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Abstract—Defects in software are one of the critical problems 

in software engineering community because they provide 

inaccurate results and negatively affect the quality and reliability 

of the software. These defects must be detected in the early stages 

of software development. Researchers had used Software Defect 

Detection (SDD) techniques to allow predicting module fault-

proneness. By implementing the hyperparameter optimization 

techniques and exploiting data imbalances in predicting defects, 

this paper proposes and develops an SDD model with high 

performance and generalization capability. To classify defects in 

software modules, machine learning algorithms and ensemble 

learning techniques are used on the balanced datasets. The 

balanced datasets are obtained through using a hybrid of 

synthetic minority oversample (SMOTE) and Support Vector 

Machine (SVM). To obtain the optimal hyperparameters needed 

for the used classifiers and for the dataset balanced algorithms, 

Non-dominated Sorting Genetic Algorithm II (NDSGA-II) is 

used. To reduce the time and save other used resources, 

Hyperband technique, which is a multi-fidelity optimization, is 

used in NDSGA-II. A 10-fold Cross Validation (CV) is applied to 

overcome the overfitting and underfitting problems. The 

accuracy, recall, F-measure, and ROC AUC metrics are used to 

evaluate the SDD model. The results show that the proposed 

model predicts defects more accurately than the compared 

studies. 
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I. INTRODUCTION 

One of the critical topics in the software engineering 
community is the development of high software quality and 
reliability while making effective use of limited resources. The 
Software Development Lifecycle (SDLC) is a structured 
method developed to ensure the production of stable, high-
quality software. To ensure a timely and effective software 
system, it is essential to follow the SDLC's stages, which 
include requirement collecting, requirement analysis, system 
design, system development, and maintenance. A software 
fault may be a human error or a system-related error, failure, or 
crash. Defects have a significant effect on software quality and 
even the economics of software. So, fixing defects is an 
important part of software maintenance, but it also wastes time 
and resources. Detecting software faults before software 
deployment is crucial, as the correct detection of faulty 
software modules or components allows good use of resources 
and time [1] [2]. 

"Defect detection technology" is the ability to find bugs in 
every code change that developers send. SDD used ML 

approaches to software defect datasets characterized by 
software metrics (as features) to identify software module or 
component problems. Researchers had developed and 
implemented ML approaches for SDD. 

One of the most important steps in creating a reliable ML 
model is tuning the model's hyperparameters. It's important to 
note that the tuning process differs for categorical, discrete, and 
continuous hyper-parameters. Manual testing is a common 
method for altering hyper-parameters, but it requires a 
comprehensive understanding of ML algorithms and their 
hyper-parameter settings. Due to the high number of hyper-
parameters, the complexity of the models, the length of time 
required to evaluate the models, and the non-linear interactions 
between the hyper-parameters, manual tuning is often 
ineffective [3]. These considerations have motivated more 
studies in Hyper-parameter Optimization (HPO) approaches 
especially when working with huge datasets or when using 
complex ML algorithms with a large number of hyper-
parameters. The main goal of HPO is to automate this process 
to improve the performance of the ML model, find the best ML 
model for a specific problem, and reduce the amount of human 
effort needed. To find ideal hyper-parameters, it is critical to 
use the optimal optimization technique. Because many HPO 
issues are often non-convex or non-differentiable optimization 
issues, traditional optimization techniques may be inadequate 
for them, resulting in a local rather than a global optimum [4]. 
A Non-Dominated Sorted Genetic Algorithm (NDSGA-II) is 
used in this paper for hyperparameter search hybrid with 
hyperband speed configuration. 

SDD models were developed using Machine Learning 
(ML) classifiers. Nevertheless, SDD datasets contain more 
nondetectable than detectable occurrences; this is known as the 
"class imbalance problem." In addition, multiple studies on 
defect detection models revealed that minority classes contain 
more instances of faults than do majority classes that are 
defect-free. Hence, applying ML algorithms to such 
unbalanced data yields biased outcomes for minority-class 
occurrences. To successfully manage an imbalance in datasets, 
oversampling techniques are utilized [5]. 

This paper implements the SMOTE-SVM algorithm to 
balance the imbalanced data with tuned parameters based on 
the NDSGA-II hybrid with the Hyperband algorithm. Decision 
Tree (DT), Random Forest (RF), and ensemble learning with 
Adaboost (AB) and Bagging (BG) classifiers are the ML 
classifiers used in this work. The proposed model is evaluated 
on nine defect detection NASA datasets. This work is 
structured as follows: The second and third sections provide 
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"Background" and "literature review," respectively. The 
methodology and requirements for the experiment are 
discussed in Section IV. Experiments and their results are 
presented in Section V. The final section of the paper discusses 
the conclusion and what comes next. 

II. BACKGROUND 

Several facets of SDD are discussed in this section. We 
describe optimization strategies for hyperparameter tuning and 
data-imbalance-resolving algorithms. 

A. Class Imbalanced Problem 

Problems with class imbalance arise in datasets where the 
values for different classes are distributed unevenly. Imagine a 
dataset in which 95% of the class values are from one class and 
only 5% are from another; this dataset is unbalanced. Minority 
classes and values are rarely reported, compared to hundreds, 
thousands, or even millions of majority examples. When ML 
classifiers are applied to such datasets, models lose detection 
capacity and provide off-target results. Biased outcomes are 
produced when a predictive model is used for classification on 
an uneven dataset. ML procedures function best with an evenly 
distributed dataset. In this way, ML models fail to accurately 
predict class values in unbalanced datasets. For minority class 
norms, this phenomenon is especially prevalent. Effectively 
addressing class imbalance issues is critical because minority 
class values are regarded as more significant than majority 
class values [6]. 

