
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

377 | P a g e

www.ijacsa.thesai.org

Investigation of Combining Deep Learning Object

Recognition with Drones for Forest Fire Detection

and Monitoring

Mimoun YANDOUZI
1
, Mounir GRARI

2
, Mohammed BERRAHAL

3
, Idriss IDRISSI

4
,

Omar MOUSSAOUI
5
, Mostafa

AZIZI

6
, Kamal GHOUMID

7
, Aissa KERKOUR ELMIAD

8

Lab. LSI, ENSAO, Mohammed First University, Oujda, Morocco
1, 7

Lab. MATSI, ESTO, Mohammed First University, Oujda, Morocco
2, 3, 4, 5, 6

Lab. LARI, FSO, Mohammed First University, Oujda, Morocco
8

Abstract—Forest fires are a global environmental problem

that can cause significant damage to natural resources and

human lives. The increasing frequency and severity of forest fires

have resulted in substantial losses of natural resources. To

mitigate this, an effective fire detection and monitoring system is

crucial. This work aims to explore and review the current

advancement in the field of forest fire detection and monitoring

using both drones or unmanned aerial vehicles (UAVs), and deep

learning techniques. The utilization of drones fully equipped with

specific sensors and cameras provides a cost-effective and

efficient solution for real-time monitoring and early fire

detection. In this paper, we conduct a comprehensive analysis of

the latest developments in deep learning object detection, such as

YOLO (You Only Look Once), R-CNN (Region-based

Convolutional Neural Network), and their variants, with a focus

on their potential application in the field of forest fire

monitoring. The performed experiments show promising results

in multiple metrics, making it a valuable tool for fire detection

and monitoring.

Keywords—Forest fire; deep learning; drones; unmanned

aerial vehicles; object detection; YOLO; Faster R-CNN

I. INTRODUCTION

Forests are critical for our planet. They regulate our
climate, purify our air and water, and are home to countless
plants and animals. Sadly, forests around the world are under
real threats from climate change, deforestation, and other
human activities. One of the most devastating impacts on
forests are wildfires. More recently, forest fires have become
an annual phenomenon across the world. Statistics show that
millions of acres of forests are yearly burnt. This has caused
tremendous loss of forest resources, major economic damages
to forest organizations, and lives of humans and animals. The
rise in wildfires is largely attributed to climate change. Warmer
temperatures and drier conditions make it easier for fires to
start and spread. When a wildfire starts, it can spread quickly
through the entire forest. Wildfires can have a significant
impact on the environment and the economy. They can
permanently damage forests, which can take years to be
restored. In addition, wildfires can result in substantial
financial damage as companies and industries relying on
forests are compelled to shut down or move [1].

A wide range of techniques are used to detect and monitor
forest fires, mainly we retain two main techniques based on
sensors and imagery. The first one is based on deployed
sensors that can detect environmental measurements such as
temperature, humidity, gas levels, etc. These sensors, which
may be strategically positioned throughout the forest, will
notify authorities if they detect any fire. The second technique
is imagery-based; it uses images coming from fixed cameras,
satellites, or drones. It provides authorities with a bird-eye
view of the fire and its precise location [2, 3].

Recently, with the great advances in deep learning (DL)
and its applications, new opportunities are available to the
problem-solving of computer vision in the field of forest fires
monitoring. We remind that the traditional approach uses only
visual analysis of images taken by satellites or aerial cameras.
The existing system only detects wildfires within the camera
view; it cannot identify the exact location of the fire [4]. This
gap led us to propose, in this paper, an automated system that
helps identify potential forest fires using object detection
algorithms, such as YOLO (You Only Look Once) and R-CNN
(Region-based Convolutional Neural Net-work).

The rest of this paper is organized as follows: The
Section II presents the background of our research; the
Section III gives a detailed overview of related works; the
Section IV describes our proposed method; and before
concluding this work, the Section V presents the obtained
results and the discussion of the efficiency of our proposed
system.

II. BACKGROUND

A. Computer Vision (CV)

The biological vision is an inspiring model for computer
vision. The mammalian visual system can decipher a complex
scene in an instant, sophisticated enough to distinguish, ripe
fruit from a poisonous berry, or fire from the sun. Similarly,
computer vision is an emerging field that is rapidly evolving,
making significant progress in recent years.

In general, computer vision is concerned with the automatic
extraction, analysis, and understanding of information from
images. This can be a difficult task, as images are often

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

378 | P a g e

www.ijacsa.thesai.org

cluttered and contain complex noises. However, recent
advances in ma-chine learning have allowed for significant
progress in this area. For example, deep learning (a subset of
machine learning) is a powerful technique that has been used to
achieve amazing results in computer vision [5].

