
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

353 | P a g e

www.ijacsa.thesai.org

Automatic Detection of Software Defects based on

Machine Learning

Nawal Elshamy
1
, Amal AbouElenen

2
, Samir Elmougy

3

Computer Science Department-Faculty of Computer and Information Science, Mansoura University, Mansoura, Egypt
1

Computer Science Department-Faculty of Computer and Information Science, Mansoura University, Mansoura, Egypt
2, 3

Abstract—Defects in software are one of the critical problems

in software engineering community because they provide

inaccurate results and negatively affect the quality and reliability

of the software. These defects must be detected in the early stages

of software development. Researchers had used Software Defect

Detection (SDD) techniques to allow predicting module fault-

proneness. By implementing the hyperparameter optimization

techniques and exploiting data imbalances in predicting defects,

this paper proposes and develops an SDD model with high

performance and generalization capability. To classify defects in

software modules, machine learning algorithms and ensemble

learning techniques are used on the balanced datasets. The

balanced datasets are obtained through using a hybrid of

synthetic minority oversample (SMOTE) and Support Vector

Machine (SVM). To obtain the optimal hyperparameters needed

for the used classifiers and for the dataset balanced algorithms,

Non-dominated Sorting Genetic Algorithm II (NDSGA-II) is

used. To reduce the time and save other used resources,

Hyperband technique, which is a multi-fidelity optimization, is

used in NDSGA-II. A 10-fold Cross Validation (CV) is applied to

overcome the overfitting and underfitting problems. The

accuracy, recall, F-measure, and ROC AUC metrics are used to

evaluate the SDD model. The results show that the proposed

model predicts defects more accurately than the compared

studies.

Keywords—Software defect detection; NDSGA-II; hyperband;

imbalance dataset

I. INTRODUCTION

One of the critical topics in the software engineering
community is the development of high software quality and
reliability while making effective use of limited resources. The
Software Development Lifecycle (SDLC) is a structured
method developed to ensure the production of stable, high-
quality software. To ensure a timely and effective software
system, it is essential to follow the SDLC's stages, which
include requirement collecting, requirement analysis, system
design, system development, and maintenance. A software
fault may be a human error or a system-related error, failure, or
crash. Defects have a significant effect on software quality and
even the economics of software. So, fixing defects is an
important part of software maintenance, but it also wastes time
and resources. Detecting software faults before software
deployment is crucial, as the correct detection of faulty
software modules or components allows good use of resources
and time [1] [2].

"Defect detection technology" is the ability to find bugs in
every code change that developers send. SDD used ML

approaches to software defect datasets characterized by
software metrics (as features) to identify software module or
component problems. Researchers had developed and
implemented ML approaches for SDD.

One of the most important steps in creating a reliable ML
model is tuning the model's hyperparameters. It's important to
note that the tuning process differs for categorical, discrete, and
continuous hyper-parameters. Manual testing is a common
method for altering hyper-parameters, but it requires a
comprehensive understanding of ML algorithms and their
hyper-parameter settings. Due to the high number of hyper-
parameters, the complexity of the models, the length of time
required to evaluate the models, and the non-linear interactions
between the hyper-parameters, manual tuning is often
ineffective [3]. These considerations have motivated more
studies in Hyper-parameter Optimization (HPO) approaches
especially when working with huge datasets or when using
complex ML algorithms with a large number of hyper-
parameters. The main goal of HPO is to automate this process
to improve the performance of the ML model, find the best ML
model for a specific problem, and reduce the amount of human
effort needed. To find ideal hyper-parameters, it is critical to
use the optimal optimization technique. Because many HPO
issues are often non-convex or non-differentiable optimization
issues, traditional optimization techniques may be inadequate
for them, resulting in a local rather than a global optimum [4].
A Non-Dominated Sorted Genetic Algorithm (NDSGA-II) is
used in this paper for hyperparameter search hybrid with
hyperband speed configuration.

SDD models were developed using Machine Learning
(ML) classifiers. Nevertheless, SDD datasets contain more
nondetectable than detectable occurrences; this is known as the
"class imbalance problem." In addition, multiple studies on
defect detection models revealed that minority classes contain
more instances of faults than do majority classes that are
defect-free. Hence, applying ML algorithms to such
unbalanced data yields biased outcomes for minority-class
occurrences. To successfully manage an imbalance in datasets,
oversampling techniques are utilized [5].

This paper implements the SMOTE-SVM algorithm to
balance the imbalanced data with tuned parameters based on
the NDSGA-II hybrid with the Hyperband algorithm. Decision
Tree (DT), Random Forest (RF), and ensemble learning with
Adaboost (AB) and Bagging (BG) classifiers are the ML
classifiers used in this work. The proposed model is evaluated
on nine defect detection NASA datasets. This work is
structured as follows: The second and third sections provide

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

354 | P a g e

www.ijacsa.thesai.org

"Background" and "literature review," respectively. The
methodology and requirements for the experiment are
discussed in Section IV. Experiments and their results are
presented in Section V. The final section of the paper discusses
the conclusion and what comes next.

II. BACKGROUND

Several facets of SDD are discussed in this section. We
describe optimization strategies for hyperparameter tuning and
data-imbalance-resolving algorithms.

A. Class Imbalanced Problem

Problems with class imbalance arise in datasets where the
values for different classes are distributed unevenly. Imagine a
dataset in which 95% of the class values are from one class and
only 5% are from another; this dataset is unbalanced. Minority
classes and values are rarely reported, compared to hundreds,
thousands, or even millions of majority examples. When ML
classifiers are applied to such datasets, models lose detection
capacity and provide off-target results. Biased outcomes are
produced when a predictive model is used for classification on
an uneven dataset. ML procedures function best with an evenly
distributed dataset. In this way, ML models fail to accurately
predict class values in unbalanced datasets. For minority class
norms, this phenomenon is especially prevalent. Effectively
addressing class imbalance issues is critical because minority
class values are regarded as more significant than majority
class values [6].