By simulating or synthesizing instances from 
underrepresented groups, defect detection experts have found 
that sampling strategies can produce more representative 
datasets. This research reconstructed instances of under-
represented groups by using oversampling techniques. As a 
result, the oversampling techniques significantly improved the 
ML classifiers' detection performance. 

1) SMOTE-SVM: SMOTE is a popular oversampling 

technique for achieving more equitable class distribution by 

simulating the emergence of new instances of the minority 

class along roads connecting existing instances of the minority 

class to their nearest neighbors. To aid in the establishment of 

class boundaries, SVM-SMOTE generates new instances of 

the minority class along boundary lines. The synthetic 

sampling technique with data generation (Synthetic Minority 

Oversampling Technique, SMOTE) [7] is one of the efficient 

special algorithms for re-establishing class parity after 

oversampling by increasing the number of objects in the 

minority class. Using k-nearest Neighbor (KNN) approach, 

SMOTE algorithm generates minority-class synthetic items 

from similarities in the feature space between existent objects. 

With this method, we can manufacture an arbitrary number of 

artificial objects that are "similar" to those in the minority 

class but are otherwise unique [8]. 

2) Support Vector Machine (SVM): It is a supervised 

learning algorithm that works by mapping low-dimensional 

data points into a high-dimensional feature space to make 

them linearly separable and then using an optimal separating 

hyperplane as the classification boundary to partition the data 

by increasing the difference between the two classes. With the 

assumption of n data points, SVM's objective function is 

[4][9][10]: 

        {
 

 
 ∑    *        (  )+      

    }    (1) 

where w is a normalization vector, and C is the penalty 
parameter of the error term, which is an important hyper-
parameter of all SVM models. 

Several kernels are available to be used in SVM models to 
determine the similarity between two data points, xi and xj. 
Hence, the type of kernel would be a crucial hyperparameter to 
adjust. The most common kernels used in SVM include linear 
kernels, Radial Basis Function (RBF) kernels, polynomial 
kernels, and sigmoid kernels. The different kernel functions 
can be denoted as follows [11]: 

 Linear kernel 

 ( )     
     (2) 

 Polynomial kernel 

 ( )   (    
      )  (3) 

 RBF kernel 

 ( )     (   ||    ||
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 Sigmoid kernel: 

 ( )      (     
      ) (5) 

After deciding on a kernel type, further hyper-parameters 
must be adjusted, as demonstrated by the corresponding kernel 
function equations. When the "kernel type" hyper-parameter is 
set to polynomial, RBF, or sigmoid, the coefficient is the 
conditional hyper-parameter; r is the conditional hyper-
parameter of polynomial and sigmoid kernels. Extra 
conditioned hyper-parameter, d, defines the "degree" of the 
polynomial kernel function. 

As part of the training process for an SVM classifier, the 
kernel function type k (xi, xj) values and the value of the 
regularization parameter C are calculated so that a trade-off 
may be made between increasing the distance between classes 
and reducing the total error [12]. 

B. Hyperparameter Optimization (HPO) 

The training of a ML model is subject to number of 
hyperparameters. These hyperparameters determine the 
model's strategy for learning a given connection between input 
and detections. Using hyperparameter optimization (HPO), a 
model, that has been fine-tuned using the most effective 
hyperparameters, could be obtained. This model ought to be 
able to produce minimum-loss solutions. The challenge with 
optimization problems is that the search space is typically 
infinite, while the resources available to carry out the search 
are finite (maximum x amount of time or iterations). 
Consequently, for an algorithm to search for the global 
minimum effectively, it must incorporate strategies to make the 
most of the available funds. HPO's slow execution time is a 
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serious drawback, especially when dealing with a wide variety 
of hyper-parameter configurations or massive datasets [4]. 

1) Non-dominated sorting GA-II: As non-dominated 

sorting is used to generate a preliminary coarse ranking of the 

population, NSGA-II (Pareto dominance-based) continues to 

be one of the most well-liked algorithms. The non-dominated 

solutions can be found using this technique and then moved to 

the next class before being discarded. The solutions in each 

obtained class are sorted from best to worst according to the 

objective's crowding distance, the total of the differences 

between an individual's left and right neighbors. It's best to 

have a lot of space between individuals. Non-dominated 

sorting becomes less discriminative and the left and right 

neighbors in each goal are generally different solutions when 

there are more than two objectives, hence this strategy fails for 

problems with more than two objectives [13]. 

2) Multi-fidelity optimization technique: In order to work 

around the problem of having insufficient time or resources, 

multi-fidelity optimization techniques are frequently used. The 

original dataset or the features used can be reduced to a subset 

to save time [14]. Low-fidelity and high-fidelity evaluations 

are combined in multi-fidelity for use in the real world [15]. 

Low-fidelity evaluations are those that only test a small 

fraction of the data and so are very inexpensive, but have poor 

generalization performance. Better generalization performance 

is achieved at the expense of increased cost in high-fidelity 

assessments, where a larger subset is assessed. Poor 

performing configurations are eliminated from multi-fidelity 

optimization methods at each iteration of hyper-parameter 

evaluation on newly generated subsets, leaving only the best 

performing configurations to be evaluated on the full training 

set. Bandit-based algorithms are a kind of multi-fidelity 

optimization algorithms, and they make use of strategies like 

sequential halving [16] and Hyperband approach [17]. 

