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Abstract—Predicting the structure of protein has been the 

center of attraction for the researchers. The aim is to make a 

reliable prediction of the protein structure by obtaining the 

minimum energy values among amino acids interactions. 

According to the generated shape of amino acids, the 

functionality of the proteins can be determined. However, it is 

known as one of the most challenging tasks in the field of 

bioinformatics considering its high computation complexity. 

Metaheuristic algorithms are mainly preferred by researchers 

from various fields, since their performances are quite 

satisfactory in solving such complex problems. Animal Migration 

Optimization (AMO) algorithm is a metaheuristic approach 

which mimics the behavior of animals during the migration 

process. However, in this research to reach a high solution 

quality, an elitist version of Animal Migration Optimization 

(ELAMO) algorithm is considered and in particular it is applied 

to Protein Structure Prediction (PSP) problem. The performance 

of ELAMO is tested on some well-studied artificial and real 

protein sequences, and then compared with powerful 

optimization algorithms which are specially designed for solving 

PSP problem. The results show that ELAMO is quite capable in 

solving this problem. Hence, it can be used as an efficient 

optimizer for solving complex problems that require better 

solution quality in the field of bioinformatics. 

Keywords—Animal migration optimization; bioinformatics; 

elitism; metaheuristics; protein structure prediction 

I. INTRODUCTION 

In molecular biology, comprehending the structure of a 
protein sequence reveals the hidden functionalities of the life 
[1]. When the proteins are folded in different ways, the 
information necessary for understanding their functionalities 
will arise. Proteins are formed by the combination of amino 
acids which are connected by peptide bonds [2]. According to 
Christen Anfinsen’s leading work, proteins can be found in the 
lowest energy levels which are called Gibbs energy level, when 
they are in three dimensional states [3]. Protein Structure 
Prediction (PSP) problem is located on finding this state by 
seeking the minimum Gibbs energy level. As the amino acid 
sequence becomes large, predicting the structure of a protein 
sequence becomes complex. 

Researchers developed an approach called ‘HP model’ for 
protein folding prediction [4]. In the HP model, a protein 
description is made up of smaller pieces called monomers and 
which are either represented on 2D or 3D surface. ‘H’ and ‘P’ 
letters are used to define each of the monomers which are 
hydrophobic or polar, respectively. It is aimed to find the 
optimal structure of a given H-P chain that is defined as the 
maximum number of H-H bondings. Although the HP model is 

specifically designed for solving protein folding with its 
simplicity, it does not provide satisfactory solutions for PSP. 
The problem is proved to be an NP-hard problem due to large 
number of amino acids sequences and requires quite efficient 
algorithms to solve them [5–7]. 

One of the biggest limitations of protein folding is having 
the multiple local optimum points in the free-energy space and 
the global optimum is located in between these points which is 
quite challenging to obtain [8]. In order to design a scheme by 
avoiding the large computational cost, such models with 
eliminated properties in protein folding have been preferred [8–
10]. An accurate example of these kinds of models is the off-
lattice model which is presented by Stilinger et al. [8]. The 
model is employed to simplify the protein folding. 

Animal Migration Algorithm (AMO) is a bioinspired 
metaheuristic approach proposed by Li et al. [11]. It is founded 
on an animal’s instinct to follow their close neighbors during 
the migration and has quite validated performances on many 
optimization problems. Despite of the noticeable properties of 
AMO, there may be some disadvantages such as low 
convergence rate by choosing the next possible solutions only 
among the current animal’s neighborhood or having a less 
chance by finding the global optimum because of following the 
wrong neighbors. In order to avoid these limitations and make 
it guarantee that the algorithm converges to the global optimum 
in less number of iterations, Elitist Animal Migration 
Optimization (ELAMO) is proposed on the basis of an 
animal’s instinct to follow their leaders, not only their closest 
neighbors [12]. ELAMO has a validated performance in 
solving combinatorial NP-hard problem. However, to the best 
of our knowledge neither AMO nor ELAMO have been 
proposed for solving bioinformatics problems, particularly, for 
the PSP problem. In this paper, ELAMO algorithm is adapted 
to bring another aspect in solving Protein Structure Prediction 
(PSP) problem by using 3D AB Off-Lattice Model. 

