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Abstract—The Internet of Things (IoT) domain has 

experienced significant growth in recent times. There has been 

extensive research conducted in various areas of IoT, including 

localization. Localization of Long Range (LoRa) nodes in outdoor 

environments is an important task for various applications, 

including asset tracking and precision agriculture. In this 

research article, a localization approach using Support Vector 

Regression (SVR) has been implemented to predict the location 

of the end node using LoRaWAN. The experiments are 

conducted in the outdoor campus environment. The SVR used 

the Received Signal Strength Indicator (RSSI) fingerprints to 

locate the end nodes. The results show that the proposed method 

can locate the end node with a minimum error of 36.26 meters 

and a mean error of 171.59 meters. 

Keywords—LoRaWAN; localization; RSSI; fingerprinting; 

support vector regression 

I. INTRODUCTION 

In 2016, everything appeared to spin around the 
development of the Internet of Things (IoT), where anything 
from vehicles to washroom scales is connected to the internet 
to offer additional services to customers [1]. However, it is 
most likely that the industry applications evolving from 
machine-to-machine (M2M) technologies are the main driving 
force for IoT. IoT is the evolution of M2M communications, 
where a larger number of nodes are connected using ethernet in 
the backend to reroute the data as needed. 

This is a crucial step towards creating smart city 
applications and the fourth industrial revolution, where experts 
say that the physical, digital, and biological boundaries will 
blur in industries [1]. IoT companies are trying to launch their 
solution for networks because of the increasing demand for 
Machine-to-Machine communication. While Machine-to-
Machine largely depends upon 2G networks for deployment, 
the IoT emerged with entirely different requirements, such as 
low costs for the IoT chips and the dense deployment of nodes 
on a single cell [2][3]. 

The deployment of IoT has increased the demand for 
finding the locations of the end devices. It is crucial in the field 
of IoT to have the localization done with low power and long 
range [4][5][6][7]. This can be accomplished by implementing 
low-power wide area networks (LPWAN) technologies. Long-
range wide area networks (LoRaWAN), the LPWAN 
technology, have the significance of providing location-based 
services with low power and long range. 

Localization using LoRaWAN can be performed using 
multiple techniques or approaches. The simplest of which is 
the trilateration technique [8][9]. This technique uses at least 
three gateways to find the location of the end node. It uses the 
received signal strength indicator (RSSI) to determine the 
distance between the gateways and the end nodes. It then 
applies the trilateration algorithm to find the end node's 
location. The second approach is to find the angle of the 
received signal on the receiving antenna. Using that angle, the 
angle of arrival (AoA) technique helps in finding out the 
location of the end node [10][11][12]. The third approach can 
be the time-based approach. Time of Arrival (ToA) 
[13][14][15][16] and Time Difference of Arrival (TDoA) [17] 
are the two types of time-based techniques. The time-based 
approaches use the time of the signal to reach the receiver. This 
time is then converted to the distance, and the localization is 
performed. The final and most accurate approach is the 
fingerprinting approach. This approach has two phases, the 
offline and the online phase. The measurements are taken in 
the offline phase and uploaded to the database. In the online 
phase, the location of the end nodes is predicted using machine 
learning algorithms by learning the data collected in the offline 
phase. Multiple machine-learning algorithms can be 
implemented to find the location of the end nodes. Depending 
upon the application, the classifiers [18][19][20] and the 
regression-based algorithms [21][22][23] are used. If it is 
enough to determine the region or an area where the end node 
is located, then the classification algorithms can be the easy 
catch. If there is a need to find the exact location of the end 
node, then the regression-based algorithms can be used to find 
the ground truth locations of the end nodes. 

In this research article, we have implemented the 
fingerprinting approach to find the location of the end node. 
Firstly, the measurements are taken in the campus outdoor 
environment. Using those measurements, the location of the 
end node is predicted using support vector regression (SVR) to 
find the overall distance error. The performance of SVR is 
studied in the areas where the shadowing effect has its 
maximum presence. 

