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Abstract—This paper aims to highlight the motivations for 

investigating genetic algorithms (GAs) to solve the DNA 

Fragment Assembly (DNAFA) problem. DNAFA problem is an 

optimization problem that attempts to reconstruct an original 

DNA sequence by finding the shortest DNA sequence from a 

given set of fragments. This paper is a continuation of our 

previous research paper in which the existence of a polynomial-

time reduction of DNAFA into the Traveling Salesman Problem 

(TSP) and the Quadratic Assignment Problem (QAP) was 

discussed. Taking advantage of this reduction, this work 

conceptually designed a genetic algorithm (GA) platform to solve 

the DNAFA problem. This platform offers several ingredients 

enabling us to create several variants of GA solvers for the 

DNAFA optimization problems. The main contribution of this 

paper is the designing of an efficient GA variant by carefully 

integrating different GAs operators of the platform. For that, 

this work individually studied the effects of different GAs 

operators on the performance of solving the DNAFA problem. 

This study has the advantage of benefiting from prior knowledge 

of the performance of these operators in the contexts of the TSP 

and QAP problems. The best designed GA variant shows a 

significant improvement in accuracy (overlap score) reaching 

more than 172% of what is reported in the literature. 

Keywords—Genetic algorithms; traveling salesman problem; 

quadratic assignment problem; DNA fragments assembly problem 

I. INTRODUCTION 

The DNA fragment assembly problem is the process of 
reconstructing an original DNA sequence from a given set of 
DNA fragments. This is achieved by ordering and aligning 
these DNA fragments such that the resulting DNA sequence is 
as short as possible. It is a complex combinatorial optimization 
problem belonging to the class of NP-hard problems, where 
there is a need to find the right order of the DNA fragments to 
assemble them. Several metaheuristic techniques have been 
developed to solve this problem [1], [2], [3]. This paper exploit 
the genetic algorithm platform (GAP) developed in the former 
preliminary paper [4], in which the existence of a polynomial-
time reduction of DNAFA into the Traveling Salesman 
Problem and the Quadratic Assignment Problem was 
discussed. Then, conceptually designed a GA platform for 
solving the DNAFA problem, inspired by the existing efficient 
GAs in the literature for solving the TSP and QAP problems. 
This platform gathers and offers several GA operators designed 
to solve hard optimization problems such as TSP, QAP, and 
DNAFA. The GAP enables the researchers to easily design an 
adequate variant GA algorithm for hard optimization problems 

in particular. This work implementing and experimenting on 
some GA variants judiciously built from the platform (GAP) 
aims to identify the best variant that efficiently deals with the 
DNAFA problem. Using this platform, this work is able to 
individually study the effects of genetic algorithm components 
on selected metrics, which were presented in terms of time and 
overlap score. This work focused on examining and discussing 
the effects of population size, population generation methods, 
selection types, and crossover types and figure out which 
component has the most impact on GA performance.  Some of 
these GA components have never been tested in the context of 
the DNAFA problem, such as SCX crossover, which is worth 
to be investigated experimentally. Other components have been 
tested before, but when retest was done on them, a different 
result was found, such as greedy as a population initialization 
method. Because of SCX effectiveness in TSP and QAP, we 
believe the SCX crossover is a smart crossover that will 
outperform other crossovers. As a result of these 
comprehensive experiments, this work identifies the best-
designed GA variant that outperforms the existing GA 
algorithms in solving the DNAFA problem. This GA variant 
features the use of 200 individuals for the population size, 
along with the greedy method for initializing the population, 
tournament selection, and SCX crossover. This GA variant 
showed a significant increase in overlap score compared to 
what is reported in the literature. The results showed that the 
SCX crossover was the best crossover among the studied 
crossovers and gave good results. Furthermore, the results 
showed that the greedy method is a very powerful method that 
improved the algorithm's performance by 37%, demonstrating 
that the population generation method has the greatest impact 
on improving the results than the other GA components. The 
experimental results demonstrated the efficiency of the 
designed approach, as it got a better result for the overlap score 
ranging from 56.16% to 172.74% than the previous recorded 
results for most data sets. This work demonstrate 
experimentally that the best designed GA variant outperforms 
existing GA algorithms in solving the DNAFA problem for 
some data sets. 

A. The DNAFA Problem 

The DNAFA problem is defined as follows: Given a set of 
fragments, f1, f2,…, fn, drawn from a finite alphabet Σ = 
{𝐴,𝐶,𝐺,𝑇}, the goal is to find the shortest superstring that 

contain all the input fragments                  
 
  that 

maximizes the number of overlaps between every pair of two 
consecutive fragments and thus minimizes the length of     



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 3, 2023 

287 | P a g e  

www.ijacsa.thesai.org 

 𝐴              
  ∑                       (1) 

             . 

B. Assembly Process 

To understand the assembly process, we've defined some 
key terms. 

 Fragment: A short sequence of DNA bases. It is also 
called read. 

 Coverage: The number of fragments at a specific 
position in the DNA. 

 Prefix: A substring from the first characters of a 
fragment. 

 Suffix: A substring from the last characters of a 
fragment. 

 Overlap: Common sequence between the suffix of one 
fragment and the prefix of another. 

 Layout: An arrangement of the collection of fragments 
based on their overlapping order. 

 Contig: Contiguous overlapped fragments without gaps. 

 Scaffold: The overlapped contigs, which may contain 
gaps. 

 Consensus: Reconstruction of the complete sequence 

In the assembly process, the input for the DNA fragment 
assembly is a set of fragments. The traditional assembly 
approach works in the following order: overlap, layout, and 
consensus [5]. 

 Overlap stage: Finding the overlapping fragments and 
computing their similarity score (overlap score). This 
means finding the longest match between the suffix of 
one fragment and the prefix of another. 

 Layout stage: Finding the order of fragments based on 
the computed overlap score. 

 Consensus stage: Reconstructing the complete 
sequence from the layout. 

This paper is organized as follows: the second section 
discusses the related works, then the proposed design is 
discussed in detail in the third section. In the fourth section, the 
experiments and the method of conducting the investigations 
are detailed, and then the results are listed in the fifth section. 
The sixth section discusses these results by comparing them 
with previous works, and finally, the paper is concluded in the 
seventh section. 

II. RELATED WORKS 

This section presents the previous related works organized 
into two subsections: the first subsection summarizes the works 
solving the DNAFA with GA, and the second subsection 
introduces the works solving the TSP and QAP with GA. 

A. Genetic Algorithm for DNAFA Problem 

The basic genetic algorithm schema contains various 
concepts such as population encoding, population initialization, 
fitness function, selection, crossover, and mutation. Each 
concept has its own importance in the algorithm. By studying 
previous works, it can be noted that each concept can be done 
in a different way. In more detail, the population can be 
encoded in different ways in the GA, one such way is through 
segmented permutation [6], identity permutation [7]. Random 
generation, as in [8], the greedy approach, and the 2-opt 
heuristics, as proposed by Minetti et al. [8] and [9], are 
common strategies for generating the initial populations. 

