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Abstract—Forest fires are a global environmental problem 

that can cause significant damage to natural resources and 

human lives. The increasing frequency and severity of forest fires 

have resulted in substantial losses of natural resources. To 

mitigate this, an effective fire detection and monitoring system is 

crucial. This work aims to explore and review the current 

advancement in the field of forest fire detection and monitoring 

using both drones or unmanned aerial vehicles (UAVs), and deep 

learning techniques. The utilization of drones fully equipped with 

specific sensors and cameras provides a cost-effective and 

efficient solution for real-time monitoring and early fire 

detection. In this paper, we conduct a comprehensive analysis of 

the latest developments in deep learning object detection, such as 

YOLO (You Only Look Once), R-CNN (Region-based 

Convolutional Neural Network), and their variants, with a focus 

on their potential application in the field of forest fire 

monitoring. The performed experiments show promising results 

in multiple metrics, making it a valuable tool for fire detection 

and monitoring. 
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I. INTRODUCTION 

Forests are critical for our planet. They regulate our 
climate, purify our air and water, and are home to countless 
plants and animals. Sadly, forests around the world are under 
real threats from climate change, deforestation, and other 
human activities. One of the most devastating impacts on 
forests are wildfires. More recently, forest fires have become 
an annual phenomenon across the world. Statistics show that 
millions of acres of forests are yearly burnt. This has caused 
tremendous loss of forest resources, major economic damages 
to forest organizations, and lives of humans and animals. The 
rise in wildfires is largely attributed to climate change. Warmer 
temperatures and drier conditions make it easier for fires to 
start and spread. When a wildfire starts, it can spread quickly 
through the entire forest. Wildfires can have a significant 
impact on the environment and the economy. They can 
permanently damage forests, which can take years to be 
restored. In addition, wildfires can result in substantial 
financial damage as companies and industries relying on 
forests are compelled to shut down or move [1]. 

A wide range of techniques are used to detect and monitor 
forest fires, mainly we retain two main techniques based on 
sensors and imagery. The first one is based on deployed 
sensors that can detect environmental measurements such as 
temperature, humidity, gas levels, etc. These sensors, which 
may be strategically positioned throughout the forest, will 
notify authorities if they detect any fire. The second technique 
is imagery-based; it uses images coming from fixed cameras, 
satellites, or drones. It provides authorities with a bird-eye 
view of the fire and its precise location [2, 3]. 

Recently, with the great advances in deep learning (DL) 
and its applications, new opportunities are available to the 
problem-solving of computer vision in the field of forest fires 
monitoring. We remind that the traditional approach uses only 
visual analysis of images taken by satellites or aerial cameras. 
The existing system only detects wildfires within the camera 
view; it cannot identify the exact location of the fire [4]. This 
gap led us to propose, in this paper, an automated system that 
helps identify potential forest fires using object detection 
algorithms, such as YOLO (You Only Look Once) and R-CNN 
(Region-based Convolutional Neural Net-work). 

The rest of this paper is organized as follows: The 
Section II presents the background of our research; the 
Section III gives a detailed overview of related works; the 
Section IV describes our proposed method; and before 
concluding this work, the Section V presents the obtained 
results and the discussion of the efficiency of our proposed 
system. 

II. BACKGROUND 

A. Computer Vision (CV) 

The biological vision is an inspiring model for computer 
vision. The mammalian visual system can decipher a complex 
scene in an instant, sophisticated enough to distinguish, ripe 
fruit from a poisonous berry, or fire from the sun. Similarly, 
computer vision is an emerging field that is rapidly evolving, 
making significant progress in recent years. 

In general, computer vision is concerned with the automatic 
extraction, analysis, and understanding of information from 
images. This can be a difficult task, as images are often 
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cluttered and contain complex noises. However, recent 
advances in ma-chine learning have allowed for significant 
progress in this area. For example, deep learning (a subset of 
machine learning) is a powerful technique that has been used to 
achieve amazing results in computer vision [5]. 

There are many different applications of computer vision, 
including object recognition, face detection, and scene 
understanding [6]. 

B. Deep Learning (DL) 

Deep learning, inspired by the brain, allows a computer to 
deeply learn from data by creating relevant large neuronal 
network models [7]. 

Deep learning is a relatively new field of machine learning, 
and it is already having a major impact. It is used in a variety 
of applications, including image recognition, speech 
recognition, and natural language processing [8]. 