 Successive Halving: By testing each possible 
combination of hyper-parameters, successive halving 
can determine which one works best. However, in real-
world applications, numerous considerations must be 
taken into account, such as time and resource 
constraints. The term "budget" is used to describe these 
considerations (B). The following is the primary 
procedure for employing successive halving algorithms 
for HPO. The first assumption is that there are n sets of 
hyper-parameter combinations to test and that these 
sets are tested using equally distributed resources 

(   
 ⁄ ). Finally, at the end of every cycle, half of 

the underperforming hyper-parameter configurations 
are thrown out, while the other half are passed on to the 
next cycle with double budgets (         ). The 
preceding steps are continued until the best possible set 
of hyperparameters is found. The trade-off between the 
feasible hyper-parameter configurations and available 
budgets affects the cost-benefit analysis of succeeding 
halves [18]. With this in mind, the main issue with 
consecutive halving is deciding how to divide the 
budget, specifically between testing fewer 

configurations with a larger budget for each and testing 
more configurations with a smaller budget for each. 

 Hyperband approach [17] is considered a solution to 
the issue of successive halving methods by 
dynamically picking an appropriate number of 
configurations. It seeks to strike a balance between the 
total budget (B) and the number of hyper-parameter 
configurations (n) by apportioning a portion of the total 

budget to each configuration (   
 ⁄ ). Each batch of 

random configurations is routinely halved in order to 
get rid of the inefficient hyperparameter setups and 
boost performance. The total quantity of data points, 
the minimal number of instances required to train a 
meaningful model, and the available budgets all 
contribute to the restrictions        and      . After 
that, we use       and       to get the total number of 
configurations n and the budget size for each (max). 
Based on n and b, a random sample of configurations is 
generated and fed into the shown successive halving 
model. Each iteration of the consecutive halving 
method takes the top half of the configurations and 
discards the bottom half, keeping only the best-
performing ones. This is done again until the best 
possible set of hyperparameters is found. 

C. Ensemble Learning (EL) 

1) Random Forest (RF): RF is a bagging approach that 

generates many independent, tiny decision trees from the 

dataset at random. Selecting a small number of attributes at 

each node in order to find the best branching technique allows 

for a deeper tree structure. Dataset and feature randomization 

makes overfitting less likely. In a classification problem, the 

majority vote is used to determine the final class label [19]. 

2) Bagging: The goal of "bagging" [20] is to increase the 

reliability of ML algorithms, especially decision trees. It helps 

prevent data from being overfit and lowers the model's 

variance. It takes the original training dataset and randomly 

selects n subsets of features and data samples, with 

replacement, to create n new datasets. Parallel models for 

making detections, using each of the n sub datasets as a single 

input, are built. The bagging classifier selects as its output the 

label class predicted by the majority of the base models. 

3) Adaptive Boosting (AdaBoost): It is a technique used to 

increase the accuracy and performance of numerous weak 

classifiers by combining them into a single strong classifier.  

Adaboost's weak classifiers frequently use decision stumps, a 

variant of the decision tree that consists of a single node (the 

root) and two branches. Various classes of faulty classifiers 

are taught. When a less accurate classifier misclassifies a 

sample, the sample is assigned more weight in the next 

classifier. Further, the aggregate weight is based on how well 

each poor-quality classifier performed. Adaboost classifier's 

ultimate output is just a weighted sum of the results obtained 

by the individual weak classifiers [21]. 
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D. Classification Algorithm 

1) Decision Tree (DT): DT is a predictive modeling 

algorithm that can partition features in a dataset in multiple 

ways based on different conditions, resulting in a tree-like 

structure. The tree is made up of a decision node, which seeks 

the best feature split, and leaves (termina   l nodes), which are 

used to create a final detection. Different criteria, such as gini 

and entropy, are used to divide the features. One significant 

consideration while constructing terminal nodes for the 

decision tree is deciding when to stop developing trees and 

when to create more terminal nodes. This can be done using 

two criteria: maximum tree depth (the number of nodes in the 

tree after the root node) and minimum node records (the 

number of training patterns represented by a given node). 

Once a node is built, the same method can be used on all 

created data by dividing the dataset into subsets to produce 

child nodes. The detection process entails selecting the 

appropriate node in a decision tree and then proceeding to 

walk down it with the relevant row of data. 

III. LITERATURE REVIEW 

Several SDD studies had recently been conducted to 
accurately detect early-stage developmental defects. 
Researchers had attempted to improve the model’s 
performance using various methods, algorithms, and 
measurements. Some of the most current papers relevant to this 
work are discussed here. 

