

299 | P a g e

www.ijacsa.thesai.org

TABLE IX. COMPARISON OF BEST SOLUTIONS BETWEEN OUR GA RESULTS AND OTHER METAHEURISTICS NON-GA ALGORITHMS RESULTS FROM THE

LITERATURE IN THE CONTEXT OF OVERLAP SCORE

Data set Our best

GA

REF. [23] REF. [3] REF. [25] REF. [28]

REF. [27] REF. [33] Difference in

Percentage %

X60189_4 11272 - 11478 3046 11478 11451 11478 -1.79%

X60189_5 13475 - 13642 - 14161 13932 14161 -4.84%

X60189_6 17357 - 18301 - 18301 18204 18301 -5.16%

X60189_7 20559 - 20921 3022 21271 20968 21271 -3.35%

M15421_5 36972 5821 38686 6443 38746 38454 38746 -4.58%

M15421_6 46240 6713 47669 7041 48052 - 48052 -3.77%

M15421_7 52077 6291 54891 6537 55171 54666 55171 -5.61%

J02459_7 109043 - 114381 - 116700 115405 116700 -6.56%

F25_305 5594 - - - 596 - 596 838.59%

F25_400 6307 - - - 777 - 777 711.71%

F25_500 9170 - - - 921 - 921 895.66%

F50_315 9076 - - - 1581 - 1581 474.07%

F50_412 12967 - - - 1573 - 1573 724.35%

F50_498 16902 - - - 1570 - 1570 976.56%

F100_307 14318 - - - 2793 - 2793 412.64%

F100_415 22911 - - - 2860 - 2860 701.08%

F100_512 32384 - - - 2732 - 2732 1085.36%

VII. CONCLUSION

This paper is a continuation of our previous work [4] to
solve the DNA fragment assembly problem. As was pointed
out in the introduction to this paper, the DNAFA is an
optimization problem that attempts to reconstruct an original
DNA sequence by finding the shortest DNA sequence from a
given set of fragments. We have designed a platform for the
genetic algorithm, from which more than one version of the
genetic algorithm can be deduced to solve this problem. The
design was inspired by the good designs that solved TSP and
QAP problems. This study is the first to our knowledge that
examines the genetic algorithm for the DNAFA problem from
this perspective. In more detail, this study has gone a long way
towards investigating the effect of genetic algorithm operators
on the quality of the solution to the DNAFA problem. The
study focused on investigating the effect of the initial
population, size of the population, selection types, and
crossover types.

This paper recorded the important results and came out
with some findings, the most obvious finding to emerge from
this study is that the SCX crossover is a smart crossover and
has never been used before with DNA_FA, SCX crossover
gave better results compared to the rest of the studied crossover
types. Furthermore, the results show that the population
generation method has the greatest influence on GA
performance in terms of time and solution quality. Also, we
configured the best-designed GA variant that outperforms the
existing GA algorithms solving the DNAFA problem. This GA
variant features the use of 200 individuals for the population

size along with the greedy method for initializing the
population, tournament selection, and SCX crossover. This
study has found that generally, the size of the population does
not significantly affect the quality of the solution, especially if
the type of initialization is good. The results were good and
competitive compared to the results of previous works. Our
design showed that the results were better than all previous
results from the literature for some data sets.

There is still ample scope to study and solve this problem,
an interesting point will be how to find a way to create the
population intelligently and without consuming a lot of time,
given that the greedy is time consuming. Moreover, further
research might explore or investigate the effect of other GA
operators (e.g., mutation types and stooping conditions). Also,
investigate the effect of combining different types of GA
operators (initialization types, crossover operators, and
mutation operators) on the results. Another possible area of
future research would be to combine the data sets (next
generation with the third generation).

ACKNOWLEDGMENT

The authors extend their appreciation to the Deanship of
Scientific Research at Imam Mohammad Ibn Saud Islamic
University for funding and supporting this work through
Graduate Students Research Support Program.

REFERENCES

[1] R. S. Verma and S. kumar, “DSAPSO: DNA sequence assembly using
continuous Particle Swarm Optimization with Smallest Position Value
rule,” in 2012 1st International Conference on Recent Advances in

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

300 | P a g e

www.ijacsa.thesai.org

Information Technology (RAIT), Mar. 2012, pp. 410–415. doi:
10.1109/RAIT.2012.6194455.

[2] G. M. Mallén-Fullerton and G. Fernández-Anaya, “DNA fragment
assembly using optimization,” in 2013 IEEE Congress on Evolutionary
Computation, Jun. 2013, pp. 1570–1577. doi:
10.1109/CEC.2013.6557749.