There are many different applications of computer vision,
including object recognition, face detection, and scene
understanding [6].

B. Deep Learning (DL)

Deep learning, inspired by the brain, allows a computer to
deeply learn from data by creating relevant large neuronal
network models [7].

Deep learning is a relatively new field of machine learning,
and it is already having a major impact. It is used in a variety
of applications, including image recognition, speech
recognition, and natural language processing [8].

Deep learning is a powerful tool that can be used to solve
many complex problems. However, requires an important
processing power and a large amount of data in order to train
fast its models and learn effectively [9].

C. Object Detection

Object detection is the task of detecting instances of objects
in an image, regardless of their position or orientation. This can
be a very difficult task, as there can be a great deal of variation
in the appearance of objects. For example, two different people
can have very different opinions on what constitutes a "tree".
Despite this challenge, object detection is a very important task
in many applications, such as security, car self-driving, and
robotics. In addition to detecting objects in an image, CV can
also be used in following their movement. This is very helpful
in keeping track of people or vehicles in a security system, or
in avoiding obstacles for autonomous vehicles. There are many
different types of techniques for object detection, but one of the
most popular ones are those DL-based. DL is able to learn
from both unstructured and unlabeled data. This makes it ideal
for object detection, as it can learn to identify objects from a
variety of different sources [10]. Furthermore, one of the
advantages of deep learning for object detection is that it can
learn to identify objects that are not easily detectable by
humans. For example, deep learning can be used to detect
objects in images that are blurry or have low contrast.
Additionally, it can be used to detect objects that are occluded
or partially hidden. Another advantage of deep learning for
object detection is that it can learn to identify objects from a
variety of different views. This is helpful because it means that
the object detector will be more robust and will be able to
identify objects even when they are not perfectly visible.

There are a few different object detection models that are
popular among developers and researchers [11], including
YOLO, and Faster R-CNN models. Each of these models has
its own strengths and weaknesses. Object detection algorithms
can be broadly classified into two categories: one-stage and
two-stage. One-stage algorithms detect objects in a single step,
whereas two-stage algorithms divide the process into two
phases. The first phase uses a classifier to determine potential
object positions, and the second phase employs a region
proposal method to pinpoint the objects' most probable

locations, as depicted in Fig. 1. One-stage algorithms are faster
but less accurate, while two-stage algorithms are slower, but
more accurate. One-stage algorithms are favored in real-time
scenarios where processing speed is more prioritized than
accuracy, whereas two-stage ones are utilized when accuracy is
of utmost importance.

The components of object detection architecture typically
comprise five parts: the input, backbone, neck, dense layer, and
sparse layer. The input is the image fed into the network, which
is usually pre-processed for standardization such as resizing or
normalization. The backbone, which is typically a pre-trained
convolutional neural network, extract features from the input
image. The neck combines the extracted features from the
backbone. The dense layer is a fully connected layer that
generates the final object detection results using the combined
features from the neck. The Sparse layer performs similarly to
the dense layer, with one key difference: its connections are
sparse, meaning that not every neuron in the current layer is
linked to every neuron in the prior layer. This architectural
design is often used to optimize neural network performance
by reducing the number of parameters and improving
computational efficiency. The Sparse layer is commonly
employed in feature extraction and object detection tasks, and
it also outputs the final object detection results.

Fig. 1. Object detection architectures: one-stage and two-stage approaches.

1) R-CNN (Region-based CNNs) and its variants: R-CNN

(Region-based Convolutional Neural Network) and its variants

are a family of deep neural network architectures for image

classification and object detection [12, 13]. R-CNN was

originally proposed for object detection in natural images. The

main idea of R-CNN is to use a CNN to process a region of an

image, extract features from it, and then classify it. The R-

CNN architecture has been successful in many object

detection tasks, including detecting objects in both natural

images and video.

Variants of R-CNN include Fast R-CNN [14] and Faster R-
CNN [15]. Fast R-CNN is an improvement over R-CNN that
uses a Region Proposal Network (RPN) to propose regions,
rather than using a sliding window. Faster R-CNN is an even
further improvement that shares convolutional layers between
the RPN and the classifier, resulting in even faster performance
[16].

2) YOLO (You Only Look Once): The YOLO object

detection system is a widely used method for detecting objects

in images and videos, originally created by Joseph Redmon

and Ali Farhadi [17, 18]. YOLO is a real-time object detection

system that is fast and accurate. YOLO has been used in a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

379 | P a g e

www.ijacsa.thesai.org

variety of applications and is considered to be the best of

object detection systems of the literature.

YOLO is a deep learning model that is able to effectively
identify objects in images and video frames. This is done by
first partitioning an image into a set of grid cells, and then
using a specially designed neural network to predict the
bounding box coordinates and class probabilities for each cell.