For the fitness function, the most commonly used fitness 
function is to maximize the overlap score, where the smith-
waterman algorithm is used to calculate the overlap between 
the fragments [7]. The smith water man algorithm takes a lot of 
time but, even though it is the most precise algorithm for 
identifying similarity regions between fragments. Overlap 
score is considered the best measure for measuring the quality 
of the solution. It was used in most of the previous works [7], 
[8], and [9]. 

The crossover operator is the main operator of GA, as it 
plays a crucial role in efficiently exploring the search space of 
the optimization problem. The parents' characteristics are 
mainly inherited by crossover operators.  Among the 
crossovers that were used in solving DNAFA, there was the 
order-based crossover (OX) as in [5], [10], [6], the edge-
recombination (ER) [5], and the partially mapped crossover 
(PMX) [7], [9]. For the mutation, inversion mutation operators 
[10], and swap mutation [7], [9]were used for the DNAFA. 

GA can be combined with other metaheuristics to achieve 
good results. For this purpose, Minetti et al. [10] designed a 
hybrid method named SAX that combined the GA with a 
simulated annealing metaheuristic.  Another work, by Hughes 
et al. [7] combines different variations of GA in different ways. 
Also, the authors in [5] applied multiple algorithms, such as 
simulated annealing and scatter search with the GA. Another 
recent work is provided by Uzma and Halim [9] they combine 
GA and Power Aware Local Search (PALS). 

The studies of Bucur [6], [11] focus on minimizing the total 
length of the scaffold (summing the length of the overlapped 
contigs). Unlike previous works, Bucur used simulated data 
sets where the fragments were of uniform length, they were 
able to measure the accuracy since they had the reference 
genome. However, as they mentioned, the main disadvantage 
of their method is its increased time complexity. 

B. Genetic Algorithm for TSP and QAP 

This section reviews GA algorithms designed to solve the 
TSP and QAP problems. Different types of encoding were used 
for the optimization problems TSP and QAP. Most works of 
the wide literatures used the identity permutation such as for 
TSP in [12], [13] and QAP in [14]. Another advanced types of 
population encoding were used for TSP such as value encoding 
[15], and real number encoding [16]. The common strategies of 
generating the initial populations are the random generation as 
investigated for TSP in [16] and the greedy method as in [17]. 
Recently, more advanced strategies have been developed, the 
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author in [13] proposed Multi-Agent Reinforcement Learning 
(MARL) for solving TSP problems, and [14] implemented the 
sequential sampling method for solving QAP problems. 

For the selection, the roulette wheel is the common 
selection operator used for optimization problems [15],  [13], 
[18], [16], the tournament selection was implemented for TSP 
[17], and the stochastic remainder selection was used for QAP 
[19]. More recently, in [16], a greedy method was designed as 
a selection operator for TSP. 

Several advanced crossover operators have been designed 
for solving TSP as well as QAP using GA algorithms. The 
Sequential Constructive Crossover (SCX) is an intelligent 
crossover designed by Ahmed [12] to solve the TSP. Recently, 
a modified version of sequential constructive crossover, named 
greedy SCX (GSCX), was proposed for solving TSP [20]. The 
reverse greedy sequential constructive crossover (RGSCX) and 
the comprehensive sequential constructive crossover (CSCX) 
are two new crossover operators that enhance SCX for solving 
TSP [21]. Other types of advanced crossover operators were 
designed in [18] to solve the QAP, relying on the idea of a 
frequency model. Three crossover operators were introduced 
for enhancing GA, namely, the Highest Frequency Crossover 
(HFX), the Greedy HFX (GHFX), and the Highest Frequency 
Minimum Cost Crossover (HFMCX). 

Various types of mutations have been investigated for the 
TSP and QAP problems, including the exchange mutation [13], 
[16], [17], and the reciprocal exchange mutation [12]. More 
advanced mutation operators have been designed for the TSP 
and QAP problems, such as the interchange mutation in [15], 
and the inversion mutation in [17]. In [22], the adaptive and 
combined mutation operators were proposed for solving QAP. 

C. Other Metaheuristics Algorithms for DNA Fragments 

Assembly 

Particle swarm optimization (PSO) was reported in the 
literature for the DNA fragment assembly problem. Verma and 
Kumar [2] used the PSO with the smallest position value 
(SPV) rule. The PSO can be enhanced when combined with 
other algorithms, such as in Huang et al. [23], who proposed a 
hybrid particle swarm optimization algorithm (HPSO). The 
algorithm was divided into two parts: (1) Tabu search 
combined with PSO to improve solution quality and (2) 
simulated annealing combined with variable neighborhood 
local search (VNS). Additionally, the parallel approach can 
reduce the computation time, so, Mallén-Fullerton and 
Fernández-Anaya [2] presented a parallel heuristic based on 
the PSO and the differential evolution (DE), which is similar to 
GA, but DE relies on mutation operation, while GA relies on 
crossover operation to assemble better solutions. Mallén-
Fullerton and Fernández-Anaya used a variation of the TSP 
(the Lin-Kernighan algorithm [24]) with some modifications to 
be applied for DNA fragment assembly. Another study is that 
of Huang et al [25], who presented a memetic PSO algorithm 
with a variable neighborhood search (VNS) approach as well 
as TS and SA, each of these algorithms is used in different 
ways and in different combinations. Indumathy and Maheswari 

[26] used a variant of the standard PSO called the constriction 
factor PSO (CPSO). Another proposed metaheuristic algorithm 
for solving the DNA fragment assembly problem is the 
problem aware local search (PALS) [27]. The main drawback 
of PALS is its quick convergence to local optima but 
combining it with other algorithms can overcome this 
drawback. Minetti et al. [28] used PALS by combining it with 
SA, this suggested method shows improved performance on 
the largest data sets when compared with SA and PALS 
separately. Another algorithm founded for the DNA fragment 
assembly is the bee colony, Firoz et al. [29] presented the 
artificial bee colony (ABC) algorithm and the queen bee 
evolution based on the genetic algorithm (QEGA). Majid al-
Rifaie [30] investigated a new algorithm, stochastic diffusion 
search (SDS), which follows a different strategy for calculating 
the overlaps, picking a model from given fragments and trying 
to find the same model in the rest of the fragments. Among the 
fragments containing the model, the one with the highest 
similarity is picked, assembled, and then removed from the 
search space. 