Deep learning is a powerful tool that can be used to solve 
many complex problems. However, requires an important 
processing power and a large amount of data in order to train 
fast its models and learn effectively [9]. 

C. Object Detection 

Object detection is the task of detecting instances of objects 
in an image, regardless of their position or orientation. This can 
be a very difficult task, as there can be a great deal of variation 
in the appearance of objects. For example, two different people 
can have very different opinions on what constitutes a "tree". 
Despite this challenge, object detection is a very important task 
in many applications, such as security, car self-driving, and 
robotics. In addition to detecting objects in an image, CV can 
also be used in following their movement. This is very helpful 
in keeping track of people or vehicles in a security system, or 
in avoiding obstacles for autonomous vehicles. There are many 
different types of techniques for object detection, but one of the 
most popular ones are those DL-based. DL is able to learn 
from both unstructured and unlabeled data. This makes it ideal 
for object detection, as it can learn to identify objects from a 
variety of different sources [10]. Furthermore, one of the 
advantages of deep learning for object detection is that it can 
learn to identify objects that are not easily detectable by 
humans. For example, deep learning can be used to detect 
objects in images that are blurry or have low contrast. 
Additionally, it can be used to detect objects that are occluded 
or partially hidden. Another advantage of deep learning for 
object detection is that it can learn to identify objects from a 
variety of different views. This is helpful because it means that 
the object detector will be more robust and will be able to 
identify objects even when they are not perfectly visible. 

There are a few different object detection models that are 
popular among developers and researchers [11], including 
YOLO, and Faster R-CNN models. Each of these models has 
its own strengths and weaknesses. Object detection algorithms 
can be broadly classified into two categories: one-stage and 
two-stage. One-stage algorithms detect objects in a single step, 
whereas two-stage algorithms divide the process into two 
phases. The first phase uses a classifier to determine potential 
object positions, and the second phase employs a region 
proposal method to pinpoint the objects' most probable 

locations, as depicted in Fig. 1. One-stage algorithms are faster 
but less accurate, while two-stage algorithms are slower, but 
more accurate. One-stage algorithms are favored in real-time 
scenarios where processing speed is more prioritized than 
accuracy, whereas two-stage ones are utilized when accuracy is 
of utmost importance. 

The components of object detection architecture typically 
comprise five parts: the input, backbone, neck, dense layer, and 
sparse layer. The input is the image fed into the network, which 
is usually pre-processed for standardization such as resizing or 
normalization. The backbone, which is typically a pre-trained 
convolutional neural network, extract features from the input 
image. The neck combines the extracted features from the 
backbone. The dense layer is a fully connected layer that 
generates the final object detection results using the combined 
features from the neck. The Sparse layer performs similarly to 
the dense layer, with one key difference: its connections are 
sparse, meaning that not every neuron in the current layer is 
linked to every neuron in the prior layer. This architectural 
design is often used to optimize neural network performance 
by reducing the number of parameters and improving 
computational efficiency. The Sparse layer is commonly 
employed in feature extraction and object detection tasks, and 
it also outputs the final object detection results. 

 
Fig. 1. Object detection architectures: one-stage and two-stage approaches. 

1) R-CNN (Region-based CNNs) and its variants: R-CNN 

(Region-based Convolutional Neural Network) and its variants 

are a family of deep neural network architectures for image 

classification and object detection [12, 13]. R-CNN was 

originally proposed for object detection in natural images. The 

main idea of R-CNN is to use a CNN to process a region of an 

image, extract features from it, and then classify it. The R-

CNN architecture has been successful in many object 

detection tasks, including detecting objects in both natural 

images and video. 

Variants of R-CNN include Fast R-CNN [14] and Faster R-
CNN [15]. Fast R-CNN is an improvement over R-CNN that 
uses a Region Proposal Network (RPN) to propose regions, 
rather than using a sliding window. Faster R-CNN is an even 
further improvement that shares convolutional layers between 
the RPN and the classifier, resulting in even faster performance 
[16]. 

2) YOLO (You Only Look Once): The YOLO object 

detection system is a widely used method for detecting objects 

in images and videos, originally created by Joseph Redmon 

and Ali Farhadi [17, 18]. YOLO is a real-time object detection 

system that is fast and accurate. YOLO has been used in a 
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variety of applications and is considered to be the best of 

object detection systems of the literature. 