YOLO is constantly being improved and its new versions
are being released. The first version, YOLOv1, was released in
2016. YOLOv2 was released in 2016. YOLOv3 was released
in 2018. YOLOv4 was released in 2020. YOLOv5 was
released in 2021. And the latest YOLOv6 [19], YOLOv7 [20],
and YOLOv8 [21] (v6 and v7 released in 2022, and v8 released
in 2023), included further improvements in terms of accuracy,
speed, and they introduced a new segmentation pipeline.

III. RELATED WORKS

Zheng et al. [22] worked on the classification of dynamic
scenes to facilitate the process of detection and tracking of
objects and thus improve the performance of visual
surveillance. The proposed model, Bi-heterogeneous
convolutional neural network (Bi-CNN), extracts spatial and
temporal information from the video sequences to categorize
them. The model was trained and tested on a dataset composed
of drone videos. They achieved a mean accuracy of 93%.

Jiao et al. [23] proposed a model based on YOLOv3 that
can be deployed in architecture using UAVs. The developed
platform is presented with all the technical choices of the UAV
and the analysis station. The DL model is therefore deployed
on a ground station. They were able to achieve a speed of
photo transmission of 3.2 images per second with a fire
recognition rate of 83%. The same authors, in a second work
[24], upgraded the equipment used to reach a transmission
speed of 30 frames per second and an accuracy of 91%.

Lohit et al. [25] used object detection to solve a post-fire
problem related to reforestation. The authors use a drone
equipped with a Raspberry Pi board on which deep learning
models are deployed. A comparative study is performed
between the models DenseNet121, Resnet152, and
MobileNetv2. The dataset used is composed of UAV images,
UAV Dataset (from Kaggle), and Open-source photos. The
best results were obtained when using the model DenseNet121
with an accuracy of 93.1%.

Wang et al [26] initially chose the YOLOv4 object
detection architecture as the neural network's backbone. Due to
the large number of parameters, heavy computational load, and
significant memory requirements, this model is not suitable for
implementation on embedded development kits with limited
computational power. As a result, they replaced the YOLOv4
model's backbone with a MobileNetV3 model to create an
initial lightweight YOLO + MobileNet model and reduce the
number of parameters in the model as well as the
computational load. The model was then further compressed by
removing redundant parts of the proposed network structure.
Finally, using knowledge distillation, they improved the
detection accuracy of the compressed model and obtained the
final model.

Yanık et al. [27] presented a new drone-based architecture
for smoke and fire recognition tasks in low-cost forests
equipped with image processing and object detection
capabilities. To do so, they used a drone equipped with a
Raspberry on which a lightweight deep learning model based
on MobileNet is deployed. The study focuses on the issue of
battery consumption in order to increase the number of flight
hours of the UAV. The proposed model "ssdlite mobilenet" is
tested on four variants of parameters related to the number of
images in the training and testing phases on the COCO dataset.

However, most of the time, object detection systems tend to
be inaccurate and inefficient for detecting potential forest fires
when image quality is bad or when the fire area is relatively
small. As such, an accurate and efficient object detection
system is required to detect potential forest fires from images
or videos immediately. In this paper, we propose an automated
system that uses an object detection technique to detect
potential forest fires and quickly alert the appropriate
authorities. In this way, they can rapidly respond to such crises
and reduce the impact of the fire on forests.

IV. PROPOSED METHOD

According to the above research works, computer vision-
based methods provide improvements over traditional methods.
This is where our research comes in, we propose an automated
system to detect fire in forests by using drones. The drone is
equipped with a high-resolution camera, which films the area
to be inspected for fire hazards. Video from the Drone's camera
is transferred to an object detection system. The object
detection system uses different techniques to automatically
detect potential forest fires from a video. The coordinates of
the detected fires are then transferred to the Geographic
Information System (GIS). The GIS then creates a map of the
detected fires and sends the map to the fire department. The
map shows the location of the fire and the drone's current
location. The fire department then sends a fire patrol to this
location. The drone continues to film the area and continues to
send videos to our system. The object detection system keeps
following the fire and sending the updated fire location to the
GIS. The GIS then updates the map and sends it to the fire
department. The Fire patrol is then able to follow the fire and
put it out (see Fig. 2).

The methodology proposed consists of five key steps,
outlined in Fig. 3.

Fig. 2. Proposed architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

380 | P a g e

www.ijacsa.thesai.org

Fig. 3. Proposed method.