The rest of the paper is designed as follows; in Section II, 
some important studies for solving the PSP over the years have 
been given. In Section III, three dimensional AB off lattice 
model and the adaptation of Elitist Migration Algorithm to PSP 
problem with the model equations are given. In Section IV, 
ELAMO algorithm’s performance is compared on both 
synthetic and real protein sequences with some powerful 
optimizers. The obtained results with the visual representations 
of minimum energy configurations and discussions are given in 
detail in this section. Lastly, in Section V, the concluding 
remarks are given. 
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II. RELATED WORK 

It is known that many metaheuristic algorithms are verified 
to be quite efficient in solving complex and even NP-hard 
problems. In specific, it is found that Bee colony optimization 
algorithms and its variants are used to solve PSP problem by Li 
et al. [13]. Kalegari and Lopes proposed an improved 
Differential Evolution algorithm for solving PSP using 2D and 
3D off-lattice models efficiently [14]. Another Differential 
Evolution algorithm variant is proposed by Rakhshani et al. for 
solving complex protein structure prediction problems [15]. 
Deep learning practices are also tested for the PSP by Senior et 
al. [16] and achieved promising results. Schauperl and Denny 
performed an AI based protein structure prediction in drug 
discovery [17], Chowdhurry et al. [18] solved protein 
prediction problem using a deep learning model and Weißenow 
et al. [19] have solved PSP problem using AI model accurately. 
Multi-meme algorithms are also adapted for solving PSP by 
Krasnogor et al. [20]. Lin and Zhang introduced a novel-hybrid 
global optimization method by forming Genetic Algorithm and 
Particle Swarm Optimization to solve PSP in which aiming to 
produce lower energy conformation levels [21]. Boiani and 
Parpinelli proposed a hybrid algorithm called cuHjDE-3D 
which is formed by self-adaptive Differential Evolution that 
uses jDE and Hooke-Jeeves Direct Search (HJDS) [22]. 

The literature review revealed that the standard 
metaheuristic algorithms have limited performance in solving 
PSP problem. Before attempting to solve the problem, 
researchers either modify or hybridize the standard algorithms. 
By introducing such boosted algorithms, the researchers aimed 
to use the strengths of the algorithms on PSP problem. 

In this study, none of the machine learning methods are 
implemented. Instead, a modified version of AMO algorithm 
has been studied to observe how it evaluates the problem by 
using its parameters. One of the main contributions of this 
study is to adapt animal migration algorithm by enhancing its 
diversity using elitist approach for protein sequence prediction 
problem and achieving satisfactory results. 

III. MATERIALS AND METHODS 

A. Three Dimensional AB Off-Lattice Model 

The AB off-lattice model is stimulated by HP model and 
considered as one of the useful models for solving Protein 
Structure Prediction Problem. When the AB off-lattice model 
was introduced, it was initially designed for 2-D protein 
structures. However, then the model was upgraded for solving 
3-D models as well [8, 23]. 

In a protein sequence 20 types of amino acids exist which 
are categorized in two; hydrophobic and hydrophilic. This is 
simply performed according to their affinity to water. The 
amino acids then translated to two specialized monomers ‘A’ 
and ‘B’. As K-D method proposes I, V, L, P, C, M, A, G are 
hydrophobic amino acids represented by letter A and D, E, F, 
H, K, N, Q, R, S, T, W, Y are hydrophilic amino acids 
represented by letter B [24]. The name AB of AB off-lattice 
model is because of these specialized monomers A and B. 

The amino acids are bonded with each other by chemical 
bonds and can be placed anywhere in the 3D space. The reason 

of that is called off-lattice is the positions of the amino acids 
which are not restricted by a lattice. In the AB off-lattice 
model, bondings are formed by set of angles; folding (θ) and 
rotation (ϕ). In a protein sequence which contains n monomers 
also contains n-2 folding angles and n-3 rotation angles. The 
optimal structure of AB off-lattice model produces the free 
energy which gives general information about the physical and 
chemical concept of protein sequences. Fig. 1 shows the 
representation of an artificial protein sequence ABAA with 
folding (θ) and rotation (ϕ) angles where ‘A’ and ‘B’ are 
hydrophobic and hydrophilic amino acids, respectively. 
Folding angles [θ1, θ2] and rotation angle [ϕ1] are needed to be 
optimized for having the minimum free energy level. 

