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Abstract—Marine experts are facing lot of challenges in 

habitat monitoring of marine species. One of the biggest 

challenges is the underwater environment and species movement. 

The other challenge is the data collection of marine species. 

People used the camera sensors and satellite data in the past for 

data collection but in this era the scientists are using underwater 

Autonomous Underwater Vehicles (AUVs), the Remotely 

Operated Vehicles (ROVs), and certain sledges with high-

definition still and video cameras to record the underwater 

footages. The ocean is composed of thousands of species which 

make the environment more challenging to monitor any specific 

specie. This work will focus on specie named Norway lobster 

(Nephrops norvegicus). The Nephrops norvegicus is one of the 

commercial specie in the Europe and generates millions of 

dollars yearly. This specie lives under the seabed and leaves 

behind the burrow structure on the sea ground. The Nephrops 

spend most of their time under the seabed. The scientists are 

currently monitoring the habitat of Nephrops norvegicus by 

underwater television (UWTV) surveys that is collected yearly on 

many European grounds.  The collected data is reviewed 

manually by the experts who count the burrows on the sheet. 

This work focuses on the automatic detection of Nephrops 

burrows from underwater videos using the deep learning 

techniques.  This work trained the Faster R-CNN models 

Inceptionv2, MobileNetv2, ResNet50, and ResNet101. Instead of 

training the models from scratch we used the transfer learning 

technique to fine tune these networks. The data is obtained from 

the Gulf of Cadiz (FU30) station. Twenty-eight different set of 

experiments are performed. The models are evaluated 

quantitatively using the mean Average Precision (mAP), 

precision and recall curves. Also, the models are qualitatively 

analyzed by visually presenting the output. The results prove that 

deep learning techniques are very helpful for marine scientists to 

assess the Nephrops norvegicus abundance. 

Keywords—Nephrops norvegicus; deep learning; stock 

assessment; faster RCNN 

I. INTRODUCTION 

Marine ecosystems include the open, deep oceans and 
marine species. The environment has high level of dissolved 
salts. Marine ecosystem is one of the main sources of our daily 
food. The marine species have different physical and 
biological characteristics. Coral reef is a good example of 
marine ecosystem that is associated with other marine life like 
fishes and turtles. The oceans cover 70% of our planet, so the 
marine ecosystem covers most of our earth. As compared to 
the terrestrial ecosystem, the marine ecosystem is very 

challenging to study. Most of the challenges come due to the 
complex medium of sea. The environment of marine 
ecosystem has certain challenges like color variations, species 
movement, and turbidity [1]. Marine scientists are monitoring 
the environment from decades by collecting underwater 
species images using satellite, shipborne and camera. With the 
advancement of technologies, several new techniques like 
ROVs and AUVs are used by the scientists to record the 
images and videos of marine ecosystem. The scientists are still 
facing many challenges in the sea due to the illumination, 
views, variation in the lighting conditions and free natural 
environment [2]. 

Marine ecosystems have thousands of underwater species. 
Out of these species one of the important specie in Europe is 
Nephrops norvegicus (a Norway Lobster). This specie is 
considered as a commercial specie in Europe. This specie 
supports Europe with almost 60,000 t [3] and an income of 
300 million € per year approximately [4]. 

The International Council for the Exploration of the Sea 
(ICES) is a marine science organization that leads the 
scientific forums on all domains of marine sciences. Their 
major goal is to advance the marine ecosystem. They provide 
state-of-the-art goals and facilities that help the scientists to do 
research in the marine eco system. There are many working 
groups under the umbrella of ICES that are conducting annual 
survey and monitoring the habitat of marine species. One of 
the major groups for Nephrops habitat monitoring is Working 
Group on Nephrops Surveys (WGNEPS), formerly known as 
the Study Group on Nephrops Surveys (SGNEPS). The aim of 
this group is to provide international coordination for 
Nephrops UWTV and trawl surveys in the North Atlantic. 
Each year the WGNEPS conducted a UWTV and trawl survey 
to assess the population of Nephrops. Nephrops populations 
are assessed and managed by Functional Units (FU) where 
there is a specific survey for each FU. Fig. 1 shows an 
individual Nephrops. Nephrops norvegicus lives in the sandy-
muddy sediments and create burrows in the seabed [5]. An 
individual Nephrops specimen ranges in length of 2 – 5.5 cm 
with a maximum length of 24.0 cm. The most common length 
is about 19.0 cm [6]. 