By simulating or synthesizing instances from
underrepresented groups, defect detection experts have found
that sampling strategies can produce more representative
datasets. This research reconstructed instances of under-
represented groups by using oversampling techniques. As a
result, the oversampling techniques significantly improved the
ML classifiers' detection performance.

1) SMOTE-SVM: SMOTE is a popular oversampling

technique for achieving more equitable class distribution by

simulating the emergence of new instances of the minority

class along roads connecting existing instances of the minority

class to their nearest neighbors. To aid in the establishment of

class boundaries, SVM-SMOTE generates new instances of

the minority class along boundary lines. The synthetic

sampling technique with data generation (Synthetic Minority

Oversampling Technique, SMOTE) [7] is one of the efficient

special algorithms for re-establishing class parity after

oversampling by increasing the number of objects in the

minority class. Using k-nearest Neighbor (KNN) approach,

SMOTE algorithm generates minority-class synthetic items

from similarities in the feature space between existent objects.

With this method, we can manufacture an arbitrary number of

artificial objects that are "similar" to those in the minority

class but are otherwise unique [8].

2) Support Vector Machine (SVM): It is a supervised

learning algorithm that works by mapping low-dimensional

data points into a high-dimensional feature space to make

them linearly separable and then using an optimal separating

hyperplane as the classification boundary to partition the data

by increasing the difference between the two classes. With the

assumption of n data points, SVM's objective function is

[4][9][10]:

 {

 ∑ * ()+

 } (1)

where w is a normalization vector, and C is the penalty
parameter of the error term, which is an important hyper-
parameter of all SVM models.

Several kernels are available to be used in SVM models to
determine the similarity between two data points, xi and xj.
Hence, the type of kernel would be a crucial hyperparameter to
adjust. The most common kernels used in SVM include linear
kernels, Radial Basis Function (RBF) kernels, polynomial
kernels, and sigmoid kernels. The different kernel functions
can be denoted as follows [11]:

 Linear kernel

 ()
 (2)

 Polynomial kernel

 () (
) (3)

 RBF kernel

 () (|| ||

) (4)

 Sigmoid kernel:

 () (
) (5)

After deciding on a kernel type, further hyper-parameters
must be adjusted, as demonstrated by the corresponding kernel
function equations. When the "kernel type" hyper-parameter is
set to polynomial, RBF, or sigmoid, the coefficient is the
conditional hyper-parameter; r is the conditional hyper-
parameter of polynomial and sigmoid kernels. Extra
conditioned hyper-parameter, d, defines the "degree" of the
polynomial kernel function.

As part of the training process for an SVM classifier, the
kernel function type k (xi, xj) values and the value of the
regularization parameter C are calculated so that a trade-off
may be made between increasing the distance between classes
and reducing the total error [12].

B. Hyperparameter Optimization (HPO)

The training of a ML model is subject to number of
hyperparameters. These hyperparameters determine the
model's strategy for learning a given connection between input
and detections. Using hyperparameter optimization (HPO), a
model, that has been fine-tuned using the most effective
hyperparameters, could be obtained. This model ought to be
able to produce minimum-loss solutions. The challenge with
optimization problems is that the search space is typically
infinite, while the resources available to carry out the search
are finite (maximum x amount of time or iterations).
Consequently, for an algorithm to search for the global
minimum effectively, it must incorporate strategies to make the
most of the available funds. HPO's slow execution time is a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

355 | P a g e

www.ijacsa.thesai.org

serious drawback, especially when dealing with a wide variety
of hyper-parameter configurations or massive datasets [4].

1) Non-dominated sorting GA-II: As non-dominated

sorting is used to generate a preliminary coarse ranking of the

population, NSGA-II (Pareto dominance-based) continues to

be one of the most well-liked algorithms. The non-dominated

solutions can be found using this technique and then moved to

the next class before being discarded. The solutions in each

obtained class are sorted from best to worst according to the

objective's crowding distance, the total of the differences

between an individual's left and right neighbors. It's best to

have a lot of space between individuals. Non-dominated

sorting becomes less discriminative and the left and right

neighbors in each goal are generally different solutions when

there are more than two objectives, hence this strategy fails for

problems with more than two objectives [13].

2) Multi-fidelity optimization technique: In order to work

around the problem of having insufficient time or resources,

multi-fidelity optimization techniques are frequently used. The

original dataset or the features used can be reduced to a subset

to save time [14]. Low-fidelity and high-fidelity evaluations

are combined in multi-fidelity for use in the real world [15].

Low-fidelity evaluations are those that only test a small

fraction of the data and so are very inexpensive, but have poor

generalization performance. Better generalization performance

is achieved at the expense of increased cost in high-fidelity

assessments, where a larger subset is assessed. Poor

performing configurations are eliminated from multi-fidelity

optimization methods at each iteration of hyper-parameter

evaluation on newly generated subsets, leaving only the best

performing configurations to be evaluated on the full training

set. Bandit-based algorithms are a kind of multi-fidelity

optimization algorithms, and they make use of strategies like

sequential halving [16] and Hyperband approach [17].

 Successive Halving: By testing each possible
combination of hyper-parameters, successive halving
can determine which one works best. However, in real-
world applications, numerous considerations must be
taken into account, such as time and resource
constraints. The term "budget" is used to describe these
considerations (B). The following is the primary
procedure for employing successive halving algorithms
for HPO. The first assumption is that there are n sets of
hyper-parameter combinations to test and that these
sets are tested using equally distributed resources

(
 ⁄). Finally, at the end of every cycle, half of

the underperforming hyper-parameter configurations
are thrown out, while the other half are passed on to the
next cycle with double budgets (). The
preceding steps are continued until the best possible set
of hyperparameters is found. The trade-off between the
feasible hyper-parameter configurations and available
budgets affects the cost-benefit analysis of succeeding
halves [18]. With this in mind, the main issue with
consecutive halving is deciding how to divide the
budget, specifically between testing fewer

configurations with a larger budget for each and testing
more configurations with a smaller budget for each.