From the technical problem evaluation perspective, the 
work is subdivided into the following sections. The literature 
review is discussed in Section II. In Section III, the research 
methodology is presented. Section IV presents the results. The 
conclusion is derived in the last section, along with the 
references. 
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II. LITERATURE REVIEW 

Long Range Wide Area Network (LoRaWAN) technology 
is the key enabler of IoT technologies. It helped form a large-
scale network connected to the internet at a very low cost 
because the range of LoRaWAN is high, requiring a minimal 
number of end devices and gateways to cover a large area. The 
technology has long-range communication with very little 
power consumption, thereby increasing the battery life of the 
end devices. Study [24] used LoRaWAN in the real 
environment in Thailand to present the experimental 
performance evaluation. The authors have found 
experimentally that in an outdoor rural environment, the 
LoRaWAN ranges up to 2 km and ranges 55-100 m in an 
indoor environment. It was pointed out that the range depends 
upon the properties of antennas, such as the antenna's height, 
gain, and directivity. Research [25] used the central business 
district of Melbourne, a high-density urban area, to present 
specific measurements to evaluate the performance of 
LoRaWAN. Their results show that within the radius of 200 m, 
only the communication is loss-free, while at around 600 m, 
the communication is a total loss. It isn't easy to have a precise 
measurement. Author in [26] explained with the results that 
environmental temperature highly affects communication. The 
authors showed that perfect communication could be converted 
to an almost useless one by increasing the environmental 
temperature. Therefore, it is important to consider the 
environment and the effect of the environment on LoRa signals 
to get good localization accuracy. The LoRaWAN technology 
offers an excellent option for Internet of Things (IoT) uses, 
such as advanced agriculture irrigation systems and intelligent 
urban development initiatives, among others. Thousands of end 
devices can be supported by a single gateway. Localization is 
significant for these LoRaWAN applications as the LoRaWAN 
network can have devices within the range of several thousand. 
Therefore, it is imperative to estimate each end device's 
location. An example of this can be multiple temperature 
sensors placed in various urban areas to measure temperature 
fluctuations. As the number of sensors can be thousands in this 
application; therefore, it is very tedious to program each of the 
sensors with their locations. 

A natural solution to this problem is to equip GPS with 
every sensor. While this is a perfect solution, as GPS can have 
up to 10 m of accuracy, adding a GPS tracker to every sensor 
or device will increase the overall cost and power consumption 
[27]. Another problem with GPS is the lack of indoor 
coverage, as GPS signals can have so much signals losses 
when penetrating buildings etc. Therefore, it is very much 
important to find a solution for localization using LoRa. The 
in-depth studies on LoRaWAN can be found in [28] [29] [30] 
[31]. 

The study [32] calculated the positioning errors by 
constructing RSSI fingerprint data for LoRaWAN and SigFox 
using k-NN. The accuracy obtained by the authors was 
398.4m. Their study used several gateways for measuring 
LoRa RSSI data. 

Research [33] compared the fingerprinting and the range-
based approaches. The authors concluded that the 
fingerprinting approach has less mean localization error than 

the range-based approach. The mean error using fingerprinting 
approach was 340 m, and 700 m using the range-based 
techniques. Similarly, [34] used k-NN, Extra Trees, and neural 
networks (NN) to find the location of the end node and had the 
mean error of 394 m, 379 m, and 357 m, respectively. Authors 
in [35] used the artificial neural network to find the end node's 
location and got a mean error of 381.8 m. 

The study [36] compared linear regression methods, SVR, 
k-NN, weighted k-NN, and random forest, concluding that the 
random forest could perform with the minimum localization 
error of 340 m. 

The research [37] used two layers to perform the 
localization. In the first layer, the authors used k-means 
clustering; in the second layer, the final position is estimated 
using the weighted kernel regression model. The authors were 
able to achieve a mean localization error of 346.03 m. 

The literature provides valuable insights into LoRa 
localization. However, to the best of the author's knowledge, a 
significant gap still exists in the literature with regard to the 
performance of SVR, where the shadowing effect has its 
maximum presence. 

III. METHODOLOGY 

This section describes the hardware setup, the dataset, test 
point locations, and the methodology used. 

A. LoRaWAN Setup 

Fig. 1 shows the longitudes and the latitudes of the points 
where the RSSIs are measured. The gateway was placed on the 
rooftop of a lab with an elevation of 74 m above sea level, and 
the end node was moved to 14 random locations. The height of 
the end device was variable as it is challenging to make the 
elevation of the end device constant with different distances 
and areas. A total of 14 random locations were selected on the 
campus to find out the measured RSSI values. All the 
measurements were taken outdoors. No indoor measurements 
were taken. The minimum and the maximum distance used 
between the gateway and the end node are 17 m and 1330 m, 
respectively, to measure the RSSI. The distances between the 
End Node and gateways are calculated using Eq. (2). 