 
Fig. 1. 3D AB-off lattice model representation for ABAA artificial protein 

sequence. 

Adaptation of protein structure prediction to a numerical 
optimization problem by 3D AB-off lattice model is done as 
follows, 
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 amino acid. If     , 

then i is a hydrophilic amino acid. If      , then i is a 
hydrophobic one. The folding angles (θ) are bounded [-180°, 
180°]. 

To obtain the distance between amino acids i and j, the 
following equation is used. 
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The following equation shows the basic rotations for two 
amino acids. 

 (     )  
 

 
(             )  (3) 

In AB-off lattice model, it is assumpted that strong 
correlations between AA pairs result with the value of 

 (     )     relatively weaker correlations between BB pairs 

result with the value of  (     )      and different pairs BA 

or AB pairs result with the value of  (     )      . Using 

the assumptions obtained through AB-off lattice model, the 
protein structure problem is converted into a numerical 
optimization problem that can be handled by evolutionary 
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optimization techniques. By having various ordering of 
distances and rotations, different energy levels of amino acids 
are obtained and as the algorithm iterates the optimum energy 
level is obtained. 

B. Adaptation of ELAMO to PSP Problem 

Animal migration is a common behavior which belongs to 
animal herds to be used in discovering better places to live and 
reproduce. Animal Migration Optimization (AMO) algorithm 
based on this behavior and proved to be a validated optimizer 
in solving optimization problems [11]. Our approach is simply 
based on the main steps of AMO by including the elitism 
behavior in it. In the Elitist Animal Migration approach, the 
neighborhood structure of the standard AMO is reconstructed. 
Thus, the animals in the herd follow their leaders not only their 
close neighbors. 

During the migration process, an animal’s position depends 
on its neighbor. In standard AMO, migration is done by 
following five closest neighbors of each animal. However, in 
our elitist approach, an animal’s instinct to follow the leader of 
the herd is essential. In a typical animal herd, there are three 
kinds of animal; Alpha (α), Beta (β) and Omega (ω). 

Alpha (α) is responsible from all animals in the herd such 
as finding the preys or discovering new life areas. If the alpha 
dies, a new leader is selected among the beta (β) animals who 
are in charge after the alpha (α). The rest of the animals are 
considered as omegas (ω) who obey the rules of the herd. In 
the algorithm ELAMO, only α and β animals are in charge of 
migration. The number of α is 1 and the number of β is fixed to 
4. Thus, all of the animals in the herd move towards to new life 
areas by following these leaders. As the algorithm iterates, new 
α and β animals are selected with respect to their positions 
among the rest of the animals. The following figures; Fig. 2 
and Fig. 3 demonstrate the neighborhood structure in AMO 
and ELAMO, respectively where each animal represented by a 
circle theoretically. 

Elitist animal migration algorithm is built up on two 
fundamental steps; Animal migration and population updating. 

 
Fig. 2. The neighborhood structure of AMO algorithm where i is an animal 

and i ± 1,2 are the closest neighbors. 

 

Fig. 3. The neighborhood structure of ELAMO algorithm. 

In animal migration step, animals change their positions 
towards their α and β animals as given in (4). In population 
updating step, displacement of animals is introduced. Some 
animals may be eliminated due to death or they may compete 
for their positions and the losers are discarded from the 
population. The new positions are updated according to their 
fitness values as it is shown in (5). 

Animal migration step; 

             (                      )   (4) 

where δ is a random number produced by Gaussian 
distribution and G is the dimension for each animal ∈ [1... D] 

and                 is the leader’s position randomly selected 

from the neighborhood structure of an animal Xi. 

Population updating step; 

                        (             )  

    (                 )   (5) 

where XbetaRand is an animal selected randomly between beta 
animals,        is the position of alpha, rand is a random 

number in between 0, 1 and a ≠ b. 