 Hyperband approach [17] is considered a solution to
the issue of successive halving methods by
dynamically picking an appropriate number of
configurations. It seeks to strike a balance between the
total budget (B) and the number of hyper-parameter
configurations (n) by apportioning a portion of the total

budget to each configuration (
 ⁄). Each batch of

random configurations is routinely halved in order to
get rid of the inefficient hyperparameter setups and
boost performance. The total quantity of data points,
the minimal number of instances required to train a
meaningful model, and the available budgets all
contribute to the restrictions and . After
that, we use and to get the total number of
configurations n and the budget size for each (max).
Based on n and b, a random sample of configurations is
generated and fed into the shown successive halving
model. Each iteration of the consecutive halving
method takes the top half of the configurations and
discards the bottom half, keeping only the best-
performing ones. This is done again until the best
possible set of hyperparameters is found.

C. Ensemble Learning (EL)

1) Random Forest (RF): RF is a bagging approach that

generates many independent, tiny decision trees from the

dataset at random. Selecting a small number of attributes at

each node in order to find the best branching technique allows

for a deeper tree structure. Dataset and feature randomization

makes overfitting less likely. In a classification problem, the

majority vote is used to determine the final class label [19].

2) Bagging: The goal of "bagging" [20] is to increase the

reliability of ML algorithms, especially decision trees. It helps

prevent data from being overfit and lowers the model's

variance. It takes the original training dataset and randomly

selects n subsets of features and data samples, with

replacement, to create n new datasets. Parallel models for

making detections, using each of the n sub datasets as a single

input, are built. The bagging classifier selects as its output the

label class predicted by the majority of the base models.

3) Adaptive Boosting (AdaBoost): It is a technique used to

increase the accuracy and performance of numerous weak

classifiers by combining them into a single strong classifier.

Adaboost's weak classifiers frequently use decision stumps, a

variant of the decision tree that consists of a single node (the

root) and two branches. Various classes of faulty classifiers

are taught. When a less accurate classifier misclassifies a

sample, the sample is assigned more weight in the next

classifier. Further, the aggregate weight is based on how well

each poor-quality classifier performed. Adaboost classifier's

ultimate output is just a weighted sum of the results obtained

by the individual weak classifiers [21].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

356 | P a g e

www.ijacsa.thesai.org

D. Classification Algorithm

1) Decision Tree (DT): DT is a predictive modeling

algorithm that can partition features in a dataset in multiple

ways based on different conditions, resulting in a tree-like

structure. The tree is made up of a decision node, which seeks

the best feature split, and leaves (termina l nodes), which are

used to create a final detection. Different criteria, such as gini

and entropy, are used to divide the features. One significant

consideration while constructing terminal nodes for the

decision tree is deciding when to stop developing trees and

when to create more terminal nodes. This can be done using

two criteria: maximum tree depth (the number of nodes in the

tree after the root node) and minimum node records (the

number of training patterns represented by a given node).

Once a node is built, the same method can be used on all

created data by dividing the dataset into subsets to produce

child nodes. The detection process entails selecting the

appropriate node in a decision tree and then proceeding to

walk down it with the relevant row of data.

III. LITERATURE REVIEW

Several SDD studies had recently been conducted to
accurately detect early-stage developmental defects.
Researchers had attempted to improve the model’s
performance using various methods, algorithms, and
measurements. Some of the most current papers relevant to this
work are discussed here.

Benala and Tantati [22] examined the effects of five
oversampling methods to solve the imbalanced data, including
random oversampling, SMOTE, adaptive synthetic sampling
(ADASYN), Safe-Level-SMOTE (SL-SMOTE), and SVM-
SOMTE, to for SDD using nine imbalanced NASA datasets.
They used decision tree (j48-classifier), the RF, Naive Bayes
(NB), and EL classifiers. They concluded that SVM-SMOTE is
the best oversampling technique due to its ability to produce
minority-class instances in a region bordered by support
vectors. Kassaymeh et al. [23] suggested a combination of Salp
Swarm Algorithm (SSA) and Backpropagation Neural
Network (BPNN) to solve the SDD problem. They used BPNN
to find the best BPNN parameters. Different performance
measures are used to evaluate the results, in which the results
of their experiments showed that the combined work is often
the best way to solve SDD problems. Goyal [24] proposed a
filtering method, called FILTER to accurately predict defects.
They used SVM-based classifiers (linear, polynomial, and
radial basis functions) and a suggested filtering technique.
They declared that their work improves the accuracy, AUC,
and F-measure by 16.73%, 16.80%, and 7.65%, respectively,
based on five datasets. Azzeh et al. [25] studied the effect and
consistency of four kernel functions with feature selection on
the performance of SVM for SDD. Four kernel functions, 10
feature subset selection thresholds based on the information
gain technique, thirty-eight publicly available datasets, and a
single evaluation measure were used in this comprehensive
study. Since then, 1520 experiments had been conducted. Since
the performance of other kernel functions is constrained, the
results showed that SVM with an RBF kernel is the best option
for defective datasets. Sharma et al. [26] analyzed the

application of the ensemble method of ML technique in the
field of SDD. They focused on the global state during the
period 2018–2021, which had been examined from a
multidimensional perspective, including the selection of a
specific ML algorithms, and the research gap that may lead to
the future scope of the work that can be accomplished. Ye et al.
[27] developed a multi-objective immunity optimization
method based on a thorough fitness evaluation mechanism,
which allows it to efficiently tackle the used model. Two
objectives are optimized: defect detection rate and false alarm
rate for defects. Their proposed algorithm is based on
comprehensive fitness evaluation, which has a better selection
ability to attain the predicted effect of population evolution
software and further assists decision makers in selecting a
better scheme that meets their needs. In addition, to validate the
efficacy of their proposed algorithm, they compared it against
eight distinct public data sets, in which the results showed that
their suggested work handles the multi-objective
undersampling SDD problem more effectively. Shafiq et al.
[28] developed an approach for SDD using ML to enhance
software quality. They used PC1 data set as input data. Ant
Colony Optimization (ACO) is used to determine which
characteristics are the most crucial. The chosen characteristics
are fed into SVM. The author declared that their results showed
that ACO-based SVM performs better than SVM, NB, and
KNN classifiers in solving SDD.