A special equipment is used in the survey for data 
collection. Every year the UnderWater TeleVision (UWTV) 
and Trawl surveys are conducted all over the Europe by 
WGNEPS to estimate the abundance of Nephrops norvegicus 
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specie. The surveys are used to provide population estimates 
for Nephrops based on Functional Units (FU). The survey data 
is stored in disks in the form of high-definition images and 
videos. The data is analyzed manually using the TV survey to 
classify and count the Nephrops burrows. Currently, the 
Nephrops data are collected through the yearly UWTV 
surveys and are reviewed by the marine experts manually. 
This manual process is very time consuming and leads to 
many errors due to environmental complexity and data 
variation.  In this work, we are using the data obtained from 
the Gulf of Cadiz (FU30) station. 

 

Fig. 1. Nephrops norvegicus. 

Artificial Intelligence (AI) is an emerging field that solves 
many object detection problems including underwater species 
classification and detections. However, to detect and classify 
the Nephrops burrows for habitat monitoring, literature is 
unable to provide many solutions. One of the main reasons is 
the unavailability of Nephrops survey data. The complexity of 
data is also one of the reasons. This thesis is an effort to 
automate the existing method of Nephrops counting. 

In our previous work [7] we trained and tested the 
MobileNet and Inception model and compare their results. In 
this work, we used denser Faster R-CNN models for training. 
We used the transfer learning technique and fine tune the 
MobileNetv2, Inceptionv2, ResNet50 and ResNet101 with 
FU30 dataset. The results obtained the good level of accuracy. 
ResNet101 obtained the highest level of accuracy among the 
other models. 

The rest of the paper is organized as follows. Problem 
statement and definition is defined in Section II, the 
methodology is presented in Section III followed by the 
experiments and results in Section IV. The paper is concluded 
in Section V. 

II. PROBLEM STATEMENT AND DEFINITION 

We describe the problem of detections of Nephrops 
burrows in videos as currently the burrows are counting 
manually using the TV surveys. In this work, we demonstrate 
that the deep learning techniques will help to automatically 
detect and count the Nephrops burrows. Before going into the 
details, it is important to define the Nephrops burrows and 
their pattern. 

Definition: A Nephrops burrow is an opening with 
following signature features: The burrow opening is like a 
half-moon shaped. The opening has proof of expelled 
sediments that creates scratches and tracks on the burrow 
opening. The pattern of burrows makes them unique as 
compared to other species burrows. 

III. PROPOSED METHODOLOGY 

This section discusses the approach for automatically 
identifying the Nephrops burrows from the video sequences 
using the deep learning techniques. The proposed 
methodology is illustrated in Fig. 2. The first part of the work 
is to collect the data from different stations of UWTV survey. 
In this study we are using the data collected from the Gulf of 
Cadiz (FU30) station. Specialized equipment is used for data 
collection at FU30. The second part of the methodology is the 
preprocessing of data that includes data cleaning, image 
annotations and data preparation. The third part is the 
detection of Nephrops burrows by applying the deep learning 
techniques. The deep learning models are trained and tested on 
the different datasets. We used transfer learning and fine tune 
the Faster R-CNN algorithms for model training. 

 
Fig. 2. Proposed methodology for Nephrops burrows detections. 

A. Data Collection 

In this research we used the data from the Gulf of Cadiz 
(FU30) station. To observe the habitat of Nephrops at FU30 
station, a survey is designed yearly to collect the data. The 
survey used specially designed equipment for data collection. 

1) Data collection equipment: A special sledge is designed 

in the survey of FU30 station. The sledge is equipped with 

Sony FDRAX33 camera that is used to capture the videos in 

high quality. The camera is mounted at an angle of 45 degree. 

Two laser lights are used in the sledge that define the field of 

view. The field of view is set to 75 cm. Fig. 3. shows the inner 

view of the sledge used in FU30 station survey. 