The main control parameters of ELAMO are   and      
which influence the population by having equilibrium between 
the diversity; exploring new possible areas in the search space 
and intensity; focusing the search area around the leaders α and 
β. 

The adaptation of ELAMO to PSP problem is given in the 
Fig. 4. One of the main motivations is to reach the higher 
optimization level by changing the neighborhood structure. In 
standard AMO, the closest neighbor’s position might be used 
just because they are considered as the closest neighbors and 
even if their positions are relatively worse than the others. 
However, in ELAMO, the best positions are chosen at each 
iteration and are followed by all of the animals. 

As it is explained clearly in no-free lunch theorem [25], 
when an algorithm’s performance is sufficient in some aspects, 
the performance may not reach to that level as it is expected for 
the other aspects. In ELAMO, individuals are discarded from 
the population as the elitism feature requires even in the 
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beginning of the iterations. Therefore, it may be considered in 
ELAMO the balance of diversification and intensification may 
be negatively affected by the loss of individuals in the earlier 
stages of optimization. 

 
Fig. 4. The main steps of ELAMO algorithm for PSP problem. 

A herd with α, β and ω animals correspond an AB-off 
lattice model for a set of sequences. All of the animals in the 
herd are the potential solutions in solving PSP by 
corresponding distances, angles and interactions between 
particles. According to these values, energy levels are derived. 
In PSP, the objective function is the energy level function and 
the optimal solution refers to the lowest energy value. 

IV. RESULTS AND DISCUSSION 

In this section, two sets of analyses were used. First, a set 
of artificial Fibonacci protein sequences which have been used 
as benchmarks commonly in the literature is studied [8, 26] and 
then real protein sequences were analyzed. The data sets are 
experimentally examined structures for testing the efficiency of 
the methods for PSP problem. 

A list of benchmark sequences with the ‘A’ and ‘B’ 
monomers are given in Table I where N is the sum of the 
monomers. A comparative study is performed in Table II to 
observe the performance of ELAMO with respect to some 
powerful optimization algorithms; Improved Particle Swarm 
Optimization (EPSO) [27], Internal Feedback strategy based on 
Artificial Bee Colony Algorithm (IF-ABC) [28], Combination 
of Genetic Algorithm and Particle Swarm Optimization 
(GAPSO) [21] and standard AMO which ELAMO is 
originated from. It is also important to note that the results of 
the compared algorithms included to the comparison table as 
they appeared in their original studies. 

All simulations are implemented on an Intel Core i5 CPU 
with 4 GB RAM running at 3.10 GHz by C++ language. All 
benchmark sequences are evaluated for 30 independent runs 
with random initial points. All protein sequences are optimized 
by AMO and ELAMO for 50,000 number of iterations. 

TABLE I.  DETAILS OF THE ARTIFICIAL PROTEIN SEQUENCES 

Coded Sequence N 

ABBABBABABBAB 13 

BABABBABABBABBABABBAB 21 

ABBABBABBBABBABABBABABBABBABABBAB 34 

Fig. 5 is the representation of the changing lowest free 
energy values for three artificial protein sequences by the 
algorithms chosen for comparison. It can be clearly seen from 
both Table II and Fig. 5 that ELAMO has reached better 
energy values than the other algorithms for all artificial 
sequences. 

 
Fig. 5. A comparative free energy values obtained by different algorithms 

for Fibonacci sequences. 

As shown in Fig. 5, almost all of the algorithms converge in 
similar rate in the first level of iterations; however as the 
iteration goes on convergence rate of ELAMO stands out for 
all benchmarks than the others. When the original algorithm 
AMO compared with the others, it is seen that all of the 
selected algorithms converge better than AMO. 

All of the algorithms selected for comparison are either the 
hybrid version of one or more algorithms or the improved 
versions of the originals. AMO algorithm is the only one its 
performance was not boosted. It might be the main reason of 
the observation above which is about the lower convergence 
rate of AMO. On the other hand, this is a good indication that 
AMO has been improved efficiently to handle such kind of 
problems with high convergence rates. 