[3] E. Alba and G. Luque, “A Hybrid Genetic Algorithm for the DNA
Fragment Assembly Problem,” in Recent Advances in Evolutionary
Computation for Combinatorial Optimization, vol. 153, C. Cotta and J.
van Hemert, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 101–112. doi: 10.1007/978-3-540-70807-0_7.

[4] H. Bennaceur, M. Almutairy, and Alqhtani, Nora, “An Investigative
Study of Genetic Algorithms to Solve the DNA Assembly Optimization
Problem,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 10, p. 12, 2020.

[5] G. Luque and E. Alba, “Metaheuristics for the DNA Fragment Assembly
Problem,” 2005. doi: 10.5019/j.ijcir.2005.28.

[6] D. Bucur, “De Novo DNA Assembly with a Genetic Algorithm Finds
Accurate Genomes Even with Suboptimal Fitness,” in Applications of
Evolutionary Computation, vol. 10199, G. Squillero and K. Sim, Eds.
Cham: Springer International Publishing, 2017, pp. 67–82. doi:
10.1007/978-3-319-55849-3_5.

[7] J. Hughes, S. Houghten, G. M. Mallén-Fullerton, and D. Ashlock,
“Recentering and Restarting Genetic Algorithm variations for DNA
Fragment Assembly,” in 2014 IEEE Conference on Computational
Intelligence in Bioinformatics and Computational Biology, May 2014,
pp. 1–8. doi: 10.1109/CIBCB.2014.6845500.

[8] G. Minetti, E. Alba, and G. Luque, “Seeding strategies and
recombination operators for solving the DNA fragment assembly
problem,” Inf. Process. Lett., vol. 108, no. 3, pp. 94–100, Oct. 2008, doi:
10.1016/j.ipl.2008.04.005.

[9] Uzma and Z. Halim, “Optimizing the DNA fragment assembly using
metaheuristic-based overlap layout consensus approach,” Appl. Soft
Comput., vol. 92, p. 106256, Jul. 2020, doi:
10.1016/j.asoc.2020.106256.

[10] G. Minetti, G. Leguizamon, and E. Alba, “SAX: a new and efficient
assembler for solving DNA Fragment Assembly Problem,” p. 12, 2012.

[11] D. Bucur, “A stochastic de novo assembly algorithm for viral-sized
genomes obtains correct genomes and builds consensus,” Inf. Sci., vol.
420, pp. 184–199, Dec. 2017, doi: 10.1016/j.ins.2017.07.039.

[12] Z. H. Ahmed, “GENETIC ALGORITHM FOR THE TRAVELING
SALESMAN PROBLEM USING SEQUENTIAL CONSTRUCTIVE
CROSSOVER,” 2010.

[13] M. M. Alipour, S. N. Razavi, M. R. Feizi Derakhshi, and M. A. Balafar,
“A hybrid algorithm using a genetic algorithm and multiagent
reinforcement learning heuristic to solve the traveling salesman
problem,” Neural Comput. Appl., vol. 30, no. 9, pp. 2935–2951, Nov.
2018, doi: 10.1007/s00521-017-2880-4.

[14] Z. H. Ahmed, “An improved genetic algorithm using adaptive mutation
operator for the quadratic assignment problem,” in 2015 38th
International Conference on Telecommunications and Signal Processing
(TSP), Jul. 2015, pp. 1–5. doi: 10.1109/TSP.2015.7296481.

[15] S. S. Juneja, P. Saraswat, K. Singh, J. Sharma, R. Majumdar, and S.
Chowdhary, “Travelling Salesman Problem Optimization Using Genetic
Algorithm,” in 2019 Amity International Conference on Artificial
Intelligence (AICAI), Feb. 2019, pp. 264–268. doi:
10.1109/AICAI.2019.8701246.

[16] W. Xueyuan, “Research on Solution of TSP Based on Improved Genetic
Algorithm,” in 2018 International Conference on Engineering
Simulation and Intelligent Control (ESAIC), Aug. 2018, pp. 78–82. doi:
10.1109/ESAIC.2018.00025.

[17] R. Liu and Y. Wang, “Research on TSP Solution Based on Genetic
Algorithm,” in 2019 IEEE/ACIS 18th International Conference on

Computer and Information Science (ICIS), Jun. 2019, pp. 230–235. doi:
10.1109/ICIS46139.2019.8940186.