IV. PROPOSED APPROACH

The proposed approach in this work classifies the defects
that exist in the software system and discovers the defect
modules during the software development process, so the
model that suffers from defects have high priority during
quality assurance checks. The framework of the proposed
approach in this work is shown in Fig. 1, which is logically
divided into the following four phases. The preprocessing,
which is Phase I, includes the standardization features and label
encoding target features. Phase-II includes oversampling the
dataset to balance the class distribution by applying SMOTE-
SVM and hyperparameter tuning optimization using NDSGA-
II and the Hyperband approach. Phase-III is focusing on
training the SDD models using the balanced dataset and
making the detections. Phase IV is concerned with evaluating
the performance of SDD models and conducting comparative
analyses.

This work aims to develop a high-quality approach to
detect bugs in the early stages of the software development life
cycle, by balancing the modules affected by defects in the
dataset using the high-performance balanced algorithm. The
SMOTE oversampling approach uses KNN similarity measures
between items to generate synthetic instances in the defect
class. This leads to the creation of an unknown number of
artificial items that are "similar" to those in the current defect
class but do not duplicate them. This algorithm has some
disadvantages, such as sample overlap, noise interference, and
blindness of neighbor selection. To address these problems,
SMOTE is hybridized with SVM, so SVM-SMOTE generates
new instances of defect classes near borderlines with SVM to
help establish boundaries between classes.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

357 | P a g e

www.ijacsa.thesai.org

However, the behavior of these algorithms is controlled by
a set of parameters that remain static during the training
process. The quality of the detection can be improved by fine-
tuning these parameters to achieve the best possible results.
Here, we apply an optimization algorithm called NDSGA-II to
search for and fine-tune the hyperparameters of these
algorithms and then pick the best possible parameters. Since
NDSGA-II is resource-intensive and time-consuming
algorithm, it has been integrated with Hyperband approach, to
speed up the configuration evaluation by getting rid of
ineffective parameters that don't have a global minimum.
Testing the model's intermediate scores for a given set of
hyperparameters is how it functions. For instance, after a fixed
number of rounds, one could examine all the intermediate
scores and eliminate the least effective parameters.

Fig. 1. The proposed approach.

In Fig. 2, the steps of the search optimization technique
used to obtain the optimal parameters for the SMOTE-SVM
algorithm are illustrated. This process is described in stages as
follows:

 Stage 1: Initialize the hyperparameters search space
that represents the population (P), which consists of a
combination of input variables (V).

 Stage 2: Generate random parent population.

 Stage 3: Apply the SMOTE-SVM-based model
described in Algorithm 1 for each variable.

 Stage 4: Each V’s accuracy is calculated using 10-fold
CV to identify the fitness vectors, and each vector was
given a fitness rank proportional to its non-domination
frequency.

 Stage 5: Assign ranks to all V in a P by first selecting
all of the non-dominated solutions from P and placing
them in rank 1, then selecting all of the remaining
solutions and placing them in rank 2, and so on.

 Stage 6: Sorts each V according to a dominance rule
that said:

A variable (Ẍ) is said to dominate another variable (Ẋ), if

 There is no objective of Ẍ worse than that

objective of Ẋ.

 There is at least one objective of Ẍ better than that

objective of Ẋ.

 Stage 7: Offspring resulting from recombination
between two unrelated parents enter the progeny P.
Throughout the process of mutation, the child's values
shift. That process is continued until the P is twice as
large as it was at the outset.

 Stage 8: Nondenominational criteria are used to re-
classify P. In this way, a new generation will be
selected according to established hierarchy.

 Stage 9: In the next iteration, crowding-sort will be
used to determine the density of solutions if the
partially included case holds. Less dense trials are
selected for the next generation until the population
count is back to its starting point.

 Stage 10: Iteratively producing and checking poorly
configured parameters, then discarding their offspring,
is repeated until the maximum number of generations
is reached, at which point the optimal hyperparameter
is returned.

Software Defect Datasets

Preprocessing

Scaling Features

StandardScaler ()

Encoding target feature

LabelEncoder ()

Balanced Dataset

SMOTE-SVM

Hyperparameter tuning

NDSGA-II with Hyperband

Splitting Dataset using

10-fold CV

Training & Testing classification model

SVM, DT, RF,

Bagging and Adaboost

Evaluation the performance

Accuracy, AUC, Recall,

and F1-measure

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

358 | P a g e

www.ijacsa.thesai.org

Fig. 2. Main steps of obtaining the optimal parameters of SMOTE-SVM algorithm.

Algorithm 1: The proposed balancing datasets (SMOTE-SVM-based model)

 Input:

 Software defects dataset (Đ):
 where:

 D = Defects ∪ non_defects,
 Defects represents instances in the dataset with defect class

 Non_defects represent instances in the dataset from non_defects class.

Output: The balanced dataset

1 for D’ Đ do

begin

2 X = instances

y = target class

 // Encoding target features that contain categorical data

3 y_Encode = LabelEncoder (y);

 // Appling standardization technique to be in the same range

4 X_Scale = StandardScaler (X);

5 for each data point <xi, , yi>

begin

 // <xi,, yi>: the defect instances which denotes the minority class in Đ

6 Defect support vectors = SVM algorithm (defect subsets, i.e., minority subsets);

7 m = kNN (defect support vector);

8 If number of majority neighbors <

9 = Xi + (Ẋi , Xi) * ℜ, where ℜ [0,1],Xi Smax,

 Ẋi KNN of Xi , and Smax, is a majority instance

 End if

10 Else

11 = Xi + (Ẋi- , Xi) * ℜ, where ℜ [0,1], Xi Smin,

 Ẋi one of KNN of Xi, which Smin, is minority instance
12 Ď = ∪ Đ

 End for

13 return Ď

 End for

The following paragraphs discuss the SDD model that is
presented in Algorithm 1, where the used defective datasets are

imbalanced and the output is the balanced dataset. The
necessary preprocessing steps are executed for each dataset.
Encoding the categorical data in the chosen dataset is
represented by yEncode, and xScale represents the features
after standardization. The SVM model is applied in the
minority subset, and neighbors of the defect support vector are
obtained. If the number of non-defects class neighbors is less
than half of the nearest defect support vector, a new object of
the majority class is generated; otherwise, the new object will
be of the minority class.