The previous paper [4] showed that the DNAFA 
optimization problem is a special case of two well-known 
optimization problems: the traveling salesman problem and the 
quadratic assignment problem. Particularly, that paper 
theoretically demonstrated that all three optimization problems 
have a similar topological structure and that they need to 
explore a search space of solutions with the same complexity 
to find an optimal solution. For this reason, the GA platform 
designed to solve the DNAFA problem is inspired by the 
efficient GA approaches developed for the famous 
combinatorial optimization problems, TSP and QAP. The GA 
platform gathers several advanced GA operators and tools that 
have demonstrated their effectiveness in the context of TSP 
and QAP. 

Table I illustrates the GA parameters’ settings from the 
literature for DNA, TSP, and QAP. 

III. THE GA PLATFORM 

The GA platform consists of the best and most advanced 
GA tools for the DNAFA problem (shown in Fig. 1.). One 
could build several variants of the GA to solve it by judiciously 
integrating the ingredients of this platform in different ways. 

A. The GA Operations of the Designed Platform 

This section describe the different GA operations involved 
in the platform that suggested earlier [4]. This paper will study 
all these operations, test them experimentally, and try different 
versions by combining different tools from the platform to 
create the best version that will be compared with other 
algorithms from the literature. 

1) Encoding: For the encoding, the work will use the 

integer encoding, where the fragments encode as numbers, 

such that fragment one encodes as “1”, fragment two encodes 

as “2” and so on. 
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TABLE I.  GA PARAMETERS SETTING FROM THE LITERATURE FOR DNA, TSP AND QAP 

GA Design and Experimental 

Settings 
DNA_FA TSP QAP 

 Individual encoding  

Integer numbers  

(an ordered sequence of integer 

numbers, each of which represents a 
fragment number). 

Integer numbers 

(an ordered sequence of integer 

numbers, each of which represents 
a city to be visited) 

Integer numbers  

(an ordered sequence of integer numbers, 

each of which represents an assignment of 
a task to a resource). 

Population initialization   
Random, greedy, 2-opt heuristics  

Random, greedy, MARL 

(Multiagent Reinforcement 

Learning) [13]. 

 
Sequential sampling, random  

Population size  Varies from 11 to 2500 Individuals.  Varies from 20 to 200 individuals.  Varies from 30 to 200 individuals.  

Selection  Tournament.  
Roulette wheel, tournament, 
greedy [31] 

Roulette wheel, stochastic reminder 
selection.  

Crossover  OX, ER, PMX, one-point order. CX  

SCX, ERX, GNX, PMX, smart 

multi point crossover, order insert 
crossover.  

SCX, OPX, SPX, HFX, GHFX, HFMCX, 

MPX.  

Mutation  Inversion mutation, swap mutation  

Reciprocal mutation, exchange 

mutation, interchange mutation, 

inversion mutation  

Reciprocal exchange mutation, combined 

mutation, adaptive mutation, swap 

mutation [12], [14]. 

Crossover probability  Varies from (60% to 100%)  Varies from (90% to 100%)  100%  

Mutation probability  2%  Varies from (1% to 20%)  Varies from (5% to 15%)  

Stopping condition  
No improvement for number of 

iterations.  

Optimal rout, number of 

generations.  
Number of generations, CPU time.  

Number of runs  From 5 runs to 30 runs  From 10 runs to 30 runs.  20 runs.  

Number of generations  
Varying from (1000 to 512 K) 
generations  

Varying from (20 to 10,000) 
generations.  

Varying from (5000 to 10k) generations.  

 

Fig. 1. GA platform design for the DNA fragments assembly problem. 

2) Initial Population: Initial population includes the 

population size and the population generation method. For the 

population size, the work selects two sizes (200 and 500 

individuals) and discusses how much time is saved if the 

population is small and how accurate it is. 
For the population generation method, the GA platform 

design includes the random, greedy, and 2-opt heuristic 
strategies that have previously yielded good performances as 
shown in [7], [31], and [9]. Since the primary results showed 

that the greedy initialization method gave the best solutions, 
this paper displays its results. However, because the greedy 
method searches and generates populations intelligently, 
further experiments will investigate whether the greedy can 
find the solution from the beginning without relying on the rest 
of the GA operator. 

3) Fitness Functions: As the fitness function is repeatedly 

applied to each individual of each generation, it should be 

relatively easy to compute and should also accurately evaluate 

the quality of each individual [12]. A simple fitness function 

aims to maximize the overlap score by summing the overlap 

for each of the adjacent fragment pairs, as expressed by the 

expression (2) in [9]. 

   ∑  [     ]   
    (2) 

where   [ ,   + 1] is the overlap score between fragment i 
and fragment i + 1. F is simple in complexity since it takes 
O( ). 

To measure the solution quality, the work will use the 
following formula, which is often used in TSP and QAP 
problems to measure the solution quality. 

Gap = ((ASV-BSV)/BSV) *100 

Where ASV refers to the average solution value (average 
overlap) and BSV refers to the best-known solution value 
reported in the literature. 

4) Selection operators: As roulette wheel selection is 

widely used and consumes the least amount of time and 

tournament selection can maintain diversity by giving an equal 

chance to all the individuals to compete [32], the roulette 

wheel and the tournament selections are selected to be added 

to the platform. 
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5) Crossover operators: Several crossover operators, 

including SCX, OX, CX, PMX, and ERX, have been chosen 

for inclusion in the platform. Special attention should be paid 

to SCX, as it is a smart crossover and was one of the best 

operators for the TSP and QAP problems and is expected to 

have the same performance in the DNA_FA context. 

Moreover, SCX has never been used to solve the DNA 

assembly problem before; therefore, this paper will present the 

results related to this crossover. 

6) Mutation operator: The swap mutation operator and its 

variants were widely used for DNA_FA, TSP, and QAP [9] 

and [17]. Combined and adaptive mutations were designed for 

the QAP problem [22]. These three mutation types are 

included in the platform. 

7) Stopping condition: The GA platform will stop if the 

solution is not improved at all during a certain number of 

iterations or a time limit is reached. 

IV. EXPERIMENTS 

This section describes the data sets, the experimental 
setting, and the variable’s values in this study. 

A. Data Sets 

The GA platform will be assessed on data sets produced by 
next-generation sequencing, the data sets are obtained from the 
National Center for Biotechnology Information (NCBI)

1
. These 

data sets are the same benchmarks used in the previous works 
mentioned in the related works section. This work used 17 data 
sets with a varying number of fragments, from 25 fragments to 
352 fragments. The mean length of the fragment varies 
between 286 and 512 pb, the description of these data sets is 
given in Table II. 