In order to observe the effect of the added elitism feature on 
AMO, a detailed comparison between AMO and ELAMO is 
studied and shown in the Table III, where Best is for the lowest 
free-energy value obtained after 50,000 number of iterations, 
Avg is the averaged free-energy values of 30 independent runs 
and Stdev is for the standard deviation value. 

TABLE II.  THE LOWEST FREE-ENERGY VALUES OF BENCHMARK 

SEQUENCES OBTAINED BY THE ALGORITHMS 

List of 

sequences 
N EPSO 

IF-

ABC 

GAPS

O 
AMO 

ELAM

O 

ABBABBABA
BBAB 

13 -3.294 -3.294 -3.294 -3.216 -6.982 

BABABBABA

BBABBABAB
BAB 

21 -6.198 -6.198 -6.210 -5.751 -14.811 

ABBABBABB

BABBABABB
ABABBABBA

BABBAB 

34 -9.834 -10.806 -10.789 -9.219 -27.989 
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The results denote the improved solution quality of 
ELAMO over AMO as well as robustness. However, for all of 
the artificial sequences the Best and the Avg values of ELAMO 
are superior than the values AMO. However, only for the 
sequence with the length 34, the Stdev value is not satisfactory 
as it is expected. ELAMO algorithm produces encouraging 
results for the lowest-free energy values and the average 
values, but does not achieve the development of standard 
deviation for this sequence. When the Stdev values are 
compared for the sequence with the length 21, it is seen that 
AMO is quite close to ELAMO. The reason of this unexpected 
performance might be because of α and β animals’ 
convergence pace in the search space, while some of the ω 
animals are still in the optimization process. As the iterations 
progress, the majority of ω animals find their way towards the 
optimum. 

TABLE III.  COMPARATIVE RESULTS BEST, AVERAGE AND STANDARD 

DEVIATIONS ACHIEVED BY AMO AND ELAMO 

AMO ELAMO 

N Best Avg Stdev Best Avg Stdev 

13 -3.21 -2.44 0.52 -6.98 -6.38 0.39 

21 -5.75 -4.71 1.17 -14.81 -14.31 0.99 

34 -9.21 -8.02 1.20 -27.98 -26.30 1.83 

Researchers dealt with well-preferred real protein 
benchmark functions for a better analyzing of their algorithms 
and employed to their works [15, 28–31]. The same protein 
sequences were used in this study as benchmark functions and 
rewritten according to the K-D method where I, V, L, P, C, M, 
A, G are hydrophobic amino acids represented by letter ‘A’ 
and D, E, F, H, K, N, Q, R, S, T, W, Y are hydrophilic amino 
acids represented by letter ‘B’.  The list of the amino acid 
sequences were selected from the widely used Protein Data 
Bank (PDB)  database with different lengths to make a more 
efficient comparison with the other algorithms. The IDs, 
lenghts and contained amino acids are given in the Table IV. 

In the study with real protein sequences, only one standard 
algorithm chosen for the thorough check. Instead, specially 
designed hybrid algorithms with significant performances are 
selected. Table V lists the lowest free energy values obtained 
by ELAMO as well as other competitive algorithms to make an 
extensive comparison. Convergence values can be seen even in 
earlier iterations in the Fig. 6. 

TABLE IV.  DETAILS OF THE REAL AMINO ACID SEQUENCES 

PDB ID N Sequence 

1AGT 38 
AAAABABABABABAABAABBAAABBABAABBB

ABABAB 

1HVV 75 

BAABBABBBBBBAABABBBABBABBABABAAAA

ABBBABAABBABBBABBAABBABBAABBBBBAA

BBBBBABBB 

1GK4 84 

BABAABABBBBABBBABBABBBBAABAABBBBB

AABABBBABBABBBAABBABBBBBAABABAAAB

ABAABBBBAABABBBBA 

2EWH 98 

AABABAAAAAAABBBAAAAAABAABAABBAAB
ABAAABBBAAAABABAAABABBAAABAAABAA

ABAABBAABAAAAABAAABA 

BBBABBAAABAABA 

TABLE V.  COMPARISON OF THE LOWEST FREE-ENERGY VALUES FOR THE 

SEQUENCES OBTAINED BY THE ALGORITHMS 

PDB ID N CMAES L-SHADE 

E-

MASA-

PAMS 

ABC ELAMO 

1AGT 38 -34.45 -39.31 -41.28 -25.65 -50.82 

1HVV 75 -27.35 -28.77 - -27.35 -46.98 

1GK4 84 -32.72 -40.26 - -32.72 -49.89 

2EWH 98 - - -125.53 - -146.81 

 
Fig. 6. A free energy values obtained by different algorithms for real protein 

sequences. 