 
Fig. 3. Sledge inner view used in FU30 survey. 
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2) Data collection procedure: In 2018, the survey at FU30 

is conducted at 70 different stations. The station is defined as a 

geostatistical location in the sea where the Nephrops density is 

assumed to be present and estimated in the past. The sledges 

are placed on a big ship and at each station it is dropped down 

in the sea and deployed to the sea ground. To maintain a 

constant speed of sledge, it is towed between 0.6–0.7 knots. 

This condition of sledges is the best possible condition for 

Nephrops burrows counting. The sledge is mounted with high-

definition video camera that records the video footage of 10–

12 min at 25 frames per seconds. The area covered by the 

sledge during this video footage is around 200m 

approximately. The sledge position is recorded after every 1 to 

2 seconds for calibration. Two laser lights are placed that 

confirmed the field of view of the video footage. The field of 

view is set to be 75cm and the sledge distance over ground 

(DOG) is estimated from the position of the sledge. Fig. 4. 

shows the sample image collected during the survey. 

 
Fig. 4. FU30 Sample image. 

3) Data characteristics: At FU 30, Video footages of 10-

12 minutes has been recorded at 25 frames per second in good 

lighting condition. The video is recorded with a resolution of 

3840 x 2160. We got the data of FU30 from the UWTV 

survey of 2018. A total of 70 stations are surveyed. After 

evaluating all the stations carefully, we only choose seven 

stations for annotations. The stations are selected based on 

their higher contrast, good video quality, lightning conditions, 

and high burrows density rates. The recorded videos are saved 

to the disks for manual Nephrops counting. 

B. Data Preprocessing 

The data preprocessing is one of the important phases of 
our methodology. Without performing the preprocessing step, 
the data comes with lot of noise and error that can affect the 
accuracy of the model training. The preprocessing is defined 
as cleaning of data, annotating the images and validation and 
preparation of dataset. 

1) Data cleaning: The collected data is converted into 

frames and each frame is observed carefully. The frames with 

poor lighting and visibility are discarded initially. Also, the 

frames with zero burrows density are discarded before the 

annotations. 

2) Image annotations: Image annotation is the most 

critical part of this study. Before the annotation, a 

comprehensive training is required to understand the burrow’s 

characteristics. Certain protocol is followed in manual 

counting that should be observed during the manual image 

annotations. For image annotation, we used the Microsoft 

VoTT [8] tool. The Nephrops burrow is annotated by drawing 

the bounding box around it. The annotations are saved in the 

Pascal VOC format. 

3) Annotation validations: Each annotation is validated by 

the Marine experts from the Gulf of Cadiz. The final 

annotations for model training are obtained after several 

iterations of validations. The validated annotations are saved 

in the XML format. 

4) Dataset preparation: The annotated image dataset is 

divided into training and testing data separately. Each station 

consists of around 15,000 - 18,000 frames. From 2018 survey, 

almost 105,000 frames were recorded from seven different 

stations. The training and testing dataset is divided to 80-20 

ratio respectively. Table I shows the training and testing 

dataset distribution used in this study. 

TABLE I. DATASET DISTRIBUTION 

Nephrops Dataset Distribution 

Functional 

Unit 
Training Images Testing Images Total Images 

FU30 200 48 248 

C. Nephrops Burrows Detection 

AI plays an important role nowadays in automating the 
analysis. In marine sciences many scientists apply AI 
techniques to monitor the habitats of marine species. 
Computer Vision and Deep learning shows a significant 
improvement in the object detection [9,10], classification 
[11,12], and segmentation [13]. 

1) Model training: To train the models, the transfer 

learning [14] technique is utilized to fine-tune the Faster R-

CNN Inceptionv2 [15], MobileNetv2 [16], ResNet50[17], and 

ResNet101[18] models in TensorFlow [19]. 

Inception networks are considered as one of the big 
milestones in CNN. For computational complexity, the 
Inception v2 network used smart factorization method with 
5x5 convolution and two 3x3 convolution. We fine tune the 
network parameters with a learning rate of 0.01 and a batch 
size of 1. The value of Maxpool stride and Maxpool kernel 
size are set to 2. The gradient clipping [20] value if set too low 
or too high will result in the model instability so we set its 
threshold value to 2.0. For activation function we used the 
Softmax and Mask RCNN is used as a box predictor. 