YOLO is a deep learning model that is able to effectively 
identify objects in images and video frames. This is done by 
first partitioning an image into a set of grid cells, and then 
using a specially designed neural network to predict the 
bounding box coordinates and class probabilities for each cell. 

YOLO is constantly being improved and its new versions 
are being released. The first version, YOLOv1, was released in 
2016. YOLOv2 was released in 2016. YOLOv3 was released 
in 2018. YOLOv4 was released in 2020. YOLOv5 was 
released in 2021. And the latest YOLOv6 [19], YOLOv7 [20], 
and YOLOv8 [21] (v6 and v7 released in 2022, and v8 released 
in 2023), included further improvements in terms of accuracy, 
speed, and they introduced a new segmentation pipeline. 

III. RELATED WORKS 

Zheng et al. [22] worked on the classification of dynamic 
scenes to facilitate the process of detection and tracking of 
objects and thus improve the performance of visual 
surveillance. The proposed model, Bi-heterogeneous 
convolutional neural network (Bi-CNN), extracts spatial and 
temporal information from the video sequences to categorize 
them. The model was trained and tested on a dataset composed 
of drone videos. They achieved a mean accuracy of 93%. 

Jiao et al. [23] proposed a model based on YOLOv3 that 
can be deployed in architecture using UAVs. The developed 
platform is presented with all the technical choices of the UAV 
and the analysis station. The DL model is therefore deployed 
on a ground station. They were able to achieve a speed of 
photo transmission of 3.2 images per second with a fire 
recognition rate of 83%. The same authors, in a second work 
[24], upgraded the equipment used to reach a transmission 
speed of 30 frames per second and an accuracy of 91%. 

Lohit et al. [25] used object detection to solve a post-fire 
problem related to reforestation. The authors use a drone 
equipped with a Raspberry Pi board on which deep learning 
models are deployed. A comparative study is performed 
between the models DenseNet121, Resnet152, and 
MobileNetv2. The dataset used is composed of UAV images, 
UAV Dataset (from Kaggle), and Open-source photos. The 
best results were obtained when using the model DenseNet121 
with an accuracy of 93.1%. 

Wang et al [26] initially chose the YOLOv4 object 
detection architecture as the neural network's backbone. Due to 
the large number of parameters, heavy computational load, and 
significant memory requirements, this model is not suitable for 
implementation on embedded development kits with limited 
computational power. As a result, they replaced the YOLOv4 
model's backbone with a MobileNetV3 model to create an 
initial lightweight YOLO + MobileNet model and reduce the 
number of parameters in the model as well as the 
computational load. The model was then further compressed by 
removing redundant parts of the proposed network structure. 
Finally, using knowledge distillation, they improved the 
detection accuracy of the compressed model and obtained the 
final model. 

Yanık et al. [27] presented a new drone-based architecture 
for smoke and fire recognition tasks in low-cost forests 
equipped with image processing and object detection 
capabilities. To do so, they used a drone equipped with a 
Raspberry on which a lightweight deep learning model based 
on MobileNet is deployed. The study focuses on the issue of 
battery consumption in order to increase the number of flight 
hours of the UAV. The proposed model "ssdlite mobilenet" is 
tested on four variants of parameters related to the number of 
images in the training and testing phases on the COCO dataset. 

However, most of the time, object detection systems tend to 
be inaccurate and inefficient for detecting potential forest fires 
when image quality is bad or when the fire area is relatively 
small. As such, an accurate and efficient object detection 
system is required to detect potential forest fires from images 
or videos immediately. In this paper, we propose an automated 
system that uses an object detection technique to detect 
potential forest fires and quickly alert the appropriate 
authorities. In this way, they can rapidly respond to such crises 
and reduce the impact of the fire on forests. 

IV. PROPOSED METHOD 

According to the above research works, computer vision-
based methods provide improvements over traditional methods. 
This is where our research comes in, we propose an automated 
system to detect fire in forests by using drones. The drone is 
equipped with a high-resolution camera, which films the area 
to be inspected for fire hazards. Video from the Drone's camera 
is transferred to an object detection system. The object 
detection system uses different techniques to automatically 
detect potential forest fires from a video. The coordinates of 
the detected fires are then transferred to the Geographic 
Information System (GIS). The GIS then creates a map of the 
detected fires and sends the map to the fire department. The 
map shows the location of the fire and the drone's current 
location. The fire department then sends a fire patrol to this 
location. The drone continues to film the area and continues to 
send videos to our system. The object detection system keeps 
following the fire and sending the updated fire location to the 
GIS. The GIS then updates the map and sends it to the fire 
department. The Fire patrol is then able to follow the fire and 
put it out (see Fig. 2). 