It can be seen from the figure that at the very first level of 
optimization all of the algorithms’ convergence rates are very 
similar, but in the latter iterations elitism feature begins to 
appear in ELAMO and this affects the convergence rate in a 
very desirable way. The test parameters and results of the 
compared algorithms are accepted as they appear in the 
references [15, 28–31]. The best results for AMO and ELAMO 
are obtained over 30 runs. The stopping condition is set 
200,000 iterations. 

It can be acquired from both Table V and Fig. 6 that the 
performance of ELAMO can be distinguished from the others 
by having more precise solutions of the problems. Considering 
all of the results, it is possible to say that the algorithms’ 
performances are very competitive but in the view of high 
solution quality, the performance of ELAMO is quite 
noteworthy. 

In the comparison of ELAMO with one of the standard 
algorithms ABC, it is observable that ELAMO produces better 
results. For the other competitive algorithms, we can say that 
CMAES and L-SHADE performances are similar to each 
other, while E-MASA-PAMS superior than both and produces 
comparable results with ELAMO. However, in both analysing, 
we can see that ELAMO always contributes with the lowest 
free energy values and it can be a distinct evident by applying a 
set of modifications on the right steps of the AMO algorithm, 
influence the performance of ELAMO in a quite remarkable 
way. It is note to point that the compared algorithms can not be 
further analzyed since there is no Stdev or Avg reported in the 
literature. 

In the light of findings, the visual representation of the 
folded protein structures by the best run of ELAMO are shown 
in the Fig. 7 (a) to (d). In the figures, green dots represent the 
hydrophobic monomer; ‘A’ and the purple represent the 
hydrophilic monomer; ‘B’. As the figures reveal, the 
hydrophobic monomers are frequently enclosed by the 
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hydrophilic monomers in the folding structures. This is a 
natural phenomena for avoiding contact with water molecules 
and is verified by the following figures as well. 

 
(a) 1AGT 

 
(b) 1HVV 

 
(c) 1GK4 

 
(d) 2EWH 

Fig. 7. Visual representations of minimum energy configurations for each 

protein sequence by ELAMO. 

V. CONCLUSIONS 

 In this paper, an Elitist Animal Migration Optimization 
(ELAMO) is fitted to optimize the structure of protein 
sequences with 3D AB off-lattice model. According to the 
reformed structure of ELAMO, rather than following the 
neighbors, only the group leaders are followed. This movement 
results with high solution quality and the elimination of 
animals during the migration process makes the algorithm not 
to trap in local optimum points. To enable a more accurate 
comparison, standard AMO and effective algorithms are 
included in our experiment. Even though ELAMO has not been 
specially designed for solving PSP problem, its effectiveness in 
modelling of real protein sequences is successful. 

ELAMO eliminates the animals whose positions are not 
adequate even in the early stages of optimization and the rest of 
the animals in the herd only can follow their leaders. This 
elimination brings faster convergence rate without trapping 
into local optimum points in the process. It is known that the 
optimization is built on consecutive iterative processes until the 
termination criterion is obtained. During this process, some 
individuals may be eliminated due to their undesired 
characteristics which may be improved in the latter iterations. 
In ELAMO, the elimination is performed even at the first level 
of iterations and the desired characteristics are also eliminated. 
It is important to keep in mind that this may bring low solution 
quality as the length of the protein sequence increases. 

Also, when the problem complexity increases in terms of 
large number of amino acids, the algorithm’s performance may 
not be as efficient as it is expected. It is because of the lack of 
proper design for PSP problem. In the future, ELAMO may 
need to be strengthened by adding some boosting steps to be 
efficient in solving more complex protein sequences. 
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