B. Experimental Setting 

The designed algorithm has been implemented in C++ on a 
Windows 10 computer with a 2 GHz CPU and 16 GB of RAM.  
The work maintained the parameter values used in TSP and 
QAP that led to the best results. Based on Table I, this work 
chose the values for the GA operators, which are described in 
detail in Table III. The work applied to each data set 60 
experiments using different GA parameters and operators. In 
detail, it applied two types of population size, three types of 
initialization, two types of selection, and five types of 
crossover (2*3*2*5 = 60). Since the GA is a stochastic 
process, each experiment was run 30 times to ensure the 
satiability of the given results (30*60=1800 experiments).  
Since there were 17 datasets, the total number of experiments 
reached more than 30 thousand (17 * 1800=30,600 
experiments) 

                                                           
1 The National Center for Biotechnology Information (NCBI) is part of 

the United States National Library of Medicine (NLM), a branch of the 

National Institutes of Health (NIH). The NCBI houses a series of databases 
relevant to biotechnology and biomedicine and is an important resource for 

bioinformatics tools and services. Major databases include GenBank for DNA 

sequences. https://www.ncbi.nlm.nih.gov/guide/ 

 

TABLE II.  BENCHMARKS’ DATASETS, WHERE TOTAL DATA SIZE IS 

NUMBER OF FRAGMENTS * MEAN FRAGMENT LENGTH 

Benchmark Mean fragment 

length 

Number of 

fragments  

Total data size  

x60189  4 395 39 15405 

x60189  5 286 48 13728 

x60189  6 343 66 22638 

x60189  7 387 68 26316 

m15421  5 398 127 50546 

m15421  6 350 173 60550 

m15421  7 383 177 67791 

j02459   7 405 352 142560 

f25_305 307 25 7675 

f25_400 400 25 10000 

f25_500 500 27 13500 

f50_315 315 50 15750 

f50_412 412 50 20600 

f50_498 498 50 24900 

f100_307 307 100 30700 

f100_415 415 100 41500 

f100_512 512 100 51200 

TABLE III.  PARAMETERS’ AND OPERATORS’ VALUES USED IN THE 

EXPERIMENTS 

Parameter Value 

Population size 200, 500 individuals. 

Initialize type Randomly, 2-opt heuristics, and greedy 

Number of runs 30 runs. 

Stopping condition No improvement for 300 consecutive generations or 

running time < 5 second. 

Selection type Tournament with size 5, roulette wheel 

crossover SCX, OX, CX, PMX, ERX. 

mutation Randomly pick one of (Swap, adaptive, and combined 

mutation) 

Mutation 

probability 

0.001 

Crossover 

probability 

1.0 

Total experiments  30,600 

https://en.wikipedia.org/wiki/United_States_National_Library_of_Medicine
https://en.wikipedia.org/wiki/National_Institutes_of_Health
https://en.wikipedia.org/wiki/Biotechnology
https://en.wikipedia.org/wiki/Biomedicine
https://en.wikipedia.org/wiki/GenBank
https://www.ncbi.nlm.nih.gov/guide/
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C. Evaluation Metrics 

The performance of the GA algorithm will be measured in 
terms of the following: 

 Overlapping scores: should be high. The overlap score 
measured by calculating the length of the overlap 
between each fragment and all the existing fragments. 
The overlap scores were computed using the Smith-
Waterman algorithm. Two forms of overlap scores 
were reported in the results: the best overlap scores out 
of 30 runs, and the average overlap score for 30 runs. 

 Computational complexity (time complexity): should 
be minimized. The time for the complete assembly 
process was divided into two stages: the time for 
calculating the overlap score in the preprocessing 
stage, and the time for the GA to find the best solution. 
This paper only showed the time of the GA because 
this work studying the change in the performance of 
the GA and also because the time for SW is constant 
for each dataset regardless of which GA variant is 
studying. 

D. Aspects of Investigations 

This work study the effect of some algorithm components 
on two metrics: the GA running time and the overlap score. It 
will discuss the effect of population generation, including the 
population size and the population generation method, the 
effect of the crossover types, as well as the effect of the 
selection types. According to the comprehensive experiments, 
below are the major interesting investigations aspects. 

 Crossover types on overlap score when varying the 
population generation method. 

 Population size on overlap score and GA running time.  

 Selection types on overlap score and GA running time 
when varying the population generation method. 

V. RESULTS 

This section presents and discusses the results obtained 
from the experiments conducted in this study. The results in 
this section are organized in subsections. Each subsection 
reports the results of a specific investigation, as mentioned 
earlier. In each subsection, the results will be illustrated with 
tables or pictures and discussed, in addition to summarizing the 
findings at the end of each subsection. 

A. The Effect of Crossover Type on Overlap Score when 

Varying the Population Generation Method 

This section studies the effect of the crossover types on the 
overlap score when varying the population generation methods 
while the other GA operators remain constant. For simplicity, 
the type of selection operation is the tournament, and the 
population size is 200. 

Each of the figures below represents the effect of a specific 
population generation method on the best overlap score. 

 
Fig. 2. The effect of crossover types on overlap score when generation 

population method is random. 

 
Fig. 3. The effect of crossover types on overlap score when generation 

population method is 2-opt heuristics. 

 
Fig. 4. The effect of crossover types on overlap score when generation 

population method is greedy. 

From Fig. 2, Fig. 3, and Fig. 4, it can be seen that the 
greedy initialization type is the one that gives the highest 
overlap score for all the data sets. Moreover, the 2-opt 
heuristics and random method gave different results but clearly 
showed that SCX is the best crossover in the majority of cases. 
Clearly, the SCX has the best accuracy regardless of the 
population generation methods. SCX is less sensitive to the 
type of initialization, whatever the type of initialization, it 
gives good results in every case. Also, the greedy approach 
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improves the performance of all crossover operators. It seems 
only when population generation method is greedy, it is not 
clear if SCX is still the best. This reveals the impact of the 
population generation method and how creating the population 
in a smart way from the beginning has been a strong factor in 
improving the results and reducing the differences between the 
types of crossovers. In more detail, the greedy improved the 
SCX overlap results by 11.7% compared to random and 2_opt 
heuristics, also improved the OX and CX results by 25.9% and 
31.01%, respectively. And improve the PMX and ERX by 
22.01% and 37.7%, respectively. This demonstrates that the 
SCX was the least sensitive crossover to the population 
generation method among the crossover types and maintained 
the highest overlap score. Thus, further investigation is done by 
checking the time cost for the greedy method using small and 
large population sizes. 

The results of this study are summarized as follows: 

 SCX is not sensitive to the type of initialization, 
whatever the type of initialization, it gives good results 
in every case. 

 OX, CX, PMX, and ERX are sensitive to the type of 
generating population, as they perform better with the 
greedy initialization than with the random and the 2-
opt heuristics. Because the greedy is good at generating 
a good initial population. 

 The population generation method has a strong impact 
on improving the results. 

B. The Effect of the Population Size on Overlap Score and GA 

Running Time 

This subsection investigates the effect of population size on 
the overlap score, including the best overlap score and average 
overlap score. In addition, the effect of population size on the 
GA’s running time. 