A. Dataset Collection

The first step in our proposed method is to collect a dataset
of images containing forest fires. Our dataset (after data
augmentation) reaches a total of 4236 images with the labels
Fire and Smoke. These photos were taken with both ground-
level cameras and aerial drones. The ground cameras were
used to capture detailed images of forest fires in real-time,
providing accurate representations of the fires (some images
were shot by us on the campus, see Fig. 4). Aerial drone
images, on the other hand, were used to provide a broader
perspective by capturing larger areas of an entire forest,
allowing us to monitor the extent and size of the fire's affected
area. Additionally, photos were gathered from publicly
accessible datasets such as online image libraries and websites.
These images, which depict real-world scenarios of forest fires,
were used to further expand the dataset and provide a more
diverse dataset for an effective learning.

To facilitate the labeling process, we leveraged the open-
source software Label-Studio, which required significant time
and effort from our project team. To streamline the task, we
divided the dataset among all members, enabling us to
complete the process efficiently.

It is worth noting that we have taken the necessary
precautions to ensure that the images are diverse in terms of the
various types of fires, fire intensities, and environments in
which they occurred. This was done to ensure that the model
could detect fires accurately in a variety of conditions, thus
improving its performance and generalization ability.

Fig. 4. Images of the man-made supervised fires.

B. Data Preprocessing

The next step in our proposed method is to preprocess and
augment the collected dataset. Preprocessing includes cropping
and resizing the images to the required size (640x640), as well
as converting the images to a standard format such as JPG or
PNG (JPG in our case). Data preprocessing plays a crucial role
in object detection and can determine the success or failure of

an object detection system. By resizing the images to a
standard size, we can ensure that all the data is of the same
size, making it easier to work with and compare.

Augmentation involves applying various distortions and
transformations to the images, such as rotations, horizontal
flips, vertical flips, and random crops, to increase the variety of
the dataset and make it more robust. Data preprocessing is
performed to increase the available training data and improve
the ability of the object detection system to recognize objects
from various perspectives. Resizing and augmenting the data
help to increase the chances of success in object detection.

C. Backbone Model Choice

When selecting a backbone model for object detection, we
have several options to consider, including VGG-16, VGG-19,
and ResNet50, which have been found to be effective in our
previous research [4]. It is important to carefully evaluate the
strengths and weaknesses of each model in our object detection
system to determine which one performs best on our specific
dataset. To do this, we can benchmark each model and
compare its performance for the Faster R-CNN model.
DarkNet is specifically used as the backbone model for
YOLOv6, v7, and v8.

ResNet (Residual Network) is a deep learning model
introduced by Microsoft Research in 2015 [28]. It is known for
its ability to train very deep neural networks with hundreds or
even thousands of layers, using a technique called skip
connections or shortcut connections. These connections allow
the model to learn residual functions, or the difference between
the input and the desired output, rather than trying to learn the
entire mapping from scratch. This helps to alleviate the
vanishing gradient problem and enables ResNet to achieve
very good performance on a variety of tasks. In this work, we
will utilize three backbone combinations with the faster R-
CNN architecture, including:

 C4 feature extractor: a type of feature extractor used to
extract relevant information from the feature maps
produced by a convolutional neural network for object
detection.

 Feature Pyramid Network (FPN): a type of neural
network architecture used for object detection that
combines high-resolution and semantically strong
features to produce a multi-scale feature representation.

 5 levels of down-sampling (DC5): a design choice in a
feature extractor where the image is down-sampled five
times to produce a lower resolution version while
preserving important features, making object detection
easier and faster to process.

VGG was developed by the Visual Geometry Group at the
University of Oxford [29], it is a convolutional neural network
architecture known for its simplicity and good performance on
image classification tasks. It consists of a series of
convolutional and max pooling layers, followed by a few fully-
connected layers. VGG-16 and VGG-19 are two variations of
the VGG model that differ in the number of layers and the
number of parameters.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

381 | P a g e

www.ijacsa.thesai.org

DarkNet is a neural network framework developed by
Joseph Redmon [17]. It is the basis for the YOLO object
detection algorithm, which is known for its speed and real-time
performance. DarkNet consists of a series of convolutional and
max pooling layers, followed by multiple fully-connected
layers. It is designed to be simple and easy to extend, making it
a popular choice for researchers and practitioners working on
object detection and other computer vision tasks [30].

D. Object Detection Training

The fourth step in our proposed method involves fine-
tuning and training our object detection models on the
preprocessed and augmented dataset. The dataset is split into
train (70%), validation (20%), and test (10%) sets. We use a
variety of models including YOLOv6, v7, and v8, and faster R-
CNN (RS50 and VGG16/19). The backbone model serves as
the foundation for our models. We have selected faster R-CNN
as it is a more efficient and precise object detection algorithm
compared to R-CNN and Fast R-CNN, and it has the capability
to process complex images and learn high-level features with
fast inference speed [16]. YOLO, particularly its newer
versions, is also well-known for its speed and accurate results.