Benala and Tantati [22] examined the effects of five 
oversampling methods to solve the imbalanced data, including 
random oversampling, SMOTE, adaptive synthetic sampling 
(ADASYN), Safe-Level-SMOTE (SL-SMOTE), and SVM-
SOMTE, to for SDD using nine imbalanced NASA datasets. 
They used decision tree (j48-classifier), the RF, Naive Bayes 
(NB), and EL classifiers. They concluded that SVM-SMOTE is 
the best oversampling technique due to its ability to produce 
minority-class instances in a region bordered by support 
vectors. Kassaymeh et al. [23] suggested a combination of Salp 
Swarm Algorithm (SSA) and Backpropagation Neural 
Network (BPNN) to solve the SDD problem. They used BPNN 
to find the best BPNN parameters. Different performance 
measures are used to evaluate the results, in which the results 
of their experiments showed that the combined work is often 
the best way to solve SDD problems. Goyal [24] proposed a 
filtering method, called FILTER to accurately predict defects. 
They used SVM-based classifiers (linear, polynomial, and 
radial basis functions) and a suggested filtering technique. 
They declared that their work improves the accuracy, AUC, 
and F-measure by 16.73%, 16.80%, and 7.65%, respectively, 
based on five datasets. Azzeh et al. [25] studied the effect and 
consistency of four kernel functions with feature selection on 
the performance of SVM for SDD. Four kernel functions, 10 
feature subset selection thresholds based on the information 
gain technique, thirty-eight publicly available datasets, and a 
single evaluation measure were used in this comprehensive 
study. Since then, 1520 experiments had been conducted. Since 
the performance of other kernel functions is constrained, the 
results showed that SVM with an RBF kernel is the best option 
for defective datasets. Sharma et al. [26] analyzed the 

application of the ensemble method of ML technique in the 
field of SDD. They focused on the global state during the 
period 2018–2021, which had been examined from a 
multidimensional perspective, including the selection of a 
specific ML algorithms, and the research gap that may lead to 
the future scope of the work that can be accomplished. Ye et al. 
[27] developed a multi-objective immunity optimization 
method based on a thorough fitness evaluation mechanism, 
which allows it to efficiently tackle the used model. Two 
objectives are optimized: defect detection rate and false alarm 
rate for defects. Their proposed algorithm is based on 
comprehensive fitness evaluation, which has a better selection 
ability to attain the predicted effect of population evolution 
software and further assists decision makers in selecting a 
better scheme that meets their needs. In addition, to validate the 
efficacy of their proposed algorithm, they compared it against 
eight distinct public data sets, in which the results showed that 
their suggested work handles the multi-objective 
undersampling SDD problem more effectively. Shafiq et al. 
[28] developed an approach for SDD using ML to enhance 
software quality. They used PC1 data set as input data. Ant 
Colony Optimization (ACO) is used to determine which 
characteristics are the most crucial. The chosen characteristics 
are fed into SVM. The author declared that their results showed 
that ACO-based SVM performs better than SVM, NB, and 
KNN classifiers in solving SDD. 

IV. PROPOSED APPROACH 

The proposed approach in this work classifies the defects 
that exist in the software system and discovers the defect 
modules during the software development process, so the 
model that suffers from defects have high priority during 
quality assurance checks. The framework of the proposed 
approach in this work is shown in Fig. 1, which is logically 
divided into the following four phases. The preprocessing, 
which is Phase I, includes the standardization features and label 
encoding target features. Phase-II includes oversampling the 
dataset to balance the class distribution by applying SMOTE-
SVM and hyperparameter tuning optimization using NDSGA-
II and the Hyperband approach. Phase-III is focusing on 
training the SDD models using the balanced dataset and 
making the detections. Phase IV is concerned with evaluating 
the performance of SDD models and conducting comparative 
analyses. 

This work aims to develop a high-quality approach to 
detect bugs in the early stages of the software development life 
cycle, by balancing the modules affected by defects in the 
dataset using the high-performance balanced algorithm. The 
SMOTE oversampling approach uses KNN similarity measures 
between items to generate synthetic instances in the defect 
class. This leads to the creation of an unknown number of 
artificial items that are "similar" to those in the current defect 
class but do not duplicate them. This algorithm has some 
disadvantages, such as sample overlap, noise interference, and 
blindness of neighbor selection. To address these problems, 
SMOTE is hybridized with SVM, so SVM-SMOTE generates 
new instances of defect classes near borderlines with SVM to 
help establish boundaries between classes. 
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However, the behavior of these algorithms is controlled by 
a set of parameters that remain static during the training 
process. The quality of the detection can be improved by fine-
tuning these parameters to achieve the best possible results. 
Here, we apply an optimization algorithm called NDSGA-II to 
search for and fine-tune the hyperparameters of these 
algorithms and then pick the best possible parameters. Since 
NDSGA-II is resource-intensive and time-consuming 
algorithm, it has been integrated with Hyperband approach, to 
speed up the configuration evaluation by getting rid of 
ineffective parameters that don't have a global minimum. 
Testing the model's intermediate scores for a given set of 
hyperparameters is how it functions. For instance, after a fixed 
number of rounds, one could examine all the intermediate 
scores and eliminate the least effective parameters. 

 
Fig. 1. The proposed approach. 

In Fig. 2, the steps of the search optimization technique 
used to obtain the optimal parameters for the SMOTE-SVM 
algorithm are illustrated. This process is described in stages as 
follows: 

 Stage 1: Initialize the hyperparameters search space 
that represents the population (P), which consists of a 
combination of input variables (V). 

 Stage 2: Generate random parent population. 

 Stage 3: Apply the SMOTE-SVM-based model 
described in Algorithm 1 for each variable. 

 Stage 4: Each V’s accuracy is calculated using 10-fold 
CV to identify the fitness vectors, and each vector was 
given a fitness rank proportional to its non-domination 
frequency. 

 Stage 5: Assign ranks to all V in a P by first selecting 
all of the non-dominated solutions from P and placing 
them in rank 1, then selecting all of the remaining 
solutions and placing them in rank 2, and so on. 

 Stage 6: Sorts each V according to a dominance rule 
that said: 

A variable (Ẍ) is said to dominate another variable (Ẋ), if 

 There is no objective of Ẍ worse than that 

objective of Ẋ. 