1) The effect of population size on overlap score: Recall 

that this paper only report for the SCX; Table IV shows the 

effect when the initialization method is greedy, the crossover 

type is SCX, and the selection type is tournament. The “gap” 

column represents the gap on overlap which calculated by the 

formula in Section III and the “absolute difference” represents 

the pure difference between 500 and 200 individuals. 
In this investigation, when the crossover is SCX, and the 

generation method is greedy, and the selection type is 
tournament, the results show that when the initial population is 
60% less, the GA still gives high overlap score in all datasets 
with an average difference of 0.14%.  This is important since 
decreasing the initial population size decreases the computation 
significantly. 

Moreover, for datasets (f*) this work show a significant 
increase in accuracy compared to what is reported in the 
literature. The increase reaches 172.57%, with the 200-
population size, and 171.9% with the 500-population size. 
Moreover, when computing the difference between the best 
overlap score and average overlap score, there was not a 
significant difference in performance, where the best overlap 
score is only 0.44% and 0.42% better than the average overlap 
score on 200 and 500, respectively. Thus, the paper only 
reports the best overlap score in the rest of the paper. With 
regard to the gap, the table shows that our results are better in 9 
data sets out of 17. When the absolute difference is negative, 
that means the 200 size is better than the 500. This was clear 
for eight data sets, and their performance was equal in four data 
sets, this makes the smaller size more suitable. 

The results of this study are summarized as follows: 

 Increase the size of the population increase the 
computational time, however it may give chance to 
have good results for the big data sets. 

 The population sizes of 200 and 500 individuals do not 
have a noticeable difference in the quality of the 
solution; therefore, it is preferable to take the smaller 
size.
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TABLE IV.  THE EFFECT OF POPULATION SIZE ON OVERLAP SCORE FOR SCX WHEN THE GENERATION METHOD IS GREEDY AND SELECTION TYPE IS 

TOURNAMENT 

Data set BSV 200 individuals-greedy 500 individuals-greedy Gap on the overlap (%) Absolute 

difference 

(500, 200) 
Best 

overlap 

Average 

overlap 

Standard 

deviation 

Best 

overlap 

Average 

overlap 

Standard 

deviation 

200-

individuals 

500-

individuals 

x60189  4 11478 11298 11203.8 46.99 11272 11195.9 41.95 -2.39 -2.46 -26 

x60189  5 14161 13594 13498.4 67.11 13540 13478.4 12.38 -4.68 -4.82 -54 

x60189  6 18301 17401 17318.9 41.02 17304 17273.8 6.96 -5.37 -5.61 -97 

x60189  7 21271 20546 20433.8 30.40 20527 20431.6 30.03 -3.94 -3.95 -19 

m15421  5 38746 36972 36916.6 20.08 36975 36908 12.55 -4.72 -4.74 3 

m15421  6 48052 46304 46226.2 32.61 46240 46233.7 18.38 -3.80 -3.78 -64 

m15421  7 55171 52069 51977.7 74.56 52077 52005.6 37.98 -5.79 -5.74 8 

j02459   7 116700 109043 108855 58.85 109056 108876 76.40 -6.72 -6.70 13 

f25_305 2271 5594 5594 0 5594 5594 0 146.32 146.32 0 

f25_400 3139 6307 6307 0 6307 6307 0 100.92 100.92 0 

f25_500 5777 9170 9021.5 71.45 9170 8974.13 45.71 56.16 55.34 0 

f50_315 4013 9076 9072.87 16.87 9076 9076 0 126.09 126.16 0 

f50_412 5835 12990 12896.4 29.14 13095 12915.3 48.60 121.02 121.34 105 

f50_498 9050 17070 16935.8 54.22 17012 16910 27.48 87.14 86.85 -58 

f100_307 7035 14319 14265.3 16.78 14282 14260.7 3.96 102.78 102.71 -37 

f100_415 9202 23008 22896.5 45.55 22993 22894.2 27.49 148.82 148.80 -15 

f100_512 11881 32384 32285.2 41.36 32340 32305 26.11 172.57 171.90 1 

2) The effect of population size on GA running time: This 

section studies the effect of population size on the GA running 

time. The following tables reveal this effect when the type of 

crossover is SCX, the type of initialization is greedy, and the 

selection type is tournament. In addition, Table VI compare 

the use of complex SCX crossover operators with small 

population size to the use of simple PMX, ERX, OX and CX 

crossover operators with large population sizes. The 200 and 

500 refer to small and large population sizes, respectively. 

 The “GA time” column represents the time for the 
whole GA to find the result, 

 The “greedy time” column represents the time for 

initializing the population with the greedy method. 

 The “overlap after greedy”  column represents the 

overlap score after creating the population. 

 The “ overlap after GA ”  column represents the 

overlap score when the algorithm is done. 

 The “ Increase in overlap “ column represents the 

percentage increase in the overlap score between the 
overlap score after greedy and the overlap score at the 
end of the GA. 

 The “Absolute difference in time” column shows the 

difference in time between 500 and 200 individuals for 
the GA time. 

As indicated earlier, the question posed for discussion is 
whether the greedy might override the algorithm's 
performance, is the solution comes from the greedy or the GA 
finds the solution, is the time spent in creating the population 
or in finding the solution. For this matter, the following table 
illustrate the overlap score after creating the population with 
the greedy method, as well as the overlap score when the 
algorithm is done. In addition to the time taken to create the 
population and the time taken by the algorithm to find the 
solution, the least time and the best solution for every data set 
are marked in bold. 
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TABLE V.  THE EFFECT OF POPULATION SIZE ON GA RUNNING TIME (IN SEC.). FOR SCX WHEN THE GENERATION METHOD IS GREEDY AND SELECTION 

TYPE IS TOURNAMENT 

Data sets 200 individual-greedy 500 individual-greedy Absolute 

difference 

in time 

(500-200) 

GA 

time 

Greedy 

initialization 

time 

Overlap 

after greedy 

Overlap 

after GA  

Increase 

in overlap 

(%)  

GA time Greedy 

initialization 

time 

Overlap 

after 

greedy 

Overlap 

after 

GA 

Increase 

in overlap 

(%) 