We train our models using labeled data, which typically
consists of bounding boxes around objects in the image and
information about the class of objects contained within the box.
The input data for faster R-CNN is in the form of TensorFlow
record (TFRecord) files, while YOLO uses TXT annotations
and YAML config files. The goal of this step is to create a
highly accurate and reliable model for detecting forest fires.

E. Models Evaluation

Finally, we evaluate the models' performance on the
collected dataset by using the test set (10%) to assess the mean
average precision and inference speed of each model. The
testing phase is crucial as it enables us to measure the models'
performance on previously unseen data and helps us to
determine the overall efficiency of the models in detecting
different types of forest fires.

V. RESULTS AND DISCUSSIONS

In this section, we describe the results and discussion of our
proposed method for object detection using a drone-mounted
camera. To assess the accuracy of the proposed system, we
have evaluated the results of object detection against a dataset
of real forest fires. Moreover, the system was tested on fake
and real forest fires and smokes to study the robustness of the
proposed system.

A. Hardware Characteristics

The experimental setup used in this work consisted of a
drone (DJI Mavic Air) equipped with a high-resolution camera,
a computer, and the proposed object detection system. To run
the proposed object detection model, we used a high-
performance computing machine with the following hardware
specifications:

 Two Intel Gold 6148 (2.4GHz/20-core) processors.

 Two NVIDIA Tesla V100 graphics cards, each having
32GB of RAM.

B. Evaluation Metrics

There are a variety of different metrics that can be used to
evaluate the performance of an object detection algorithm,
including:

1) Average Precision (AP): It is a fairly straightforward

metric that simply measures the average precision of the

detector across all classes. This is a good metric to get a

general idea of how well the detector is performing. However,

it doesn't give any insight into how well the detector is

performing in specific classes. AP is calculated by first

computing the precision-recall curve for a given set of

detections, then taking the average of the precision values at

regularly spaced recall levels. Given a set of detections [31],

the formula for average precision (AP) is:

 ∑ [() ()

 ()] (1)

Where Recalls(n)=0, Precisions(n)=1, and n=Number of
thresholds.

2) Mean Average Precision (mAP): It is a more

sophisticated metric that takes into account the precision of

the detector in each class. This is a good metric to get a more

detailed picture of how well the detector is performing.

However, it can be more difficult to interpret than AP. The

mAP metric is usually reported at several confidence

thresholds (e.g., 0.5, 0.95). The formula for mean average

precision (mAP) is:

∑

Where APi is the Average Precision of class i and N is the
number of classes.

3) Intersection over Union (IoU): It is a metric that

measures the amount of overlap between the detected object

and the ground truth object. This is a good metric to make sure

that the detected object is a good match for the ground truth

object. However, it can be more difficult to be interpreted than

AP or mAP. Given two rectangles, with coordinates (x1, y1,

x2, y2) and (x3, y3, x4, y4), the formula for Intersection over

Union (IoU) is:

()

()

 (() ())
 (() ())

 () () ()
 ()

In general, AP is the primary metric used to measure the
performance of an object detection model. However, mAP is
also commonly used as it provides a more thorough overview
of the model's performance. IoU is used as a complementary
metric to provide insights into how well the model is doing in
terms of localization.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

382 | P a g e

www.ijacsa.thesai.org

C. Evaluating the Results

In this study, several object detection models were
evaluated for their performance in detecting forest fires and
smoke. The models included Faster R-CNN (with different
backbone networks) and YOLO models (v6, v7, and v8 with
different architectures and computational requirements) trained
on a dataset of forest fire and smoke images; we trained the
Faster RCNN models over 500000 iterations and 1000 epochs
for the YOLO models. The models were trained and evaluated
using several metrics, including mAP at 0.5 and 0.95 IoU
thresholds, recall, and precision. The inference time (s/image)
was also measured on two Nvidia Graphics cards V100.

The YOLO models v6, v7 and v8 although they appeared
successively in time, they are not necessarily progressively
improved versions, and the meaning of (n) is nano, (s) is small,
(l) is large model, and (x) is extra-large model (in the case of
YOLOv7; this model does not provide a large version). The
nano (n), small (s), and large (l) variations of the YOLO
models have different numbers of layers and parameters, which
can affect their accuracy and inference time.