 There is at least one objective of Ẍ better than that 

objective of Ẋ. 

 Stage 7: Offspring resulting from recombination 
between two unrelated parents enter the progeny P. 
Throughout the process of mutation, the child's values 
shift. That process is continued until the P is twice as 
large as it was at the outset. 

 Stage 8: Nondenominational criteria are used to re-
classify P. In this way, a new generation will be 
selected according to established hierarchy. 

 Stage 9: In the next iteration, crowding-sort will be 
used to determine the density of solutions if the 
partially included case holds. Less dense trials are 
selected for the next generation until the population 
count is back to its starting point. 

 Stage 10: Iteratively producing and checking poorly 
configured parameters, then discarding their offspring, 
is repeated until the maximum number of generations 
is reached, at which point the optimal hyperparameter 
is returned. 

Software Defect Datasets 

Preprocessing 

Scaling Features 

StandardScaler () 

Encoding target feature 

LabelEncoder () 

Balanced Dataset 

SMOTE-SVM 

Hyperparameter tuning 

NDSGA-II with Hyperband 

 

Splitting Dataset using  

10-fold CV 

Training & Testing classification model 

 
SVM, DT, RF, 

Bagging and Adaboost 

 

 

Evaluation the performance 

Accuracy, AUC, Recall, 

and F1-measure 
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Fig. 2. Main steps of obtaining the optimal parameters of SMOTE-SVM algorithm. 

Algorithm 1: The proposed balancing datasets (SMOTE-SVM-based model) 

 Input: 

     Software defects dataset (Đ):    
    where:  

                     D = Defects ∪ non_defects,  
             Defects represents instances in the dataset with defect class  

             Non_defects represent instances in the dataset from non_defects class. 

 

Output:  The balanced dataset 

1 for D’   Đ do 

begin 

2  X = instances 

y = target class 

  // Encoding target features that contain categorical data 

3  y_Encode = LabelEncoder (y);  

  // Appling standardization technique to be in the same range 

4  X_Scale = StandardScaler (X); 

5  for each data point <xi, , yi>  

begin 

         // <xi,, yi>: the defect instances which denotes the minority class in Đ 

6  Defect support vectors = SVM algorithm (defect subsets, i.e., minority subsets); 

7  m = kNN (defect support vector); 

8  If    number of majority neighbors <  
 

 
            

9            =  Xi   + (Ẋi  ,  Xi ) * ℜ,  where ℜ   [0,1],Xi      Smax, 

                                                      Ẋi     KNN of Xi , and Smax, is a majority instance 

  End if 

10  Else  

11       = Xi   + (Ẋi- ,    Xi) * ℜ, where ℜ   [0,1], Xi      Smin, 

                                           Ẋi     one of KNN of Xi, which Smin, is minority instance  
12  Ď =      ∪ Đ 

 End for 

13  return Ď 

 End for 

The following paragraphs discuss the SDD model that is 
presented in Algorithm 1, where the used defective datasets are 

imbalanced and the output is the balanced dataset. The 
necessary preprocessing steps are executed for each dataset. 
Encoding the categorical data in the chosen dataset is 
represented by yEncode, and xScale represents the features 
after standardization. The SVM model is applied in the 
minority subset, and neighbors of the defect support vector are 
obtained. If the number of non-defects class neighbors is less 
than half of the nearest defect support vector, a new object of 
the majority class is generated; otherwise, the new object will 
be of the minority class. 

V. EXPERIMENTATIONS AND RESULTS 

The methodology behind the experiments is discussed here, 
as well as the infrastructure used and the datasets that were 
examined. 

A. Environment 

The proposed approach was tested on a laptop running 
Microsoft Windows 10 Pro 64-bit and an Intel(R) Core (TM) 
i7-8565U Processor at 1.80 GHz (92 MHz). Oversampling 
methods are taken from the imblearn library, and ML 
classifiers are imported into Sklearn 1.0.2 using an x64 
processor running Jupyter notebook 6.1.4 with Python 3.8.5 
and OPTUNA (HPO framework). 

B. Description to Dataset and Software Metrics used 

This work used nine NASA datasets and was investigated 
by Shepperd et al. [29]. Halstead metrics, McCabe metrics, size 
metrics, and other properties are included in these datasets to 
help establish the quality of a software model. If a dataset has 
bad class values, it probably is bad. The model is fine if the 
class value is "0" or "no," but it's broken if it's "1" or "yes." 
Minority class samples range from being extremely under-
represented to being evenly distributed across the datasets. The 
nine NASA datasets are illustrated in Table I. 

Generate initial 

population P0 
A combination of input 

variables. 

Generate the model based on 

SMOTE-SVM by combining 

variables for each input. 

Fitness vectors can be 

determined by computing 

accuracy using 10-fold 

CV for each input. 

Fast non-dominated 
sorting method and 

crowding distance to 

Rt are used to 
generate population 

ranks.  

Stop? 

Generate New 
population:               

Rt = Pt∪Qt  

Creating offspring (Qt) 
using crossover and 

mutation operators.  

Find parent (Pt) from current 

population using binary 
tournament selection 

routine. 