x60189  4 1.93 0.36 10765 11298 4.72% 1.07 0.81 10865 11252 3.44% -0.86 

x60189  5 1.6 0.59 12250 13594 9.89% 1.83 1.4 12250 13493 9.21% 0.23 

x60189  6 2.5 0.99 16272 17401 6.49% 2.5 2.2 16275 17295 5.90% 0 

x60189  7 1.9 1.1 19419 20546 5.49% 3.3 2.6 19529 20641 5.39% 1.4 

m15421  

5 

5.1 4.1 36606 36972 0.99% 6.9 6.4 36616 36951 0.91% 1.8 

m15421  

6 

6.4 4.7 46154 46304 0.32% 13.1 12.3 46154 46262 0.23% 6.7 

m15421  

7 

5.4 3.6 51708 52069 0.69% 13.7 12.5 51738 52012 0.53% 8.3 

j02459   

7 

27.4 23.1 107398 109094 1.55% 60.2 56.7 107504 109051 1.42% 32.8 

f25_305 0.2 0.1 5594 5594 0.00% 0.43 0.36 5594 5594 0.00% 0.23 

f25_400 0.23 0.17 6107 6307 3.17% 0.5 0.4 6307 6307 0.00% 0.27 

f25_500 1.6 0.2 8550 9170 6.76% 1.2 0.5 8640 9170 5.78% -0.4 

f50_315 0.7 0.6 8576 9076 5.51% 1.6 1.4 8576 8982 4.52% 0.9 

f50_412 1.03 0.7 12486 12990 3.88% 2.3 1.8 12492 13011 3.99% 1.27 

f50_498 1.5 0.8 16802 17051 1.46% 2.2 1.9 16802 17014 1.25% 0.5 

f100_307 2.6 2 14100 14319 1.53% 5.5 5.3 14103 14260 1.10% 2.9 

f100_415 3.6 1.9 22154 23008 3.71% 6.2 4.7 22154 22993 3.65% 2.6 

f100_512 4.8 2.9 31187 32384 3.56% 8.6 7.6 31189 32339 3.56% 3.8 

The table above shows that a small population size takes 
less time in the majority of the data sets and gives more 
opportunity for the algorithm to improve the solution. 
However, the larger population size takes more time to 
generate but less time to find the solution.  In the case of small 
data sets, most of the time is taken to create population, while 
the time taken to find the solution is very small. These results 
showed that when using a larger population size with the 
greedy method, the improvement in the solution is small and 
may be nonexistent in the case of small data sets such as 
(f25_305, f25_400). Small population sizes are better suited to 
the greedy method because they allow the algorithm to 
improve the solution while also taking less time. When the 
datasets (x60189_4 and f25_500) are excluded, the results in 
Table V for total time show that there is a 49.21% reduction in 
time when using a 40% smaller population. Moreover, this 
table showed us that the greedy method contributed 95% to 
improving the solution, and the GA improved the solution by 
3.51% for the 200-population size and 2.99% for the 500 size.  
This supports the previous investigation, that SCX with a 
smaller population size is better. 

But it may come to mind that if we choose the larger 
population size with a simple crossover, could it give an 

overlap higher than the SCX with the small population size in a 
reasonable time? So, recalling what previously raised for 
discussion the following table compare SCX with the smaller 
population size, with other types of crossovers with a larger 
population size, for time and overlap score. 

The results in Table VI show in 14 out of 17 data sets, 
using SCX with 40% less population size leads to better results 
than other crossovers with larger size. In addition to having a 
40% smaller population size but comparable accuracy, SCX is 
also significantly faster than the other crossovers. The results 
show that SCX is 26.92% faster than PMX in all data sets, 
except for “x60189 _6” and “f25_500” datasets, and in some 
datasets, it is 59.46% faster (as in f50_498). Also, SCX is 
38.38% faster than ERX in all data sets, except for “x60189 
_4” and “f25_500” datasets, and in some datasets, it is 68.75% 
faster (as in f50_498). Also, SCX is 34.64% faster than OX in 
all data sets except for x60189_4, and SCX is 32.89% faster 
than CX in all data sets except for “x60189_4”, “x60189_6”, 
and “f25_500”. There is a similarity in the performance of all 
crossovers in the small data sets. But the SCX is still the 
dominant one. This confirms the results obtained previously 
that with smallest population size SCX still gives the best 
solution. 
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TABLE VI.  COMPARING SCX WITH THE SMALLER POPULATION SIZE, WITH OTHER CROSSOVERS WITH A LARGER POPULATION SIZE 

Data sets SCX- 200 individual PMX-500 individual ERX-500 individual OX-500 individual CX-500 individual 

Best 

overlap 

Time  Best 

overlap 

Time  Best 

overlap 

Time  Best 

overlap 

time Best 

overlap 

time 

x60189  4 11298 1.93 11318 2.2 10817 1.4 11316 1.4 11252 1.6 

x60189  5 13594 1.6 13304 1.8 12942 1.7 13474 2.1 13324 1.7 

x60189  6 17401 2.5 16997 1.8 16997 3.5 17344 2.6 16272 1.4 

x60189  7 20546 1.9 20536 2.9 19898 3.3 20467 2.8 20477 2.8 

m15421  5 36972 5.1 36964 6.2 36662 6.4 36922 7.3 36899 7 

m15421  6 46304 6.4 46240 7.3 46162 7.4 46287 9.3 46240 7.3 

m15421  7 52069 5.4 52011 11.1 51728 11.9 52011 8.1 52011 11.4 

j02459   7 109094 27.4 108832 34.8 107557 52.1 108832 50 109012 36.3 

f25_305 5594 0.2 5594 0.3 5594 0.3 5594 0.4 5594 0.3 

f25_400 6307 0.2 6307 0.3 6114 0.4 6307 0.4 6307 0.4 

f25_500 9170 1.6 9013 0.8 8650 0.4 9130 2 9122 0.7 

f50_315 9076 0.6 9076 1.4 8585 1.7 9076 1.5 9076 1.4 

f50_412 12990 1.03 12960 1.3 12564 1.5 12192 1.7 12886 1.3 

f50_498 17051 1.5 17163 3.7 16868 4.8 17089 4.3 17163 3.2 

f100_307 14319 2.6 14260 3.9 14105 4.8 14314 4.6 14314 6.5 

f100_415 23008 3.6 22854 3.6 22163 6.3 22854 3.7 22878 3.9 

f100_512 32384 4.8 32352 5.1 31823 6.5 32266 6.3 32254 6.3 

The results of this study are summarized as follows: 

 The greedy method had a clear impact on the GA 
performance and contributed to improving the solution 
by 95%. 

 Most of the time is spent on creating the population 
especially with the large population size. 

 Smart crossover like SCX with small population size is 
better than simple crossovers with large population size. 

C. The Effect of Selection Types Varying the Population 

Generation on the Overlap Score 

This section studies the effect of the initialization and 
selection types on the overlap score. The following figures 
show this effect when the type of crossover is SCX and the 
population size is 200, since previous investigations show that 
a small population size is more suitable. 

Fig. 5, Fig.  6, and Fig. 7 show the effect of initialization 
types and selection types on the best overlap score. Clearly, the 
greedy initialization type gives a better overlap score than the 
random and 2-opt heuristics in 15 data sets out of 17. 

 

Fig. 5. Effect of selection types with random initialization on best overlap 

score. 

 

Fig. 6. Effect of selection types with 2-opt heuristics initialization on best 

overlap score. 
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Fig. 7. Effect of selection types with greedy initialization on best overlap 

score. 