Table I summarizes the achieved results for the
implemented models on the testing set. The Faster R-CNN
models with the ResNet-50 (RS50) and Feature Pyramid
Network (FPN) backbones showed the best performance, with
the Faster R-CNN (RS50) FPN achieving a mAP@0.5 of
90.57% and a mAP@0.95 of 80.34%. This model also had the
lowest inference time among the Faster R-CNN models, with
an average of 0.0281 seconds per image. On the other hand, the
YOLO models showed slightly lower performance compared
to the Faster R-CNN models, with YOLOv8n achieving a
mAP@0.5 of 89.45% and a mAP@0.95 of 79.28%. However,
the YOLO models had a much lower inference time, with
YOLOv8n having an average of 0.0011 seconds per image.

Fig. 5 to 10 shows the performance of Faster R-CNN
(RS50) FPN and YOLOv8n over iterations on the validation
set. These figures show that both models achieved a relatively
stable performance over iterations, with Faster R-CNN (RS50)
FPN achieving a higher mAP@0.5 and mAP@0.95, and
YOLOv8n having a lower loss.

However, the YOLO models performed well in terms of
inference time, with YOLOv6n, YOLOv8n, YOLOv8s, and
YOLOv8l having an inference time of fewer than 0.0011
seconds per image. This makes YOLO a good choice for real-
time applications such as drone data, where fast processing
speed is essential. The Fast-RCNN (RS50) C4, Fast-RCNN
(RS50) DC5, and Fast-RCNN (VGG19) models also showed
good results, however, the processing speed was higher
compared to YOLO models.

In sum, the choice between YOLO and Faster RCNN
models for the task of forest fire detection would depend on the
desired trade-off between accuracy and processing speed. For
applications that prioritize high accuracy, the Faster R-CNN
models, particularly the Faster R-CNN (RS50) FPN model
would be the best choice. On the other hand, for real-time
applications that require fast processing speeds, the YOLO
models, particularly YOLOv8n, would be the best option
(Fig. 11).

In conclusion, the choice between YOLO and Faster
RCNN models for the task of forest fire detection would
depend on the desired trade-off between accuracy and
processing speed. For applications that prioritize high
accuracy, the Faster RCNN models, particularly the Faster
RCNN (RS50) FPN model, would be the best choice. On the
other hand, for real-time applications that require fast
processing speeds, the YOLO models, particularly YOLOv8n,
would be the best option (Fig. 10).

TABLE I. ACHIEVED RESULTS FOR THE IMPLEMENTED MODELS (ON THE

TESTING SET)

Model

Name

mAP@0.

5

%

mAP@0.9

5

%

IoU

%

Rec-

all

%

Prec-

ision

%

Infer-

ence

time

(s/imag

e)

Faster

R-CNN

(RS50)

C4

89.32 79.12
89.3

6

90.3

1

89.1

7

~0.055

3

Faster

R-CNN

(RS50)

DC5

89.16 78.96
88.1

5

89.7

4

88.9

6

~0.137

4

Faster

R-CNN

(RS50)

FPN

90.57 80.34
91.0

2

90.8

3

90.6

1

~0.028

1

Faster

R-CNN

(VGG19)

89.75 79.65
90.4

4

89.7

4

89.4

1

~0.075

3

Faster

R-CNN

(VGG16)

89.62 79.52
89.2
3

89.7
4

89.2
1

~0.067
5

YOLOv6

n
89.12 78.96

88.0

6

89.0

4

88.8

2

~0.000

9

YOLOv7 89.29 79.12
89.1

7

89.2

4

89.0

2

~0.002

7

YOLOv8

n
89.45 79.28

89.3

6

89.6

1

89.4

4

~0.001

1

YOLOv6

s
88.98 78.82

88.0

3

88.5

7

88.4

2

~0.002

2

YOLOv8

s
89.31 79.16

89.2

5

89.4

0

89.2

4

~0.001

5

YOLOv6

l
88.84 78.68

88.0
6

88.1
9

88.0
1

~0.008
6

YOLOv7

x
89.01 78.85

89.1

2

87.7

9

87.6

2

~0.005

1

YOLOv8

l
89.17 79.01

89.2
4

89.1
9

89.0
2

~0.002
5

Fig. 5. Achieved mAP@0.5 over iterations for faster R-CNN (RS50) FPN

(on the validation set).

mailto:mAP@0.5
mailto:mAP@0.5

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

383 | P a g e

www.ijacsa.thesai.org

Fig. 6. Achieved mAP@0.95 over iterations for faster R-CNN (RS50) FPN

(on the validation set).

Fig. 7. Achieved loss over iterations for faster R-CNN (RS50) FPN (on the

validation set).

Fig. 8. Achieved mAP@0.5 over iterations for YOLOv8n (on the validation

set).

Fig. 9. Achieved mAP@0.95 over iterations for YOLOv8n (on the

validation set).

Fig. 10. Achieved loss over iterations for YOLOv8n (on the validation set).