MobileNetv2 architecture is used with the relatively small 
dataset. MobileNetv2 architecture used a depth-wise separable 
convolution instead of conventional convolution. The 
architecture of this network is composed of 32 convolutional 
layers and 17 residual bottleneck layers. We fine tune the 
certain parameters of the network to get the optimize results. 
The learning rate is set to 0.01. The batch size is set to 24 with 
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truncated normal initializer. For activation function we used 
Rectified Linear Unit (ReLU) and Convolutional box 
predictor is used as a box predictor. 

ResNet50 [17] is a variant of the ResNet model. The 
ResNet50 is 50-layers deep convolutional network. Out of 
these 50 layers, 48 are convolutional layers, one max pool, 
and one average pool layer. In the first convolution only one 
layer is used with a kernel size of 7 × 7,64 kernels with stride 
2 and a max pool of size 3 × 3. In the second convolution, nine 
layers are used with a kernel size of 1 × 1,64; 3 × 3,128. In the 
third convolution, 12 more layers are used with 1 × 1,128; 3 × 
3,128, and 1 × 1,512 kernel. The fourth convolution uses 18 
more layers with kernel sizes of 1 × 1,256 ;3 × 3,256 and 1 × 
1,1024. Nine layers are used in the fifth convolution with 
kernel sizes of 1 × 1,512; 3 × 3,512 and 1 × 1,2048. Finally, 
the last convolution layer is used for avg pool and a Softmax 
function. We set the learning rate of 0.003 with batch size 1 
and L2 regularization. The Softmax is used as an activation 
function and Mask RCNN is used as a box predictor. 

The ResNet101 [18] is a considered to be 101 layers dense 
convolutional neural network. The first convolution layer has 
a kernel size of 7 × 7,64 with stride 2 and a max pool of size 3 
× 3. The second convolutional layer used nine layers with 

kernel sizes of 1 × 1,64 and 3 × 3,28. The third convolutional 
layer used 1 × 1,128; 3 × 3,128, 1 × 1,512 kernels. Sixty-nine 
layers are used in the fourth convolutional layer with 
following kernels 1 × 1,256; 3 × 3,256 and 1 × 1,1024. The 
fifth convolution uses 9 layers with 1 × 1,512; 3 × 3,512 and 1 
× 1,2048. Finally, the last convolutional layer is used for avg 
pool and a Softmax function. The learning rate is set to 0.0003 
with 24 batch size and L2 regularization. The Maxpool kernel 
size and Maxpool stride is set to 2 and Mask RCNN is used as 
a box predictor. 

Table II shows the parameter list and their values used in 
the Inceptionv2, MobileNetv2, ResNet50 and ResNet101 
model. 

2) Model validation: The models used in this study for 

training used approximately 80% of the annotated dataset. The 

remaining 20% is used for the testing. All the models are 

trained over 70k iterations and the turning checkpoints during 

the training is recorded after every 10k iterations. For 

validation of models the models are evaluated using mAP, 

precision and recall curve and through visual inspection of the 

output images with detections. 

TABLE II. FASTER R-CNN MODELS TRAINING PARAMETERS 

Parameters Inceptionv2 MobileNetv2 ResNet50 ResNet101 

Number of Classes 01 01 01 01 

Optimizer Momentum RMSProp Momentum Momentum 

Momentum Rate 0.9 0.9 0.9 0.9 

Learning Rate 0.01 0.01 0.0003 0.0003 

Batch Size 1 24 1 24 

Initializer truncated_normal_ initializer truncated_normal_initializer truncated_normal_initializer truncated_normal_initializer 

gradient_clipping_by_norm 10 - 10 10 

Regularization L2 L2 L2 L2 

Activation Function Softmax RELU Softmax Softmax 

Maxpool kernel size 2 - 2 2 

Maxpool stride 2 - 2 2 

Box Predictor Mask RCNN box predictor Convolutional box predictor Mask RCNN box predictor Mask RCNN box predictor 

IV. EXPERIMENTS AND RESULTS 

1) Experiments: In this section we will summarizes all the 

experiments and results performed to automatically detect the 

Nephrops burrows. The models are trained and tested with 

FU30 dataset. Four different combinations of set of 

experiments are performed with the current dataset. Each set 

of experiment is iterated 7 times hence a total of 28 

experiments are performed. 