V. EXPERIMENTATIONS AND RESULTS

The methodology behind the experiments is discussed here,
as well as the infrastructure used and the datasets that were
examined.

A. Environment

The proposed approach was tested on a laptop running
Microsoft Windows 10 Pro 64-bit and an Intel(R) Core (TM)
i7-8565U Processor at 1.80 GHz (92 MHz). Oversampling
methods are taken from the imblearn library, and ML
classifiers are imported into Sklearn 1.0.2 using an x64
processor running Jupyter notebook 6.1.4 with Python 3.8.5
and OPTUNA (HPO framework).

B. Description to Dataset and Software Metrics used

This work used nine NASA datasets and was investigated
by Shepperd et al. [29]. Halstead metrics, McCabe metrics, size
metrics, and other properties are included in these datasets to
help establish the quality of a software model. If a dataset has
bad class values, it probably is bad. The model is fine if the
class value is "0" or "no," but it's broken if it's "1" or "yes."
Minority class samples range from being extremely under-
represented to being evenly distributed across the datasets. The
nine NASA datasets are illustrated in Table I.

Generate initial

population P0
A combination of input

variables.

Generate the model based on

SMOTE-SVM by combining

variables for each input.

Fitness vectors can be

determined by computing

accuracy using 10-fold

CV for each input.

Fast non-dominated
sorting method and

crowding distance to

Rt are used to
generate population

ranks.

Stop?

Generate New
population:

Rt = Pt∪Qt

Creating offspring (Qt)
using crossover and

mutation operators.

Find parent (Pt) from current

population using binary
tournament selection

routine.

Obtain Pareto

optimal solutions

Ye
s

No

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

359 | P a g e

www.ijacsa.thesai.org

TABLE I. NASA DATASET DESCRIPTION

Database
Of

Features

Of

Instances

Of

Defective

Of

Non-

Defective

Defective

%

KC1 22 1183 314 869 15.45

KC2 22 522 104 415 20.5

KC3 40 194 36 158 18.55

CM1 22 344 49 295 12.21

PC1 22 705 77 644 8.03

PC2 37 1585 16 1569 1

MC1 39 1988 46 1942 2.31

MW1 38 253 27 226 10.67

JM1 22 7782 326 1783 21.48

C. Parameter Setting for SDD Models

Table II details the various classifier parameter settings.

TABLE II. PARAMETER SETTINGS OF THE USED ALGORITHMS

Parameters Values

NDSGA-II

iterations 100

Population size Hyperparameter space

Crossover rate 1

Mutation rate

SVM

Kernel type Rbf

gamma 0.61719

C 16.1657

degree 1

RandomState 104

KNN

K 8

m 10

DT, RF

criterion entropy

D. Evaluation Criteria

The proposed classifiers' efficacy is measured using
standard metrics including the confusion matrix, ROC, AUC,
accuracy mean, and F-measure.

 Accuracy: It is a ratio of the number of correct
detections to the total number of observations, as
illustrated in Eq. (6).

 (6)

 Precision is the ratio of correct positive detections out
of the total number of positive detections as given in
Eq. (7)

 (7)

 Recall is the ratio of correct positive observations to all
positive observations made in class, as given in Eq. (8).

 (8)

 F1 score is a weighted average of precision and recall.
F1 is usually preferable to accuracy, particularly if the
class distribution is uneven, as calculated from Eq. (9).

 (9)

 AUC-ROC It shows TPR versus FPR at different
thresholds to differentiate "signal" from "noise." It
separates classes and summarizes the ROC curve. High
AUC means the model separates positive and negative
groups well.

E. Results

1) Results of applying the decision tree algorithm: the

results of DT for defect detection using the proposed approach

are shown in Table III. The best results obtained on the PC2,

MC1, and CM1 datasets, respectively, are as follows: 1) the

accuracy achieved 98.18%, 95.59%, and 94.28%. 2) The AUC

achieved 9.9798, 0.9546, and 0.9466. 3) F-measure achieved

0.9736, 0.936, and 0.9259.

2) Results of applying the Random Forest algorithm: The

results of RF for defect detection using the proposed approach

are shown in Table IV. The best results obtained on the KC3,

MC1, and PC2 datasets, respectively, are as follows: 1) the

accuracy achieved 100 %, 99.66 %, and 99.06 %. 2) AUC

achieved 1.0, 0.9974, and 0.9868. 3) F-measure achieved 1.0,

0.9950, and 0.9866.

3) Results of applying the Adaboost algorithm: The results

of Adaboost for defect detection using the proposed approach

are shown in Table V. The best results obtained on the KC3,

PC2, and MC1 datasets, respectively, are as follows: 1) The

achieved accuracy is 100%, 99.09%, and 97.28%. 2) The

achieved AUC 1.0, 0.9868, and 0.9746. 3) The achieved F-

measure achieved 1.0, 0.9866, and 0.9611.