The methodology proposed consists of five key steps, 
outlined in Fig. 3. 

 

Fig. 2. Proposed architecture. 
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Fig. 3. Proposed method. 

A. Dataset Collection 

The first step in our proposed method is to collect a dataset 
of images containing forest fires. Our dataset (after data 
augmentation) reaches a total of 4236 images with the labels 
Fire and Smoke. These photos were taken with both ground-
level cameras and aerial drones. The ground cameras were 
used to capture detailed images of forest fires in real-time, 
providing accurate representations of the fires (some images 
were shot by us on the campus, see Fig. 4). Aerial drone 
images, on the other hand, were used to provide a broader 
perspective by capturing larger areas of an entire forest, 
allowing us to monitor the extent and size of the fire's affected 
area.  Additionally, photos were gathered from publicly 
accessible datasets such as online image libraries and websites. 
These images, which depict real-world scenarios of forest fires, 
were used to further expand the dataset and provide a more 
diverse dataset for an effective learning. 

To facilitate the labeling process, we leveraged the open-
source software Label-Studio, which required significant time 
and effort from our project team. To streamline the task, we 
divided the dataset among all members, enabling us to 
complete the process efficiently. 

It is worth noting that we have taken the necessary 
precautions to ensure that the images are diverse in terms of the 
various types of fires, fire intensities, and environments in 
which they occurred. This was done to ensure that the model 
could detect fires accurately in a variety of conditions, thus 
improving its performance and generalization ability. 

    

Fig. 4. Images of the man-made supervised fires. 

B. Data Preprocessing 

The next step in our proposed method is to preprocess and 
augment the collected dataset. Preprocessing includes cropping 
and resizing the images to the required size (640x640), as well 
as converting the images to a standard format such as JPG or 
PNG (JPG in our case). Data preprocessing plays a crucial role 
in object detection and can determine the success or failure of 

an object detection system. By resizing the images to a 
standard size, we can ensure that all the data is of the same 
size, making it easier to work with and compare. 

Augmentation involves applying various distortions and 
transformations to the images, such as rotations, horizontal 
flips, vertical flips, and random crops, to increase the variety of 
the dataset and make it more robust. Data preprocessing is 
performed to increase the available training data and improve 
the ability of the object detection system to recognize objects 
from various perspectives. Resizing and augmenting the data 
help to increase the chances of success in object detection. 

C. Backbone Model Choice 

When selecting a backbone model for object detection, we 
have several options to consider, including VGG-16, VGG-19, 
and ResNet50, which have been found to be effective in our 
previous research [4]. It is important to carefully evaluate the 
strengths and weaknesses of each model in our object detection 
system to determine which one performs best on our specific 
dataset. To do this, we can benchmark each model and 
compare its performance for the Faster R-CNN model. 
DarkNet is specifically used as the backbone model for 
YOLOv6, v7, and v8. 

ResNet (Residual Network) is a deep learning model 
introduced by Microsoft Research in 2015 [28]. It is known for 
its ability to train very deep neural networks with hundreds or 
even thousands of layers, using a technique called skip 
connections or shortcut connections. These connections allow 
the model to learn residual functions, or the difference between 
the input and the desired output, rather than trying to learn the 
entire mapping from scratch. This helps to alleviate the 
vanishing gradient problem and enables ResNet to achieve 
very good performance on a variety of tasks. In this work, we 
will utilize three backbone combinations with the faster R-
CNN architecture, including: 

 C4 feature extractor: a type of feature extractor used to 
extract relevant information from the feature maps 
produced by a convolutional neural network for object 
detection. 

 Feature Pyramid Network (FPN): a type of neural 
network architecture used for object detection that 
combines high-resolution and semantically strong 
features to produce a multi-scale feature representation. 

 5 levels of down-sampling (DC5): a design choice in a 
feature extractor where the image is down-sampled five 
times to produce a lower resolution version while 
preserving important features, making object detection 
easier and faster to process. 