 

Obtain Pareto 

optimal solutions 

Ye
s 

No 
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TABLE I. NASA DATASET DESCRIPTION 

Database 
# Of 

Features 

# Of 

Instances 

# Of 

Defective 

# Of 

Non-

Defective 

Defective 

% 

KC1 22 1183 314 869 15.45 

KC2 22 522 104 415 20.5 

KC3 40 194 36 158 18.55 

CM1 22 344 49 295 12.21 

PC1 22 705 77 644 8.03 

PC2 37 1585 16 1569 1 

MC1 39 1988 46 1942 2.31 

MW1 38 253 27 226 10.67 

JM1 22 7782 326 1783 21.48 

C. Parameter Setting for SDD Models 

Table II details the various classifier parameter settings. 

TABLE II. PARAMETER SETTINGS OF THE USED ALGORITHMS 

Parameters Values 

NDSGA-II 

iterations 100 

Population size Hyperparameter space 

Crossover rate 1 

Mutation rate 
 

                
 

SVM 

Kernel type Rbf 

gamma 0.61719 

C 16.1657 

degree 1 

RandomState 104 

KNN 

K 8 

m 10 

DT, RF 

criterion entropy 

D. Evaluation Criteria 

The proposed classifiers' efficacy is measured using 
standard metrics including the confusion matrix, ROC, AUC, 
accuracy mean, and F-measure. 

 Accuracy: It is a ratio of the number of correct 
detections to the total number of observations, as 
illustrated in Eq. (6). 

          
     

           
 (6) 

 Precision is the ratio of correct positive detections out 
of the total number of positive detections as given in 
Eq. (7) 

          
  

     
  (7) 

 Recall is the ratio of correct positive observations to all 
positive observations made in class, as given in Eq. (8). 

       
  

     
   (8) 

 F1 score is a weighted average of precision and recall. 
F1 is usually preferable to accuracy, particularly if the 
class distribution is uneven, as calculated from Eq. (9). 

         
                   

                
 (9) 

 AUC-ROC It shows TPR versus FPR at different 
thresholds to differentiate "signal" from "noise." It 
separates classes and summarizes the ROC curve. High 
AUC means the model separates positive and negative 
groups well. 

E. Results 

1) Results of applying the decision tree algorithm: the 

results of DT for defect detection using the proposed approach 

are shown in Table III. The best results obtained on the PC2, 

MC1, and CM1 datasets, respectively, are as follows: 1) the 

accuracy achieved 98.18%, 95.59%, and 94.28%. 2) The AUC 

achieved 9.9798, 0.9546, and 0.9466. 3) F-measure achieved 

0.9736, 0.936, and 0.9259. 

2) Results of applying the Random Forest algorithm: The 

results of RF for defect detection using the proposed approach 

are shown in Table IV. The best results obtained on the KC3, 

MC1, and PC2 datasets, respectively, are as follows: 1) the 

accuracy achieved 100 %, 99.66 %, and 99.06 %. 2) AUC 

achieved 1.0, 0.9974, and 0.9868. 3) F-measure achieved 1.0, 

0.9950, and 0.9866. 

3) Results of applying the Adaboost algorithm: The results 

of Adaboost for defect detection using the proposed approach 

are shown in Table V. The best results obtained on the KC3, 

PC2, and MC1 datasets, respectively, are as follows: 1) The 

achieved accuracy is 100%, 99.09%, and 97.28%. 2) The 

achieved AUC 1.0, 0.9868, and 0.9746. 3) The achieved F-

measure achieved 1.0, 0.9866, and 0.9611. 

TABLE III. RESULTS OF APPLYING DT ALGORITHM 

DATASETS ACCURACY (%) AUC RECALL F1-MEASURE 

KC1 88.20 0.8820 0.8707 0.8806 

KC2 89.15 0.8922 0.8333 0.8860 

KC3 93.548 0.9354 0.93333 0.9333 

CM1 94.285 0.9466 0.9615 0.9259 

PC1 90.77 0.9077 0.9126 0.9082 

PC2 98.18 0.9798 0.9736 0.9736 

MC1 95.59 0.9546 0.9504 0.9365 

MW1 86.66 0.8656 0.9130 0.8749 

JM1 83.47 0.8347 0.85535 0.8381 
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TABLE IV. RESULTS OF APPLYING RF ALGORITHM 

DATASETS ACCURACY (%) AUC RECALL 
F1-

MEASURE 

KC1 92.415 0.9241 0.9325 0.9247 

KC2 95.180 0.9520 0.92857 0.95121 

KC3 100 1.0 1.0 1.0 

CM1 92.857 0.9431 1.0 0.9122 

PC1 95.14 0.9514 0.9417 0.9509 

PC2 99.09 0.9868 0.9736 0.9866 

MC1 99.66 0.9974 1.0 0.9950 

MW1 93.33 0.9328 0.9565 0.9361 

JM1 89.80 0.8980 0.89977 0.8982 

TABLE V. RESULTS OF APPLYING ADABOOST ALGORITHM 

DATASETS ACCURACY (%) AUC RECALL F1-MEASURE 

KC1 
82.022 

 

0.82022 

 

0.7640 

 

0.8095 

 

KC2 
91.566 

 

0.9155 

 

0.92857 

 

0.91764 

 

KC3 100 
1.0 

 

1.0 

 

1.0 

 

CM1 
88.571 

 

0.90122 

 

0.96153 

 

0.8620 

 

PC1 
89.80 

 

0.8980 

 

0.9029 

 

0.8985 

 

PC2 99.09 0.9868 0.9736 0.9866 

MC1 
97.28 

 

0.9746 

 

0.9801 

 

0.9611 

 

MW1 
88.88 

 

0.8873 

 

0.9565 

 

0.8979 

 

JM1 
75.27 

 

0.7527 

 

0.71070 

 

0.74197 

 

4) Results of applying the bagging algorithm: The results 

of bagging for defect detection using the proposed approach 

are shown in Table VI. The best results obtained on the MC1, 

PC2, and KC3 datasets, respectively, are as follows: 1) the 

accuracy achieved 98.64%, 98.18%, and 96.77%. 2) The 

achieved AUC is 0.9825, 0.9736, and 0.9666. 3) The achieved 

F-measure 0.98, 0.9729, and 0.9655. 