TABLE III. RESULTS OF APPLYING DT ALGORITHM

DATASETS ACCURACY (%) AUC RECALL F1-MEASURE

KC1 88.20 0.8820 0.8707 0.8806

KC2 89.15 0.8922 0.8333 0.8860

KC3 93.548 0.9354 0.93333 0.9333

CM1 94.285 0.9466 0.9615 0.9259

PC1 90.77 0.9077 0.9126 0.9082

PC2 98.18 0.9798 0.9736 0.9736

MC1 95.59 0.9546 0.9504 0.9365

MW1 86.66 0.8656 0.9130 0.8749

JM1 83.47 0.8347 0.85535 0.8381

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

360 | P a g e

www.ijacsa.thesai.org

TABLE IV. RESULTS OF APPLYING RF ALGORITHM

DATASETS ACCURACY (%) AUC RECALL
F1-

MEASURE

KC1 92.415 0.9241 0.9325 0.9247

KC2 95.180 0.9520 0.92857 0.95121

KC3 100 1.0 1.0 1.0

CM1 92.857 0.9431 1.0 0.9122

PC1 95.14 0.9514 0.9417 0.9509

PC2 99.09 0.9868 0.9736 0.9866

MC1 99.66 0.9974 1.0 0.9950

MW1 93.33 0.9328 0.9565 0.9361

JM1 89.80 0.8980 0.89977 0.8982

TABLE V. RESULTS OF APPLYING ADABOOST ALGORITHM

DATASETS ACCURACY (%) AUC RECALL F1-MEASURE

KC1
82.022

0.82022

0.7640

0.8095

KC2
91.566

0.9155

0.92857

0.91764

KC3 100
1.0

1.0

1.0

CM1
88.571

0.90122

0.96153

0.8620

PC1
89.80

0.8980

0.9029

0.8985

PC2 99.09 0.9868 0.9736 0.9866

MC1
97.28

0.9746

0.9801

0.9611

MW1
88.88

0.8873

0.9565

0.8979

JM1
75.27

0.7527

0.71070

0.74197

4) Results of applying the bagging algorithm: The results

of bagging for defect detection using the proposed approach

are shown in Table VI. The best results obtained on the MC1,

PC2, and KC3 datasets, respectively, are as follows: 1) the

accuracy achieved 98.64%, 98.18%, and 96.77%. 2) The

achieved AUC is 0.9825, 0.9736, and 0.9666. 3) The achieved

F-measure 0.98, 0.9729, and 0.9655.

TABLE VI. RESULTS OF APPLYING BAGGING ALGORITHM

DATASETS ACCURACY (%) AUC RECALL F1-MEASURE

KC1
91.85

0.9185

0.8876

0.9159

KC2
91.566

0.9160

0.8809

0.9135

KC3
96.77

0.9666

0.93333

0.9655

CM1
91.428

0.9239

0.96153

0.89285

PC1
94.17

0.9417

0.9320

0.9411

PC2 98.18 0.9736 0.9473 0.9729

MC1 98.64 0.9825 0.9702 0.98

MW1
95.555

0.9555

0.9565

0.9565

JM1
88.54

0.8854

0.8747

0.8842

5) Results of applying the svm algorithm: The results of

SVM for defect detection using the proposed approach are

shown in Table VII. The best results obtained on the PC2,

KC2, and MC1 datasets, respectively, are as follows: 1) the

accuracy achieved 99.09 %, 98.79 %, and 98.64 %. 2) The

AUC achieved 0.9868, 0.9878, and 0.973. 3) F-measure

achieved 0.9866, 0.9882, and 0.9803.

TABLE VII. RESULTS OF APPLYING SVM ALGORITHM

DATASETS ACCURACY (%) AUC RECALL
F1-

MEASURE

KC1
87.92

0.8792

0.8707

0.8781

KC2
98.79

0.9878

1.0

0.9882

KC3
93.54

0.9354 0.9333 0.9333

CM1 91.42 0.9160 0.92307 0.8888

PC1 97.57 0.9757 0.9805 0.9758

PC2 99.09 0.9868 0.9736 0.9866

MC1 98.64 0.9873 0.9900 0.9803

MW1
95.55

0.9565

0.9130
0.9545

JM1
82.16

0.8216

0.8018

0.8181

VI. RESULT ANALYSIS AND DISCUSSION

Different experiments were conducted to find out how the
oversampling and HPO techniques affected the performance of
SDD models. We first investigated how well SDD models with
NDSGA-II hybrid using Hyperband approach for HPO and
SMOTE-SVM balanced datasets performed. Tables III to VII
display the results for various performance measures for the
available NASA software defect dataset. Therefore, it can be
asserted that we have successfully implemented all the
classification algorithms with high performance. From these
tables, it is clear that RF is the most accurate method to classify
defects, while Adaboost is the least accurate of all evaluation
measures. With KC3 dataset, Adaboost and RF classifier were
able to achieve 100% accuracy. Table VIII presents the
accuracy results of the proposed work with and without
parameter tuning on different datasets, to illustrate the
influence of tuning these parameters on the model's
performance. Also, Fig. 3 and Fig. 4 show the comparison
between these methods. These results show that tuning the
algorithm's parameters helped make the models more accurate
than the other methods which don't tune the parameters.

TABLE VIII. ACCURACY MEASURE FOR ALL CLASSIFIERS WITH AND

WITHOUT HYPERPARAMETER TUNING

DATASETS

ACCURACY WITHOUT

PARAMETER TUNING

(%)

ACCURACY WITH

PARAMETER TUNING

(%)