VGG was developed by the Visual Geometry Group at the 
University of Oxford [29], it is a convolutional neural network 
architecture known for its simplicity and good performance on 
image classification tasks. It consists of a series of 
convolutional and max pooling layers, followed by a few fully-
connected layers. VGG-16 and VGG-19 are two variations of 
the VGG model that differ in the number of layers and the 
number of parameters. 
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DarkNet is a neural network framework developed by 
Joseph Redmon [17]. It is the basis for the YOLO object 
detection algorithm, which is known for its speed and real-time 
performance. DarkNet consists of a series of convolutional and 
max pooling layers, followed by multiple fully-connected 
layers. It is designed to be simple and easy to extend, making it 
a popular choice for researchers and practitioners working on 
object detection and other computer vision tasks

D. Object Detection Training 

The fourth step in our proposed method involves fine-
tuning and training our object detection models on the 
preprocessed and augmented dataset. The dataset is split into 
train (70%), validation (20%), and test (10%) sets. We use a 
variety of models including YOLOv6, v7, and v8, and faster R-
CNN (RS50 and VGG16/19). The backbone model serves as 
the foundation for our models. We have selected faster R-CNN 
as it is a more efficient and precise object detection algorithm 
compared to R-CNN and Fast R-CNN, and it has the capability 
to process complex images and learn high-level features with 
fast inference speed [16]. YOLO, particularly its newer 
versions, is also well-known for its speed and accurate results. 

We train our models using labeled data, which typically 
consists of bounding boxes around objects in the image and 
information about the class of objects contained within the box. 
The input data for faster R-CNN is in the form of TensorFlow 
record (TFRecord) files, while YOLO uses TXT annotations 
and YAML config files. The goal of this step is to create a 
highly accurate and reliable model for detecting forest fires. 

E. Models Evaluation 

Finally, we evaluate the models' performance on the 
collected dataset by using the test set (10%) to assess the mean 
average precision and inference speed of each model. The 
testing phase is crucial as it enables us to measure the models' 
performance on previously unseen data and helps us to 
determine the overall efficiency of the models in detecting 
different types of forest fires. 

V. RESULTS AND DISCUSSIONS 

In this section, we describe the results and discussion of our 
proposed method for object detection using a drone-mounted 
camera. To assess the accuracy of the proposed system, we 
have evaluated the results of object detection against a dataset 
of real forest fires. Moreover, the system was tested on fake 
and real forest fires and smokes to study the robustness of the 
proposed system. 

A. Hardware Characteristics 

The experimental setup used in this work consisted of a 
drone (DJI Mavic Air) equipped with a high-resolution camera, 
a computer, and the proposed object detection system. To run 
the proposed object detection model, we used a high-
performance computing machine with the following hardware 
specifications: 

 Two Intel Gold 6148 (2.4GHz/20-core) processors. 

 Two NVIDIA Tesla V100 graphics cards, each having 
32GB of RAM. 

B. Evaluation Metrics 

There are a variety of different metrics that can be used to 
evaluate the performance of an object detection algorithm, 
including: 

1) Average Precision (AP): It is a fairly straightforward 

metric that simply measures the average precision of the 

detector across all classes. This is a good metric to get a 

general idea of how well the detector is performing. However, 

it doesn't give any insight into how well the detector is 

performing in specific classes. AP is calculated by first 

computing the precision-recall curve for a given set of 

detections, then taking the average of the precision values at 

regularly spaced recall levels. Given a set of detections [31], 

the formula for average precision (AP) is: 

    ∑ [       ( )           (   )       
   

           ( )] (1) 

Where Recalls(n)=0, Precisions(n)=1, and n=Number of 
thresholds. 

2) Mean Average Precision (mAP): It is a more 

sophisticated metric that takes into account the precision of 

the detector in each class. This is a good metric to get a more 

detailed picture of how well the detector is performing. 

However, it can be more difficult to interpret than AP. The 

mAP metric is usually reported at several confidence 

thresholds (e.g., 0.5, 0.95). The formula for mean average 

precision (mAP) is: 

    
 

 
∑     
     

Where APi is the Average Precision of class i and N is the 
number of classes. 