TABLE VI. RESULTS OF APPLYING BAGGING ALGORITHM 

DATASETS ACCURACY (%) AUC RECALL F1-MEASURE 

KC1 
91.85 

 

0.9185 

 

0.8876 

 

0.9159 

 

KC2 
91.566 

 

0.9160 

 

0.8809 

 

0.9135 

 

KC3 
96.77 

 

0.9666 

 

0.93333 

 

0.9655 

 

CM1 
91.428 

 

0.9239 

 

0.96153 

 

0.89285 

 

PC1 
94.17 

 

0.9417 

 

0.9320 

 

0.9411 

 

PC2 98.18 0.9736 0.9473 0.9729 

MC1 98.64 0.9825 0.9702 0.98 

MW1 
95.555 

 

0.9555 

 

0.9565 

 

0.9565 

 

JM1 
88.54 
 

0.8854 
 

0.8747 
 

0.8842 
 

5) Results of applying the svm algorithm: The results of 

SVM for defect detection using the proposed approach are 

shown in Table VII. The best results obtained on the PC2, 

KC2, and MC1 datasets, respectively, are as follows: 1) the 

accuracy achieved 99.09 %, 98.79 %, and 98.64 %. 2) The 

AUC achieved 0.9868, 0.9878, and 0.973. 3) F-measure 

achieved 0.9866, 0.9882, and 0.9803. 

TABLE VII. RESULTS OF APPLYING SVM ALGORITHM 

DATASETS ACCURACY (%) AUC RECALL 
F1-

MEASURE 

KC1 
87.92 

 

0.8792 

 

0.8707 

 

0.8781 

 

KC2 
98.79 

 

0.9878 

 

1.0 

 
0.9882 

KC3 
93.54 

 
0.9354 0.9333 0.9333 

CM1 91.42 0.9160 0.92307 0.8888 

PC1 97.57 0.9757 0.9805 0.9758 

PC2 99.09 0.9868 0.9736 0.9866 

MC1 98.64 0.9873 0.9900 0.9803 

MW1 
95.55 
 

0.9565 
 

0.9130 
0.9545 
 

JM1 
82.16 

 

0.8216 

 

0.8018 

 

0.8181 

 

VI. RESULT ANALYSIS AND DISCUSSION 

Different experiments were conducted to find out how the 
oversampling and HPO techniques affected the performance of 
SDD models. We first investigated how well SDD models with 
NDSGA-II hybrid using Hyperband approach for HPO and 
SMOTE-SVM balanced datasets performed. Tables III to VII 
display the results for various performance measures for the 
available NASA software defect dataset. Therefore, it can be 
asserted that we have successfully implemented all the 
classification algorithms with high performance. From these 
tables, it is clear that RF is the most accurate method to classify 
defects, while Adaboost is the least accurate of all evaluation 
measures. With KC3 dataset, Adaboost and RF classifier were 
able to achieve 100% accuracy. Table VIII presents the 
accuracy results of the proposed work with and without 
parameter tuning on different datasets, to illustrate the 
influence of tuning these parameters on the model's 
performance. Also, Fig. 3 and Fig. 4 show the comparison 
between these methods. These results show that tuning the 
algorithm's parameters helped make the models more accurate 
than the other methods which don't tune the parameters. 

TABLE VIII. ACCURACY MEASURE FOR ALL CLASSIFIERS WITH AND 

WITHOUT HYPERPARAMETER TUNING 

DATASETS 

ACCURACY WITHOUT 

PARAMETER TUNING 

(%) 

ACCURACY WITH 

PARAMETER TUNING 

(%) 

KC1 

SVM 77.52 SVM 87.92 

DT 85.95 DT 88.20 

RF 91.57 RF 92.415 

ADABOOST 80.33 ADABOOST 82.022 

BAGGING 91.01 BAGGING 91.85 
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KC2 