 
Fig. 1. Longitudes and latitudes of the datapoint location in an outdoor 

campus environment. 

The Dragino LoRa shield served as the endpoint device for 
the experiments, and the RisingHF (RHF2S008) acted as the 
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gateway. The end node was powered by a portable battery 
bank, while the gateway was powered through Power over 
Ethernet (PoE) and included an integrated GPS module, 
making it convenient for the experiments to determine 
Differential TDoA. The gateway possessed notable features, 
which are as under. 

 The gateway supported 8 multi spreading factor uplink 
channels. 

 The maximum output power of 27 dBm. 

 -141 dBm of Receiver sensitivity. 

 It supports ethernet connection, including Wi-Fi, GPRS, 
3G, and 4G connections. 

 Antenna gain is 3dBi. 

The experiments utilized the online public network server 
called THE THINGS NETWORK as the network server. The 
LoRa Shield transmits the data to the gateway, which then 
passes the data, along with metadata such as SNR, RSSI, and 
timestamps, to THE THINGS NETWORK. The collected data 
is then uploaded to the computer for the application of Support 
Vector Regression (SVR) to predict the location of the end 
node. 

B. Support Vector Regression 

SVR is the supervised machine learning model that works 
similar to support vector machine. It finds the best-fit line for 
the predictions. The Support Vector Regression (SVR) 
approach differs from other regression models in that it aims to 
find the best line that falls within a specified range, known as 
the threshold value, instead of minimizing the difference 
between the actual and predicted values. This threshold value 
refers to the space between the hyperplane and the boundary 
line. However, SVR's computational time for fitting increases 
rapidly with the number of samples, making it challenging to 
handle datasets with over 10,000 data points [33]. 

There are a total of 21 features (RSSIs) for a single ground 
truth location to predict the location of the end node. We used 
the standardization in the preprocessing step on our data using 
z-score and then applied the SVR. The kernel scale used is 1.1. 
We have used the gaussian as the kernel function. The formula 
for the gaussian kernel function can be seen in Eq. (1) [38]. 

                       
   (1) 

Where xj is the target variable, and xk is the feature variable. 

C. Distance Error 

The distance error between the ground truth location and 
the predicted location is calculated using Eq. (2) by implying 
the predicted longitudes and the latitudes [39]. 
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Whereas n=R*m. The R is the earth's radius, n is the 
distance between two points on earth, l and q are the latitudes 
and longitudes, respectively. 

IV. RESULTS AND DISCUSSIONS 

Fig. 2 shows the RSSI values at different distances. The 
results were taken by using a single gateway and a single node. 
There were 14 locations where the RSSIs were measured. 
Some locations were chosen to make the shadowing effect 
more significant. At each location, 21 readings were taken. 

 
Fig. 2. RSSI values at different distances. 

As shown in Fig. 2, the RSSI decreased with the increase in 
the distance, but there were some exceptions. The exceptions 
were the locations where the shadowing effect was more 
significant. This can be seen in Fig. 3 where the average RSSI 
plot was taken at different locations. As can be seen at the 
distance of 43m, 330m, 413m and 600m, the average RSSI 
decreased more because of shadowing, especially at 600m, 
which we measured behind the building. The RSSI decreased 
up to -118.4 dBm because of the shadowing effect. It is clear 
from the graphs that shadowing can be a bottleneck for 
localization using LoRa, thereby increasing distance error. 

 
Fig. 3. Average RSSI values at different distances. 

Fig. 4 shows the exponential non-linear least squares fitting 
on the average RSSIs. It is observed that the RSSI decreases 
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with the increase in the distance, but after a certain distance, 
the decrease in RSSI becomes very minimal. 

 
Fig. 4. Exponential non-linear least squares fitting on the average RSSIs. 

Fig. 5 shows the SNR values at different distances. It can 
be observed that there were some locations where the SNR was 
in negative value because the noise power was more as 
compared to the signal. 

 
Fig. 5. SNR values at different distances. 

Fig. 6 shows the average SNR at every testbed location. It 
is observed that the SNR measured has a negative value at 600 
m (behind the building) and at a distance of 1330 m. 

 
Fig. 6. Average SNR values at different distances. 