3) Intersection over Union (IoU): It is a metric that 

measures the amount of overlap between the detected object 

and the ground truth object. This is a good metric to make sure 

that the detected object is a good match for the ground truth 

object. However, it can be more difficult to be interpreted than 

AP or mAP. Given two rectangles, with coordinates (x1, y1, 

x2, y2) and (x3, y3, x4, y4), the formula for Intersection over 

Union (IoU) is: 

      
(                    ) 

(             )
   

                       (   (     )       (     ))   
 (   (     )       (     )) 

                (     )    (     )    (     )   
 (     )                         

In general, AP is the primary metric used to measure the 
performance of an object detection model. However, mAP is 
also commonly used as it provides a more thorough overview 
of the model's performance. IoU is used as a complementary 
metric to provide insights into how well the model is doing in 
terms of localization. 
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C. Evaluating the Results 

In this study, several object detection models were 
evaluated for their performance in detecting forest fires and 
smoke. The models included Faster R-CNN (with different 
backbone networks) and YOLO models (v6, v7, and v8 with 
different architectures and computational requirements) trained 
on a dataset of forest fire and smoke images; we trained the 
Faster RCNN models over 500000 iterations and 1000 epochs 
for the YOLO models. The models were trained and evaluated 
using several metrics, including mAP at 0.5 and 0.95 IoU 
thresholds, recall, and precision. The inference time (s/image) 
was also measured on two Nvidia Graphics cards V100. 

The YOLO models v6, v7 and v8 although they appeared 
successively in time, they are not necessarily progressively 
improved versions, and the meaning of (n) is nano, (s) is small, 
(l) is large model, and (x) is extra-large model (in the case of 
YOLOv7; this model does not provide a large version). The 
nano (n), small (s), and large (l) variations of the YOLO 
models have different numbers of layers and parameters, which 
can affect their accuracy and inference time. 

Table I summarizes the achieved results for the 
implemented models on the testing set. The Faster R-CNN 
models with the ResNet-50 (RS50) and Feature Pyramid 
Network (FPN) backbones showed the best performance, with 
the Faster R-CNN (RS50) FPN achieving a mAP@0.5 of 
90.57% and a mAP@0.95 of 80.34%. This model also had the 
lowest inference time among the Faster R-CNN models, with 
an average of 0.0281 seconds per image. On the other hand, the 
YOLO models showed slightly lower performance compared 
to the Faster R-CNN models, with YOLOv8n achieving a 
mAP@0.5 of 89.45% and a mAP@0.95 of 79.28%. However, 
the YOLO models had a much lower inference time, with 
YOLOv8n having an average of 0.0011 seconds per image. 

Fig. 5 to 10 shows the performance of Faster R-CNN 
(RS50) FPN and YOLOv8n over iterations on the validation 
set. These figures show that both models achieved a relatively 
stable performance over iterations, with Faster R-CNN (RS50) 
FPN achieving a higher mAP@0.5 and mAP@0.95, and 
YOLOv8n having a lower loss. 

However, the YOLO models performed well in terms of 
inference time, with YOLOv6n, YOLOv8n, YOLOv8s, and 
YOLOv8l having an inference time of fewer than 0.0011 
seconds per image. This makes YOLO a good choice for real-
time applications such as drone data, where fast processing 
speed is essential. The Fast-RCNN (RS50) C4, Fast-RCNN 
(RS50) DC5, and Fast-RCNN (VGG19) models also showed 
good results, however, the processing speed was higher 
compared to YOLO models. 

In sum, the choice between YOLO and Faster RCNN 
models for the task of forest fire detection would depend on the 
desired trade-off between accuracy and processing speed. For 
applications that prioritize high accuracy, the Faster R-CNN 
models, particularly the Faster R-CNN (RS50) FPN model 
would be the best choice. On the other hand, for real-time 
applications that require fast processing speeds, the YOLO 
models, particularly YOLOv8n, would be the best option 
(Fig. 11). 

In conclusion, the choice between YOLO and Faster 
RCNN models for the task of forest fire detection would 
depend on the desired trade-off between accuracy and 
processing speed. For applications that prioritize high 
accuracy, the Faster RCNN models, particularly the Faster 
RCNN (RS50) FPN model, would be the best choice. On the 
other hand, for real-time applications that require fast 
processing speeds, the YOLO models, particularly YOLOv8n, 
would be the best option (Fig. 10). 

TABLE I. ACHIEVED RESULTS FOR THE IMPLEMENTED MODELS (ON THE 

TESTING SET) 

Model 

Name 

mAP@0.