KC1

SVM 77.52 SVM 87.92

DT 85.95 DT 88.20

RF 91.57 RF 92.415

ADABOOST 80.33 ADABOOST 82.022

BAGGING 91.01 BAGGING 91.85

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

361 | P a g e

www.ijacsa.thesai.org

KC2

SVM 85.54 SVM 98.79

DT 89.15 DT 89.15

RF 96.38 RF 95.180

ADABOOST 91.566 ADABOOST 91.566

BAGGING 90.36 BAGGING 91.566

KC3

SVM 90.32 SVM 93.54

DT 90.32 DT 93.548

RF 100 RF 100

ADABOOST 90.32 ADABOOST 100

BAGGING 96.77 BAGGING 96.77

CM1

SVM 79.72 SVM 91.42

DT 85.13 DT 94.285

RF 89.18 RF 92.857

ADABOOST 81.08 ADABOOST 88.571

BAGGING 93.24 BAGGING 91.428

PC1

SVM 79.12 SVM 97.57

DT 91.74 DT 90.77

RF 95.14 RF 95.14

ADABOOST 91.26 ADABOOST 89.80

BAGGING 94.17 BAGGING 94.17

PC2

SVM 93.27 SVM 99.09

DT 97.47 DT 98.18

RF 98.31 RF 99.09

ADABOOST 96.63 ADABOOST 99.09

BAGGING 96.63 BAGGING 98.18

MC1

SVM 89.9 SVM 98.64

DT 96.84 DT 95.59

RF 99.05 RF 99.66

ADABOOST 96.21 ADABOOST 97.28

BAGGING 98.73 BAGGING 98.64

MW1

SVM 77.77 SVM 95.55

DT 88.88 DT 86.66

RF 86.66 RF 93.33

ADABOOST 80 ADABOOST 88.88

BAGGING 86.66 BAGGING 95.555

JM1

SVM 69.23 SVM 82.16

DT 82.1 DT 83.47

RF 89.51 RF 89.80

ADABOOST 75.78 ADABOOST 75.27

BAGGING 87.92 BAGGING 88.54

These results also demonstrated that the proposed method
outperformed the method proposed in [22] that also used
SMOTE-SVM for balanced defect datasets by an average of
10.59% with DT, 8.0246% with RF, 2.25% with Adaboost, and
14.8276% with bagging. This is due to the ability of the
proposed algorithm with using the optimal parameters, shown
in Table II, obtained from applying NDSGA-II algorithm.
Hyperband approach [17] is used in NDSGA-II to reduce the
time and save other used resources.

Table IX compares the method described in this paper to
several other methods for detecting software defects.

Fig. 3. Comparison accuracy values of five classifiers based on the proposed approach.

60

65

70

75

80

85

90

95

100

KC1 KC2 KC3 CM1 PC1 PC2 MC1 MW1 JM1

A
cc

u
ra

cy
 V

al
u

e

SVM

DT

RF

Adaboost

Bagging

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

362 | P a g e

www.ijacsa.thesai.org

Fig. 4. Comparison accuracy values of five classifiers based on the proposed approach without tuning algorithm parameters.

TABLE IX. PERFORMANCE COMPARISON OF MULTIPLE METHODS FOR SDD ON NASA DATASET

Ref. METHOD CLASSIFIER DATASET ACCURACY AUC F-MEASURE

[22] SMOTE-SVM

DT

KC2 80

KC3 87

CM1 84

PC1 73

PC2 79

MC1 85

MW1 88

JM1 68

RF

JM1 80

KC2 82

KC3 79

CM1 89

PC1 95

PC2 88

MC1 97

MW1 88

Adaboost

JM1 80

KC2 82

KC3 79

CM1 86

PC1 95

PC2 97

MC1 97

MW1 88

Bagging

KC1 68

KC2 78

KC3 64

CM1 87

PC1 91

60

65

70

75

80

85

90

95

100

KC1 KC2 KC3 CM1 PC1 PC2 MC1 MW1 JM1

A
cc

u
ra

cy
 V

al
u

e

SVM

DT

RF

Adaboost

Bagging

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

363 | P a g e

www.ijacsa.thesai.org

PC2 79

MC1 85

MW1 82

[23] SSA-BPNN

KC1 88.92 0.79

KC2 88.54 0.85

KC3 93.48 0.92

CM1 88 0.85

PC1 90.69 0.79

PC2 99.64 0.93

JM1 82.03 0.70

MW1 94.21 0.93

 Proposed model

DT

KC1 88.20 0.8820 0.8806

KC2 89.15 0.8922 0.8860

KC3 93.548 0.9354 0.9333

CM1 94.285 0.9466 0.9259

PC1 90.77 0.9077 0.9082

PC2 98.18 0.9798 0.9736

MC1 95.59 0.9546 0.9365

MW1 86.66 0.8656 0.8749

JM1 83.47 0.8347 0.8381

RF

KC1 92.415 0.9241 0.9247

KC2 95.180 0.9520 0.95121

KC3 100 1.0 1.0

CM1 92.857 0.9431 0.9122

PC1 95.14 0.9514 0.9509

PC2 99.09 0.9868 0.9866

MC1 99.66 0.9974 0.9950

MW1 93.33 0.9328 0.9361

JM1 89.80 0.8980 0.8982

 Adaboost

KC1 82.022 0.9185 0.9159

KC2 91.566 0.9160 0.9135

KC3 100 0.9666 0.9655

CM1 88.571 0.9239 0.89285

PC1 89.80 0.9417 0.9411

PC2 99.09 0.9736 0.9729

MC1 97.28 0.9825 0.98

MW1 88.88 0.95553 0.9565

JM1 75.27
0.8854

0.8842

 Bagging

KC1 91.85 0.9185 0.9159

KC2 91.566 0.9160 0.9135

KC3 96.77 0.9666 0.9655

CM1 91.428 0.9239 0.89285

PC1 94.17 0.9417 0.9411

PC2 98.18 0.9736 0.9729

MC1 98.64 0.9825 0.98

MW1 95.555 0.95553 0.9565

JM1 88.54 0.8854 0.8842

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

364 | P a g e

www.ijacsa.thesai.org

VII. CONCLUSION AND FUTURE WORK

In this work, a new software defect detection (SDD)
approach is proposed and developed as an efficient and smart
way to find software defects. This approach uses SMOTE-
SVM algorithm, to address the issue of imbalanced behavior in
NASA datasets. The proposed method used NDSGA-II
algorithm with Hyperband approach for hyperparameter
optimization of SMOTE-SVM algorithm, followed by using
standard ML methods and ensemble techniques for training.
The experimental results were assessed using NASA datasets,
in which the results showed that our proposed work
outperforms the conventional techniques and methods in
predicting software faults based on accuracy, AUC, recall, and
F-measures. Also, the results showed that RF performed the
best with 95.2746% average accuracy, while Adaboost
performed the lowest with 90.2754% average accuracy. As
future work, we plan to investigate the impact of using deep
learning on the improvement of SDD when imbalanced data is
used. Also, we plan to use other techniques for HPO, and other
assessment measures such as G-measure, balance, and
Matthews' Correlation Coefficient (MCC).