SVM 85.54 SVM 98.79 

DT 89.15 DT 89.15 

RF 96.38 RF 95.180 

ADABOOST 91.566 ADABOOST 91.566 

BAGGING 90.36 BAGGING 91.566 

KC3 

SVM 90.32 SVM 93.54 

DT 90.32 DT 93.548 

RF 100 RF 100 

ADABOOST 90.32 ADABOOST 100 

BAGGING 96.77 BAGGING 96.77 

CM1 

SVM 79.72 SVM 91.42 

DT 85.13 DT 94.285 

RF 89.18 RF 92.857 

ADABOOST 81.08 ADABOOST 88.571 

BAGGING 93.24 BAGGING 91.428 

PC1 

SVM 79.12 SVM 97.57 

DT 91.74 DT 90.77 

RF 95.14 RF 95.14 

ADABOOST 91.26 ADABOOST 89.80 

BAGGING 94.17 BAGGING 94.17 

PC2 

SVM 93.27 SVM 99.09 

DT 97.47 DT 98.18 

RF 98.31 RF 99.09 

ADABOOST 96.63 ADABOOST 99.09 

BAGGING 96.63 BAGGING 98.18 

MC1 

SVM 89.9 SVM 98.64 

DT 96.84 DT 95.59 

RF 99.05 RF 99.66 

ADABOOST 96.21 ADABOOST 97.28 

BAGGING 98.73 BAGGING 98.64 

MW1 

SVM 77.77 SVM 95.55 

DT 88.88 DT 86.66 

RF 86.66 RF 93.33 

ADABOOST 80 ADABOOST 88.88 

BAGGING 86.66 BAGGING 95.555 

JM1 

SVM 69.23 SVM 82.16 

DT 82.1 DT 83.47 

RF 89.51 RF 89.80 

ADABOOST 75.78 ADABOOST 75.27 

BAGGING 87.92 BAGGING 88.54 

These results also demonstrated that the proposed method 
outperformed the method proposed in [22] that also used 
SMOTE-SVM for balanced defect datasets by an average of 
10.59% with DT, 8.0246% with RF, 2.25% with Adaboost, and 
14.8276% with bagging. This is due to the ability of the 
proposed algorithm with using the optimal parameters, shown 
in Table II, obtained from applying NDSGA-II algorithm. 
Hyperband approach [17] is used in NDSGA-II to reduce the 
time and save other used resources. 

Table IX compares the method described in this paper to 
several other methods for detecting software defects. 

 
Fig. 3. Comparison accuracy values of five classifiers based on the proposed approach. 
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Fig. 4. Comparison accuracy values of five classifiers based on the proposed approach without tuning algorithm parameters. 

TABLE IX. PERFORMANCE COMPARISON OF MULTIPLE METHODS FOR SDD ON NASA DATASET 

Ref. METHOD CLASSIFIER DATASET ACCURACY AUC F-MEASURE 

[22] SMOTE-SVM 

DT 

KC2 80   

KC3 87   

CM1 84   

PC1 73   

PC2 79   

MC1 85   

MW1 88   

JM1 68   

RF 

JM1 80   

KC2 82   

KC3 79   

CM1 89   

PC1 95   

PC2 88   

MC1 97   

MW1 88   

Adaboost 

JM1 80   

KC2 82   

KC3 79   

CM1 86   

PC1 95   

PC2 97   

MC1 97   

MW1 88   

Bagging 

KC1 68   

KC2 78   

KC3 64   

CM1 87   

PC1 91   
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PC2 79   

MC1 85   

MW1 82   

[23] SSA-BPNN  

KC1 88.92 0.79  

KC2 88.54 0.85  

KC3 93.48 0.92  

CM1 88 0.85  

PC1 90.69 0.79  

PC2 99.64 0.93  

JM1 82.03 0.70  

MW1 94.21 0.93  

 Proposed model 

DT 

KC1 88.20 0.8820 0.8806 

KC2 89.15 0.8922 0.8860 

KC3 93.548 0.9354 0.9333 

CM1 94.285 0.9466 0.9259 

PC1 90.77 0.9077 0.9082 

PC2 98.18 0.9798 0.9736 

MC1 95.59 0.9546 0.9365 

MW1 86.66 0.8656 0.8749 

JM1 83.47 0.8347 0.8381 

RF 

KC1 92.415 0.9241 0.9247 

KC2 95.180 0.9520 0.95121 

KC3 100 1.0 1.0 

CM1 92.857 0.9431 0.9122 

PC1 95.14 0.9514 0.9509 

PC2 99.09 0.9868 0.9866 

MC1 99.66 0.9974 0.9950 

MW1 93.33 0.9328 0.9361 

JM1 89.80 0.8980 0.8982 

  Adaboost 

KC1 82.022 0.9185 0.9159 

KC2 91.566 0.9160 0.9135 

KC3 100 0.9666 0.9655 

CM1 88.571 0.9239 0.89285 

PC1 89.80 0.9417 0.9411 

PC2 99.09 0.9736 0.9729 

MC1 97.28 0.9825 0.98 

MW1 88.88 0.95553 0.9565 

JM1 75.27 
0.8854 

 
0.8842 

  Bagging 

KC1 91.85 0.9185 0.9159 

KC2 91.566 0.9160 0.9135 

KC3 96.77 0.9666 0.9655 

CM1 91.428 0.9239 0.89285 

PC1 94.17 0.9417 0.9411 

PC2 98.18 0.9736 0.9729 

MC1 98.64 0.9825 0.98 

MW1 95.555 0.95553 0.9565 

JM1 88.54 0.8854 0.8842 
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VII. CONCLUSION AND FUTURE WORK 

In this work, a new software defect detection (SDD) 
approach is proposed and developed as an efficient and smart 
way to find software defects. This approach uses SMOTE-
SVM algorithm, to address the issue of imbalanced behavior in 
NASA datasets. The proposed method used NDSGA-II 
algorithm with Hyperband approach for hyperparameter 
optimization of SMOTE-SVM algorithm, followed by using 
standard ML methods and ensemble techniques for training. 
The experimental results were assessed using NASA datasets, 
in which the results showed that our proposed work 
outperforms the conventional techniques and methods in 
predicting software faults based on accuracy, AUC, recall, and 
F-measures. Also, the results showed that RF performed the 
best with 95.2746% average accuracy, while Adaboost 
performed the lowest with 90.2754% average accuracy. As 
future work, we plan to investigate the impact of using deep 
learning on the improvement of SDD when imbalanced data is 
used. Also, we plan to use other techniques for HPO, and other 
assessment measures such as G-measure, balance, and 
Matthews' Correlation Coefficient (MCC). 
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