Fig. 11. Forest fire and smoke detection by drone - examples using

YOLOv8n.

VI. CONCLUSION

Forests are of utmost importance to maintain the balance of
the ecosystem and provide various ecological, social and
economic benefits. However, the increasing frequency and
severity of forest fires pose a significant threat to the
sustainability of forests and their functions, making early
detection and prompt actions critical for limiting the damages.
The use of drones fitted with sensors and cameras presents a
cost-effective and efficient solution for detecting fires in real-
time. The proposed method consists of four major steps,
including video recording, object detection, GIS mapping, and
fire department notification, to provide an efficient and cost-
effective solution for real-time monitoring and early fire
detection. This study conducts an extensive evaluation of the
recent advancements in deep learning object detection
techniques, including YOLO, Faster R-CNN, and their
variants, with a specific emphasis on their suitability for forest
fire monitoring. Based on the experimental findings, these
techniques exhibit positive outcomes in several metrics,
thereby presenting a promising tool for detecting and
monitoring fires. To select the appropriate model for detecting
forest fires and smoke based on drone images, it is important to
find a balance between accuracy and processing speed. For
higher accuracy, the Faster RCNN model is recommended,
whereas for real-time applications that prioritize speed, the
YOLO model, particularly the YOLOv8n version, is the better
choice with a mAP@0.5 of 89.45%, a mAP@0.95 of 79.28%
and an inference time of almost 0.0011 seconds per image.

As part of our upcoming tasks, we are currently exploring
the utilization of thermal images captured by UAVs.
Additionally, we are examining the individual contributions of
each RGB layer during model training to effectively decrease
the overall number of parameters.

mailto:mAP@0.5
mailto:mAP@0.5

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

384 | P a g e

www.ijacsa.thesai.org

ACKNOWLEDGMENT

This work is supported by the Mohammed First University
under the PARA1 Program (Low-cost, real-time Forest Fire
Detection System based on Wireless Sensor Networks - SDF-
RCSF). And the computational resources of HPC-MARWAN
are provided by the National Center for Scientific and
Technical Research (CNRST), Rabat, Morocco.

REFERENCES

[1] M. Grari, I. Idrissi, M. Boukabous, O. Moussaoui, M. Azizi, and M.
Moussaoui, “Early wildfire detection using machine learning model
deployed in the fog/edge layers of IoT,” Indones. J. Electr. Eng.
Comput. Sci., vol. 27, no. 2, pp. 1062–1073, Aug. 2022, doi:
10.11591/IJEECS.V27.I2.PP1062-1073.

[2] M. Grari et al., “Using IoT and ML for Forest Fire Detection,
Monitoring, and Prediction: a Literature Review,” J. Theor. Appl. Inf.
Technol., vol. 100, pp. 5445–5461, 2022.

[3] M. Yandouzi et al., “Review on forest fires detection and prediction
using deep learning and drones,” J. Theor. Appl. Inf. Technol., vol. 100,
no. 12, pp. 4565–4576, 2022.

[4] M. Yandouzi et al., “Forest Fires Detection using Deep Transfer
Learning,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 8, pp. 268–275,
Oct. 2022, doi: 10.14569/IJACSA.2022.0130832.

[5] M. Berrahal and M. Azizi, “Augmented Binary Multi-Labeled CNN for
Practical Facial Attribute Classification,” Indones. J. Electr. Eng.
Comput. Sci., vol. 23, no. 2, pp. 973–979, Aug. 2021.

[6] A. Kherraki and R. El Ouazzani, “Deep convolutional neural networks
architecture for an efficient emergency vehicle classification in real-time
traffic monitoring,” IAES Int. J. Artif. Intell., vol. 11, no. 1, pp. 110–
120, Mar. 2022.

[7] I. Idrissi, M. Azizi, and O. Moussaoui, “A Stratified IoT Deep Learning
based Intrusion Detection System,” in 2022 2nd International
Conference on Innovative Research in Applied Science, Engineering and
Technology (IRASET), Mar. 2022, pp. 1–8, doi:
10.1109/IRASET52964.2022.9738045.

[8] M. Boukabous and M. Azizi, “Review of Learning-Based Techniques of
Sentiment Analysis for Security Purposes,” in Innovations in Smart
Cities Applications Volume 4, Springer, Cham, 2021, pp. 96–109.

[9] Y. Hammoudi, I. Idrissi, M. Boukabous, Y. Zerguit, and H. Bouali,
“Review on maintenance of photovoltaic systems based on deep learning
and internet of things,” Indones. J. Electr. Eng. Comput. Sci., vol. 26,
no. 2, May 2022.