REFERENCES

[1] orkem iray wa ena o ennin mer oksal nder a ur and
Bedir Tekinerdogan. On the use of deep learning in software defect
prediction. Journal of Systems and Software, 195:111537, 2023.

[2] Wei Zheng, Tianren Shen, Xiang Chen, and Peiran Deng.
Interpretability application of the just-in-time software defect prediction
model.Journal of Systems and Software, 188:111245, 2022.

[3] Amal Alazba and Hamoud Aljamaan. Software defect prediction using
stacking generalization of optimized tree-based ensembles. Applied
Sciences, 12(9):4577, 2022.

[4] Li Yang and Abdallah Shami. On hyperparameter optimization of
machine learning algorithms: Theory and practice.
Neurocomputing,415:295–316, 2020.

[5] Tirimula Rao Benala and Karunya Tantati. Efficiency of oversampling
methods for enhancing software defect prediction by using imbalanced
data. Innovations in Systems and Software Engineering, pages 1–
17,2022.

[6] Ruchika Malhotra and Shine Kamal. An empirical study to investigate
oversampling methods for improving software defect prediction using
imbalanced data. Neurocomputing, 343:120–140, 2019.

[7] Shujuan Wang, Yuntao Dai, Jihong Shen, and Jingxue Xuan. Research
on expansion and classification of imbalanced data based on smote
algorithm. Scientific reports, 11(1):1–11, 2021.

[8] Hien M Nguyen, Eric W Cooper, and Katsuari Kamei. Borderline over-
sampling for imbalanced data classification. International Journal of
Knowledge Engineering and Soft Data Paradigms, 3(1):4–21, 2011.

[9] Jian Zhang, Rong Jin, Yiming Yang, and Alexander Hauptmann.
Modified logistic regression: An approximation to svm and its
applications in large-scale text categorization. 2003.

[10] Li Yang. Comprehensive visibility indicator algorithm for adaptable
speed limit control in intelligent transportation systems. PhD
thesis,University of Guelph, 2018.

[11] Omar S Soliman and Amira S Mahmoud. A classification system for
remote sensing satellite images using support vector machine with non-

linear kernel functions. In 2012 8th International Conference on
Informatics and Systems (INFOS), pages BIO–181. IEEE, 2012.

[12] a el Varoquaux ars uitin k illes ouppe livier risel a ian
Pedregosa, and Andreas Mueller. Scikit-learn: Machine learning without
learning the machinery. GetMobile: Mobile Computing and
Communications, 19(1):29–33, 2015.

[13] Ankita Golchha and Shahana Gajala Qureshi. Non-dominated
sortinggenetic algorithm-ii–a succinct survey. International Journal of
Computer Science and Information Technologies, 6(1):252–255, 2015.

[14] Marc Claesen and Bart De Moor. Hyperparameter search in machine
learning. arXiv preprint arXiv:1502.02127, 2015.

[15] Si Zhang, Jie Xu, Edward Huang, and Chun-Hung Chen. A new optimal
sampling rule for multi-fidelity optimization via ordinal
transformation.In 2016 IEEE International Conference on Automation
Science and Engineering (CASE), pages 670–674. IEEE, 2016.

[16] Zohar Karnin, Tomer Koren, and Oren Somekh. Almost optimal
exploration in multi-armed bandits. In International Conference on
Machine Learning, pages 1238–1246. PMLR, 2013.

[17] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh,and
Ameet Talwalkar. Hyperband: A novel bandit-based approach to
hyperparameter optimization. The Journal of Machine Learning
Research, 18(1):6765–6816, 2017.

[18] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated
machine learning: methods, systems, challenges. Springer Nature, 2019.

[19] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely
randomized trees. Machine learning, 63:3–42, 2006.

[20] Leo Breiman. Bagging predictors. Machine learning, 24:123–140,1996.

[21] Yoav Freund. Boosting a weak learning algorithm by majority.
Information and computation, 121(2):256–285, 1995.

[22] Tirimula Rao Benala and Karunya Tantati. Efficiency of oversampling
methods for enhancing software defect prediction by using imbalanced
data. Innovations in Systems and Software Engineering, pages 1–17,
2022.

[23] Sofian Kassaymeh, Salwani Abdullah, Mohammed Azmi Al-Betar, and
Mohammed Alweshah. Salp swarm optimizer for modeling the software
fault prediction problem. Journal of King Saud University-Computer and
Information Sciences, 34(6):3365–3378, 2022.

[24] Somya Goyal. Effective software defect prediction using support vector
machines (svms). International Journal of System Assurance
Engineering and Management, 13(2):681–696, 2022.

[25] Mohammad Azzeh, Yousef Elsheikh, Ali Bou Nassif, and Lefteris
Angelis. Examining the performance of kernel methods for software
defect prediction based on support vector machine. Science of Computer
Programming, 226:102916, 2023.

[26] Tarunim Sharma, Aman Jatain, Shalini Bhaskar, and Kavita Pabreja.
Ensemble machine learning paradigms in software defect prediction.
Procedia Computer Science, 218:199–209, 2023.

[27] Ye, T., Li, W., Zhang, J. and Cui, Z., 2023. A novel multi‐o je tive
immune optimization algorithm for under sampling software defect
prediction problem. Concurrency and Computation: Practice and
Experience, 35(4), p.e7525.

[28] Muhammad Shafiq, Fatemah H Alghamedy, Nasir Jamal, Tahir Kamal,
Yousef Ibrahim Daradkeh, and Mohammad Shabaz. Scientific
programming using optimized machine learning techniques for software
fault prediction to improve software quality. IET Software, 2023.

[29] Martin Shepperd, Qinbao Song, Zhongbin Sun, and Carolyn Mair. Data
quality: Some comments on the nasa software defect datasets. IEEE
Transactions on Software Engineering, 39(9):1208–1215, 2013.