Fig. 8, Fig. 9, and Fig. 10 show the effect of initialization 
and selection types on the average overlap score. The greedy 
initialization still dominates the random and 2-opt heuristics for 
the average overlap score as well, giving a higher average in 16 
out of 17 data sets. Additionally, the roulette wheel selection is 
still better than the tournament with the random and 2-opt 
heuristics. However, with the greedy initialization, the 
tournament is better. 

 

Fig. 8. Effect of selection types with random initialization on average 

overlap score. 

 

Fig. 9. Effect of selection types with 2-opt heuristics initialization on 

average overlap score. 

 

Fig. 10. Effect of selection types with greedy initialization on average overlap 

score. 

The results of this study are summarized as follows: 

 The greedy initialization type is the best among the 
majority of the data sets for the best overlap scores and 
the best among all the data sets for the average overlap 
scores. 

 The random initialization type is better than the 2-opt 
for the best overlap score, but their performance is 
almost similar for the average overlap score. 

 The tournament selection type is better than the 
roulette wheel selection for the best and average 
overlap scores with the greedy. 

D. The Effect of Selection Types Varying the Population 

Generation Method on GA Running Time 

Table VII illustrates the results obtained when studying the 
effect of initialization and selection types on the GA running 
time. It shows this effect when the type of crossover is SCX, 
and the population size is 200. The GA time column represents 
the time it took for the GA to find the result. The least time for 
every data set is marked in bold green when the selection type 
is the tournament and marked in bold blue if the selection type 
is the roulette wheel. The gap column shows the difference in 
time between the generating methods (i.e., greedy, random, 2-
opt heuristic). 

Table VII shows that the greedy initialization type is the 
best from the viewpoint of time complexity. The random and 
2-opt heuristics types take more time than the greedy, but the 
random-type records less time for 12 data sets out of 17, while 
the 2-opt heuristics record less time for three data sets and 
equal time for two. As for the selection type, the roulette wheel 
selection dominates the tournament selection by recording the 
least time for 14 data sets out of 17. The gap confirms as in the 
previous section that the greedy generating method is better 
than the random and 2-opt, and the random is better than 2-opt. 
In more detail, the results show that the greedy initialization 
results are fast compared to both random and the 2-opt 
heuristic in most of the datasets. Except for datasets M15421_7 
and J02459_7, the greedy approach is 47.39% and 48.17% 
faster than random, and 2-opt heuristics when selection type is 
tournament. Also, greedy approach is 66.90% and 67.19% 
faster than random, and 2-opt heuristics when selection type is 
roulette. For the other crossovers OX, CX, PMX, and ERX, the 
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tournament was the best in terms of solution quality, and the 
roulette was the fastest, because the tournament chose multiple 
parents every time and compared them to pick the better one. 

The results of this study are summarized as follows: 

 The greedy initialization type takes less time than the 
random and the 2-opt heuristics in almost all cases 
except for the large data set (J02459_7), because the 
greedy method takes time to create the population, the 

larger the data, the more comparisons that greedy 
makes, and therefore it takes longer time. 

 The random initialization type is faster than the 2-opt 
heuristics in 12 data sets out of 17, this is an expected 
result. 

 The roulette wheel selection type is faster than the 
tournament selection, but the tournament is better for 
solution quality. 

TABLE VII.  THE EFFECT OF INITIALIZATION TYPES AND SELECTION TYPES ON THE GA RUNNING TIME (IN SEC.) FOR SCX CROSSOVER ON REAL 

DATASETS THE BOLD GREEN COLOR REFERS TO THE LEAST TIME FOR THE CORRESPONDING DATA SET WHEN THE SELECTION TYPE IS TOURNAMENT, 
AND THE BOLD BLUE COLOR REFERS TO THE LEAST TIME WHEN THE SELECTION IS ROULETTE 

Data set Select random 2-opt greedy gap gap gap 

GA time GA time GA time Greedy-random Greedy-2-opt Random-2-opt 

X60189_4 Tournament 4.27 4.3 2.17 -2.1 -2.13 -0.03 

Roulette  4.27 4.43 0.93 -3.34 -3.5 -0.16 

X60189_5 Tournament 4.4 4.57 3.63 -0.77 -0.94 -0.17 

Roulette  4.7 4.77 1.37 -3.33 -3.4 -0.07 

X60189_6 Tournament 4.6 4.73 3.63 -0.97 -1.1 -0.13 

Roulette  4.73 4.77 1.27 -3.46 -3.5 -0.04 

X60189_7 Tournament 4.7 4.7 2.57 -2.13 -2.13 0 

Roulette  4.8 4.8 1.3 -3.5 -3.5 0 

M15421_5 Tournament 4.87 4.97 4.1 -0.77 -0.87 -0.1 

Roulette  5 5 3.7 -1.3 -1.3 0 

M15421_6 Tournament 5.03 5 5 -0.03 0 0.03 

Roulette  4.87 5 4.13 -0.74 -0.87 -0.13 

M15421_7 Tournament 4.93 4.93 6.13 1.2 1.2 0 

Roulette  4.77 5 4.77 0 -0.23 -0.23 

J02459_7 Tournament 5.1 5.1 25.97 20.87 20.87 0 

Roulette  5.17 5.17 38.27 33.1 33.1 0 

F25_305 Tournament 4 4.07 0.23 -3.77 -3.84 -0.07 

Roulette  4.57 4.4 0.2 -4.37 -4.2 0.17 

F25_400 Tournament 4.33 4.4 0.2 -4.13 -4.2 -0.07 

Roulette  4.47 4.53 0.2 -4.27 -4.33 -0.06 

F25_500 Tournament 4.3 4.47 1.6 -2.7 -2.87 -0.17 

Roulette  4.6 4.5 1.13 -3.47 -3.37 0.1 

F50_315 Tournament 4.4 4.53 0.87 -3.53 -3.66 -0.13 

Roulette  4.47 4.63 0.73 -3.74 -3.9 -0.16 

F50_412 Tournament 4.3 4.63 1.17 -3.13 -3.46 -0.33 

Roulette  4.6 4.67 1.23 -3.37 -3.44 -0.07 

F50_498 Tournament 4.47 4.63 2.37 -2.1 -2.26 -0.16 

Roulette  4.73 4.63 0.8 -3.93 -3.83 0.1 

F100_307 Tournament 4.77 4.67 2.53 -2.24 -2.14 0.1 

Roulette  4.93 4.97 2.97 -1.96 -2 -0.04 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 3, 2023 

298 | P a g e  

www.ijacsa.thesai.org 

F100_415 Tournament 4.8 4.77 4.1 -0.7 -0.67 0.03 

Roulette  4.93 4.93 2.27 -2.66 -2.66 0 

F100_512 Tournament 4.77 4.8 4.53 -0.24 -0.27 -0.03 

Roulette  4.93 4.97 3.8 -1.13 -1.17 -0.04 

VI. DISCUSSION 

This section discusses the findings that emerged from the 
results presented in the Results section. And conclude that the 
small population size (i.e., 200 individuals) is more suitable for 
most cases. And the greedy type of initialization is the best 
when look for good overlap score results and time. 
Furthermore, the results show that the roulette wheel selection 
type is more suitable than the tournament selection in the 
context of time, but the tournament is better in the quality of 
the solution. Also, this work shows that the SCX crossover is 
the best in the context of best overlap score and average 
overlap score. 