[10] M. Boukabous and M. Azizi, “Crime prediction using a hybrid sentiment
analysis approach based on the bidirectional encoder representations
from transformers,” Indones. J. Electr. Eng. Comput. Sci., vol. 25, no. 2,
pp. 1131–1139, Feb. 2022, doi: 10.11591/IJEECS.V25.I2.PP1131-1139.

[11] M. Berrahal and M. Azizi, “Review of DL-Based Generation
Techniques of Augmented Images using Portraits Specification,” in 4th
International Conference on Intelligent Computing in Data Sciences,
ICDS 2020, Nov. 2020, pp. 1–8, doi:
10.1109/ICDS50568.2020.9268710.

[12] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Region-Based
Convolutional Networks for Accurate Object Detection and
Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 1,
pp. 142–158, Jan. 2016, doi: 10.1109/TPAMI.2015.2437384.

[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp.
580–587, Nov. 2013, doi: 10.48550/arxiv.1311.2524.

[14] R. Girshick, “Fast R-CNN,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, vol. 2015 Inter, pp. 1440–1448,
doi: 10.1109/ICCV.2015.169.

[15] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2015,
doi: 10.48550/arxiv.1506.01497.

[16] M. Boukabous and M. Azizi, “Image and video-based crime prediction
using object detection and deep learning,” Bull. Electr. Eng. Informatics,
vol. 12, no. 3, pp. 1630–1638, Jun. 2023, doi:
10.11591/EEI.V12I3.5157.

[17] J. Redmon and A. Farhadi, “ YOLO: Real-Time Object Detection,”
2018. https://pjreddie.com/darknet/yolo/ (accessed Jan. 30, 2023).

[18] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,”
Apr. 2018, Accessed: Mar. 22, 2023. [Online]. Available:
https://arxiv.org/abs/1804.02767v1.

[19] C. Li et al., “YOLOv6: A Single-Stage Object Detection Framework for
Industrial Applications,” Sep. 2022, doi: 10.48550/ARXIV.2209.02976.

[20] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,”
arXiv Prepr. arXiv2207.02696, 2022.

[21] G. Jocher, A. Chaurasia, and J. Qiu, “YOLOv8,” 2023.
https://github.com/ultralytics/ultralytics (accessed Jan. 30, 2023).

[22] J. Zheng, C. Xianbin, Z. Baochang, Y. Huang, and Y. Hu, “Bi-
heterogeneous Convolutional Neural Network for UAV-based dynamic
scene classification,” ICNS 2017 - ICNS CNS/ATM Challenges UAS
Integr., Aug. 2017, doi: 10.1109/ICNSURV.2017.8011932.

[23] Z. Jiao et al., “A Deep learning based forest fire detection approach
using uav and yolov3,” 1st Int. Conf. Ind. Artif. Intell. IAI 2019, Jul.
2019, doi: 10.1109/ICIAI.2019.8850815.

[24] Z. Jiao et al., “A YOLOv3-based Learning Strategy for Real-time UAV-
based Forest Fire Detection,” Proc. 32nd Chinese Control Decis. Conf.
CCDC 2020, pp. 4963–4967, Aug. 2020, doi:
10.1109/CCDC49329.2020.9163816.

[25] G. V. S. Lohit and D. Bisht, “Reforestation Using Drones and Deep
Learning Techniques,” 2021 7th Int. Conf. Adv. Comput. Commun.
Syst. ICACCS 2021, pp. 847–852, Mar. 2021, doi:
10.1109/ICACCS51430.2021.9442053.

[26] S. Wang, J. Zhao, N. Ta, X. Zhao, M. Xiao, and H. Wei, “A real-time
deep learning forest fire monitoring algorithm based on an improved
Pruned + KD model,” J. Real-Time Image Process. 2021 186, vol. 18,
no. 6, pp. 2319–2329, May 2021, doi: 10.1007/S11554-021-01124-9.

[27] A. Yanık, M. Yanık, M. S. Güzel, and G. E. Bostancı, “Machine
Learning–Based Early Fire Detection System Using a Low-Cost Drone,”
Adv. Sens. Image Process. IoT, pp. 1–18, Feb. 2022, doi:
10.1201/9781003221333-1.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., vol. 2016-Decem, pp. 770–778, Dec. 2015, doi:
10.1109/CVPR.2016.90.

[29] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 3rd Int. Conf. Learn. Represent. ICLR
2015 - Conf. Track Proc., 2015.

[30] Redmon J Darknet: Open Source Neural Networks in C.
https://pjreddie.com/darknet/. (accessed Jan. 23, 2023).

[31] Average Precision - Hasty.ai. https://hasty.ai/docs/mp-
wiki/metrics/average-precision. (accessed Jan. 30, 2023).