5 

% 

mAP@0.9

5 

% 

IoU 

% 

Rec-

all 

% 

Prec-

ision 

% 

Infer-

ence 

time 

(s/imag

e) 

Faster 

R-CNN 

(RS50) 

C4 

89.32 79.12 
89.3

6 

90.3

1 

89.1

7 

~0.055

3 

Faster 

R-CNN 

(RS50) 

DC5 

89.16 78.96 
88.1

5 

89.7

4 

88.9

6 

~0.137

4 

Faster 

R-CNN 

(RS50) 

FPN 

90.57 80.34 
91.0

2 

90.8

3 

90.6

1 

~0.028

1 

Faster 

R-CNN 

(VGG19) 

89.75 79.65 
90.4

4 

89.7

4 

89.4

1 

~0.075

3 

Faster 

R-CNN 

(VGG16) 

89.62 79.52 
89.2
3 

89.7
4 

89.2
1 

~0.067
5 

YOLOv6

n 
89.12 78.96 

88.0

6 

89.0

4 

88.8

2 

~0.000

9 

YOLOv7 89.29 79.12 
89.1

7 

89.2

4 

89.0

2 

~0.002

7 

YOLOv8

n 
89.45 79.28 

89.3

6 

89.6

1 

89.4

4 

~0.001

1 

YOLOv6

s 
88.98 78.82 

88.0

3 

88.5

7 

88.4

2 

~0.002

2 

YOLOv8

s 
89.31 79.16 

89.2

5 

89.4

0 

89.2

4 

~0.001

5 

YOLOv6

l 
88.84 78.68 

88.0
6 

88.1
9 

88.0
1 

~0.008
6 

YOLOv7

x 
89.01 78.85 

89.1

2 

87.7

9 

87.6

2 

~0.005

1 

YOLOv8

l 
89.17 79.01 

89.2
4 

89.1
9 

89.0
2 

~0.002
5 

 
Fig. 5. Achieved mAP@0.5 over iterations for faster R-CNN (RS50) FPN 

(on the validation set). 
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Fig. 6. Achieved mAP@0.95 over iterations for faster R-CNN (RS50) FPN 

(on the validation set). 

 
Fig. 7. Achieved loss over iterations for faster R-CNN (RS50) FPN (on the 

validation set). 

 
Fig. 8. Achieved mAP@0.5 over iterations for YOLOv8n (on the validation 

set). 

 
Fig. 9. Achieved mAP@0.95 over iterations for YOLOv8n (on the 

validation set). 

 
Fig. 10. Achieved loss over iterations for YOLOv8n (on the validation set). 

  
Fig. 11. Forest fire and smoke detection by drone - examples using 

YOLOv8n. 

VI. CONCLUSION 

Forests are of utmost importance to maintain the balance of 
the ecosystem and provide various ecological, social and 
economic benefits. However, the increasing frequency and 
severity of forest fires pose a significant threat to the 
sustainability of forests and their functions, making early 
detection and prompt actions critical for limiting the damages. 
The use of drones fitted with sensors and cameras presents a 
cost-effective and efficient solution for detecting fires in real-
time. The proposed method consists of four major steps, 
including video recording, object detection, GIS mapping, and 
fire department notification, to provide an efficient and cost-
effective solution for real-time monitoring and early fire 
detection. This study conducts an extensive evaluation of the 
recent advancements in deep learning object detection 
techniques, including YOLO, Faster R-CNN, and their 
variants, with a specific emphasis on their suitability for forest 
fire monitoring. Based on the experimental findings, these 
techniques exhibit positive outcomes in several metrics, 
thereby presenting a promising tool for detecting and 
monitoring fires. To select the appropriate model for detecting 
forest fires and smoke based on drone images, it is important to 
find a balance between accuracy and processing speed. For 
higher accuracy, the Faster RCNN model is recommended, 
whereas for real-time applications that prioritize speed, the 
YOLO model, particularly the YOLOv8n version, is the better 
choice with a mAP@0.5 of 89.45%, a mAP@0.95 of 79.28% 
and an inference time of almost 0.0011 seconds per image. 

As part of our upcoming tasks, we are currently exploring 
the utilization of thermal images captured by UAVs. 
Additionally, we are examining the individual contributions of 
each RGB layer during model training to effectively decrease 
the overall number of parameters. 
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