A combined graph of Average SNR, Average RSSI and 
distance can be seen in Fig. 7. As can be seen that at a distance 
of 600 m, the RSSI and SNR are at their lowest value due to 
the shadowing effect. This is the datapoint directly taken 
behind the building, which clearly shows that the shadowing 
directly affects localization accuracy using SVR. 

 
Fig. 7. Distance vs average RSSI and average SNR. 

Table I shows the measured average RSSIs, average SNRs, 
longitude and latitudes of the actual locations, longitude and 
latitudes of the predicted locations, and the distance errors 
caused using the SVR. The table shows that the highest 
distance errors predicted by SVR were the locations where the 
shadowing effect was most significant. The least distance error 
predicted by the proposed method is 36.26, the mean error is 
171.59 m, and the highest distance error is 755.54 m. 

The limitations of the study can be attributed to the 
environmental factors on the signal strength, which can affect 
the accuracy of the LoRa localization. Some limitations include 
signal strength variability due to environmental factors such as 
obstacles, interference, and atmospheric conditions. The 
complexity of environmental modeling, such as terrain and 
buildings, affects the propagation of LoRa signals. Accurately 
modeling these environmental factors can be complex and 
require detailed knowledge of the local environment. 

One use case scenario where the localization method can 
still be useful even with a high error is in wildlife tracking. For 
example, researchers tracking the movement of large animals 
such as elephants or giraffes in a wildlife reserve can benefit 
from using localization methods to get a general idea of the 
animal's location, even with a high error margin. Even if the 
location error is high, it can still provide valuable information 
about the animal's general movements, such as where they are 
likely to feed, rest, or migrate. Additionally, the data collected 
over time can help researchers identify patterns, make 
predictions about the animal's behavior, and inform 
conservation efforts. By tracking the movements of wildlife, 
researchers can gain insights into their behaviors and habitats 
and use that knowledge to protect them better. 
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TABLE I.  DISTANCE, AVERAGE RSSI, DISTANCE ERROR AND AVERAGE DISTANCE ERROR IN METERS 

Distances between 

GW and End Nodes 

(m) 

Average RSSI 

(dBm) 

Average SNR 

(dB) 

Actual Locations Predicted Locations Distance 

Error (m) 

Average 

Distance Error 

(m) Longitude Latitude Longitude Latitude 

17 -53.55 8.96 100.96721 4.38630 100.96931 4.38598 236.34 

171.59 

43 -73.70 8.52 100.96720 4.38577 100.96765 4.38563 53.00 

61 -71.00 8.01 100.96721 4.38561 100.96929 4.38564 230.81 

127 -75.80 7.40 100.96691 4.38724 100.96674 4.38692 39.10 

206 -93.50 7.09 100.96901 4.38552 100.96932 4.38562 36.26 

330 -108.50 4.97 100.96908 4.38381 100.96983 4.38408 89.42 

413 -112.05 6.49 100.96489 4.38900 100.96539 4.38763 161.65 

459 -105.80 6.14 100.96982 4.38291 100.97094 4.38318 127.96 

512 -106.70 5.79 100.97015 4.38257 100.97064 4.38309 80.11 

600 -118.40 -2.06 100.97014 4.38159 100.97058 4.38526 412.46 

706 -107.65 4.37 100.97302 4.38346 100.97291 4.38380 39.97 

868 -110.65 3.79 100.97502 4.38516 100.97448 4.38530 61.57 

975 -111.60 0.84 100.97605 4.38618 100.97536 4.38603 78.06 

1330 -117.30 -0.51 100.97923 4.38653 100.97241 4.38623 755.54 

V. CONCLUSION AND FUTURE WORK 

In this research article, the experiments were conducted on 
a university campus to find the location of the end node. A 
localization algorithm using Support Vector Regression (SVR) 
has been implemented on a LoRaWAN architecture. The 
results show that using the RSSI as features and the SVR as a 
regression algorithm, the end node can be located with an 
average distance error of 171.59 meters and a minimum error 
of 36.26 meters. This shows that the low-powered LoRaWAN 
can be used for localization in applications where high 
localization accuracy is not needed. This work can be extended 
to find the effect on localization accuracy by increasing the 
number of gateways, the dataset, and the inclusion of other 
fingerprints like SNR and time fingerprints. Additionally, 
different environments can be included in the experiments, like 
indoor areas and finding out the localization distance errors in 
the combined space of indoors and outdoors. 
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