This study has multiple GA versions, but in comparison to 
the previous works, we selected the best version we got. 
Moreover, the comparisons are divided as follows: 

 Previous works that used the GA, the comparison is 
presented in Table VIII. 

 Previous works that used other metaheuristics 
algorithms, the comparison is presented in Table IX. 

Table VIII compares the designed GA results and the other 
previous GA work’s results in the context of the overlap score. 
The best results are marked in bold. The “difference in 
percentage” column shows the difference between our best 
results and those of the previous works. Clearly, our results for 
the F-series data sets (from F25_305 to F100_512) dominate 
all the previous work’s results. This work got less than the best 
results of previous works in eight data sets out of 17, however, 
our results are still better than [23], [25], and [9] for these data 
sets. 

Moreover, this work obtained better results than the results 
of all the previous works in nine data sets out of 17. 

With regard to the time, the results were given in a 
reasonable time and there is no significant change or difference 
in time, because the dominant time is actually not the GA time 
but the assembly time (i.e., in our case, the Smith-Waterman 
algorithm.). GA is useful when the data set is large, and this is 
expected because GA avoids large search space. The results 
show that the designed GA gives the results in less time for 
large data sets such as M15421_6, M15421_7, and J02459_7, 
which have several fragments that vary from 173 to 352 
characters. 

TABLE VIII.  COMPARISON OF BEST SOLUTIONS BETWEEN OUR GA RESULTS AND OTHER GA ALGORITHMS RESULTS FROM THE LITERATURE IN THE 

CONTEXT OF OVERLAP SCORE 

Data sets Our best GA REF. [9] REF. [10] REF. [31] Difference in 

percentage % 

X60189_4 11272 6488 11478 11478 -1.79% 

X60189_5 13475 8655 14027 14161  -4.84% 

X60189_6 17357 9943 18301  18301 -5.16% 

X60189_7 20559 11546 21268  21212 -3.33% 

M15421_5 36972 22598 38726  38694 -4.53% 

M15421_6 46240 29469 48048  48052 -3.77% 

M15421_7 52077 32744 55072  55071 -5.44% 

J02459_7 109043 68736 115301  116487 -6.39% 

F25_305 5594 2271 - 596 146.32% 

F25_400 6307 3139 - 777 100.92% 

F25_500 9170 5777 - 921 58.73% 

F50_315 9076 4013 - 1578 126.16% 

F50_412 12967 5835 - 1572 122.23% 

F50_498 16902 9050 - 1570 86.76% 

F100_307 14318 7035 - 2780 103.53% 

F100_415 22911 9202 - 2846 148.98% 

F100_512 32384 11881 - 2717 172.57% 
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TABLE IX.  COMPARISON OF BEST SOLUTIONS BETWEEN OUR GA RESULTS AND OTHER METAHEURISTICS NON-GA ALGORITHMS RESULTS FROM THE 

LITERATURE IN THE CONTEXT OF OVERLAP SCORE 

Data set Our best 

GA 

REF. [23] REF. [3] REF. [25] REF. [28] 

 

REF. [27] REF. [33] Difference in 

Percentage % 

X60189_4 11272 - 11478 3046 11478 11451 11478 -1.79% 

X60189_5 13475 - 13642 - 14161 13932 14161 -4.84% 

X60189_6 17357 - 18301 - 18301 18204 18301 -5.16% 

X60189_7 20559 - 20921 3022 21271 20968 21271 -3.35% 

M15421_5 36972 5821 38686 6443 38746 38454 38746 -4.58% 

M15421_6 46240 6713 47669 7041 48052 - 48052 -3.77% 

M15421_7 52077 6291 54891 6537 55171 54666 55171 -5.61% 

J02459_7 109043 - 114381 - 116700 115405 116700 -6.56% 

F25_305 5594 - - - 596 - 596 838.59% 

F25_400 6307 - - - 777 - 777 711.71% 

F25_500 9170 - - - 921 - 921 895.66% 

F50_315 9076 - - - 1581 - 1581 474.07% 

F50_412 12967 - - - 1573 - 1573 724.35% 

F50_498 16902 - - - 1570 - 1570 976.56% 

F100_307 14318 - - - 2793 - 2793 412.64% 

F100_415 22911 - - - 2860 - 2860 701.08% 

F100_512 32384 - - - 2732 - 2732 1085.36% 

VII. CONCLUSION 

This paper is a continuation of our previous work [4] to 
solve the DNA fragment assembly problem. As was pointed 
out in the introduction to this paper, the DNAFA is an 
optimization problem that attempts to reconstruct an original 
DNA sequence by finding the shortest DNA sequence from a 
given set of fragments. We have designed a platform for the 
genetic algorithm, from which more than one version of the 
genetic algorithm can be deduced to solve this problem. The 
design was inspired by the good designs that solved TSP and 
QAP problems. This study is the first to our knowledge that 
examines the genetic algorithm for the DNAFA problem from 
this perspective. In more detail, this study has gone a long way 
towards investigating the effect of genetic algorithm operators 
on the quality of the solution to the DNAFA problem. The 
study focused on investigating the effect of the initial 
population, size of the population, selection types, and 
crossover types. 

This paper recorded the important results and came out 
with some findings, the most obvious finding to emerge from 
this study is that the SCX crossover is a smart crossover and 
has never been used before with DNA_FA, SCX crossover 
gave better results compared to the rest of the studied crossover 
types. Furthermore, the results show that the population 
generation method has the greatest influence on GA 
performance in terms of time and solution quality. Also, we 
configured the best-designed GA variant that outperforms the 
existing GA algorithms solving the DNAFA problem. This GA 
variant features the use of 200 individuals for the population 

size along with the greedy method for initializing the 
population, tournament selection, and SCX crossover. This 
study has found that generally, the size of the population does 
not significantly affect the quality of the solution, especially if 
the type of initialization is good. The results were good and 
competitive compared to the results of previous works. Our 
design showed that the results were better than all previous 
results from the literature for some data sets. 

There is still ample scope to study and solve this problem, 
an interesting point will be how to find a way to create the 
population intelligently and without consuming a lot of time, 
given that the greedy is time consuming. Moreover, further 
research might explore or investigate the effect of other GA 
operators (e.g., mutation types and stooping conditions). Also, 
investigate the effect of combining different types of GA 
operators (initialization types, crossover operators, and 
mutation operators) on the results. Another possible area of 
future research would be to combine the data sets (next 
generation with the third generation). 
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