[18] H. Bennaceur and Z. Ahmed, “Frequency model based crossover
operators for genetic algorithms applied to the quadratic assignment
problem,” Int Arab J Inf Technol, vol. 14, pp. 138–145, 2017.

[19] Z. H. Ahmed, “A Simple Genetic Algorithm using Sequential
Constructive Crossover for the Quadratic Assignment Problem,” vol. 73,
p. 4, 2014.

[20] Zakir Hussain Ahmed, “Solving the Traveling Salesman Problem using
Greedy Sequential Constructive Crossover in a Genetic Algorithm,”
Fabruary 2020.

[21] Zakir Hussain Ahmed, “Genetic Algorithm with Comprehensive
Sequential Constructive Crossover for the Travelling Salesman
Problem,” IJACSA Int. J. Adv. Comput. Sci. Appl. Vol 11 No 5, 2020.

[22] Z. H. Ahmed, H. Bennaceur, M. H. Vulla, and F. Altukhaim, “A Hybrid
Genetic Algorithm for the Quadratic Assignment Problem,” p. 7.

[23] K. Huang, J. Chen, and C. Yang, “A Hybrid PSO-Based Algorithm for
Solving DNA Fragment Assembly Problem,” in 2012 Third
International Conference on Innovations in Bio-Inspired Computing and
Applications, Sep. 2012, pp. 223–228. doi: 10.1109/IBICA.2012.8.

[24] S. Lin and B. W. Kernighan, “An Effective Heuristic Algorithm for the
Traveling-Salesman Problem,” Oper. Res., vol. 21, no. 2, pp. 498–516,
1973.

[25] K.-W. Huang, J.-L. Chen, C.-S. Yang, and C.-W. Tsai, “A memetic
particle swarm optimization algorithm for solving the DNA fragment
assembly problem,” Neural Comput. Appl., vol. 26, no. 3, pp. 495–506,
Apr. 2015, doi: 10.1007/s00521-014-1659-0.

[26] R. Indumathy, S. Uma Maheswari, and G. Subashini, “Nature-inspired
novel Cuckoo Search Algorithm for genome sequence assembly,”
Sadhana, vol. 40, no. 1, pp. 1–14, Feb. 2015, doi: 10.1007/s12046-014-
0300-3.

[27] E. Alba and G. Luque, “A New Local Search Algorithm for the DNA
Fragment Assembly Problem,” in Evolutionary Computation in
Combinatorial Optimization, vol. 4446, C. Cotta and J. van Hemert, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 1–12. doi:
10.1007/978-3-540-71615-0_1.

[28] G. Minetti, G. Leguizamón, and E. Alba, “An improved trajectory-based
hybrid metaheuristic applied to the noisy DNA Fragment Assembly
Problem,” Inf. Sci., vol. 277, pp. 273–283, Sep. 2014, doi:
10.1016/j.ins.2014.02.020.

[29] J. S. Firoz, M. S. Rahman, and T. K. Saha, “Bee algorithms for solving
DNA fragment assembly problem with noisy and noiseless data,” in
Proceedings of the fourteenth international conference on Genetic and
evolutionary computation conference - GECCO ’12, Philadelphia,
Pennsylvania, USA, 2012, p. 201. doi: 10.1145/2330163.2330192.

[30] F. Majid al-Rifaie and M. Majid al-Rifaie, “Maximising Overlap Score
in DNA Sequence Assembly Problem by Stochastic Diffusion Search,”
in Intelligent Systems and Applications, vol. 650, Y. Bi, S. Kapoor, and
R. Bhatia, Eds. Cham: Springer International Publishing, 2016, pp. 301–
321. doi: 10.1007/978-3-319-33386-1_15.

[31] J. A. Hughes, S. Houghten, and D. Ashlock, “Restarting and recentering
genetic algorithm variations for DNA fragment assembly: The necessity
of a multi-strategy approach,” Biosystems, vol. 150, pp. 35–45, Dec.
2016, doi: 10.1016/j.biosystems.2016.08.001.

[32] E. Çela, V. G. Deineko, and G. J. Woeginger, “The multi-stripe
travelling salesman problem,” Ann. Oper. Res., vol. 259, no. 1, pp. 21–
34, 2017, doi: 10.1007/s10479-017-2513-4.

[33] A. Ben Ali, G. Luque, and E. Alba, “An efficient discrete PSO coupled
with a fast local search heuristic for the DNA fragment assembly
problem,” Inf. Sci., vol. 512, pp. 880–908, Feb. 2020, doi:
10.1016/j.ins.2019.10.026.