2) Results 

a) Quantitative analysis: The mAP of all the models 

trained and tested by FU 30 stations are calculated during the 

quantitative analysis. In this study we trained the models with 

70k iterations. The model performance is recorded in terms of 

precision and recall values after every 10k iterations. The 

precision is the prediction accuracy measurement and recall 

are the measurement of positive predictions. The mAP is 

calculated for each model which is a very common metric to 

evaluate the performance of object detection algorithms. The 

mAP is defined in the in Eq. (1). 

     ∫  ( )  
 

 
  (1) 

Precision can be seen as how robustly the model identifies 
Nephrops burrows' presence, and Recall is the rate of True 
Positive (TP) over the total number positives detected by the 
model [21].  The precision and recall curves are used to 
measure the model behavior. 

In our study, the ground truth annotations and model 
predictions are rectangular boxes that usually don't fit 
perfectly. In this paper, the detections are considered as TP if 
the detection and ground truth overlap more than 50%. This is 
calculated by the Jaccard index J, as defined in Eq. (2). 

 (   )   
|   |

|   | 
   (2) 
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Here, A and B are the set of pixels in the ground truth 
annotation and model predictions respectively, and | . | means 

the number of pixels in the set. If J ≥ 0.5, a TP is detected, but 

if J < 0.5, detection fails with a False Negative (FN). This 
methodology is used to calculate the precision and recall 
values. 

Table III shows the maximum mAP obtained by 
MobileNetv2, Inceptionv2, ResNet50, and ResNet101 models, 
respectively. The maximum mAP obtained using the 
MobileNet model is 65.69. The maximum mAP obtained by 
the Inception model is 77.18. The ResNet50 and ResNet101 
models achieve better precision values as compared to 
MobileNet and Inception. The maximum mAP in ResNet50 is 
80.16 while in ResNet101 it is 81.59. 

The results are also presented in the form of precision and 
recall curves. Fig. 5 shows the results obtained with the 
models trained and tested by FU 30 dataset. The best mAP is 
81.59 with ResNet101 model. 

b) Qualitative analysis: In this section, the performance 

of different models on the dataset is analyzed qualitatively. 

The visualization results are from the MobileNetv2, 

Inceptionv2, ResNet50, and ResNet101 models that are 

trained and tested by the FU30 dataset. 

Fig. 6 shows the Nephrops burrows detections visually 
using the MobileNetv2, Inceptionv2. ResNet50, and 
ResNet101 models with FU 30 dataset. The green rectangular 
boxes on the images shown are the TP detections by the model. 
The blue bounding boxes are the actual ground truth 
annotations while, the red bounding boxes are the False 
Positive (FP) detections that are detected by the trained 
models. In this example, MobileNetv2 model detects one TP 
burrow while the inception and all other models correctly 
detects the two TP Nephrops burrows. 

The overall study shows that the ResNet101 model 
performs better in terms of mAP and provides an accuracy of 
more than 80%. 

TABLE III. MAP OBTAINED USING MULTIPLE TRAINING MODELS. 

mAP obtained with multiple Training models 

Trained Model mAP 

MobileNetv2 65.69 

Inceptionv2 77.18 

ResNet50 80.16 

ResNet101 81.59 

 

  

(a) MobileNetv2 (b) Inceptionv2 

 
 

(c) ResNet50 (d) ResNet101 

Fig. 5. Precision-recall curve obtained using FU 30 dataset (a) PR-curve of MobileNet, (b) PR-curve of Inception, (c) PR-curve of ResNet50, (d) PR-curve of 

ResNet101. 
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Fig. 6. Nephrops burrows detection with FU30 dataset (a) Detection with MobileNet model, (b) Detection with Inception model, (c) Detection with ResNet50 

model, (d) Detection with ResNet101 model. 

V. CONCLUSION AND FUTURE WORK 

The aim of this study is to automatically detect and 
classify the Nephrops norvegicus burrows from underwater 
videos. We used the dataset from the Gulf of Cadiz (FU30) 
survey in 2018. We trained four different Faster R-CNN 
models to study the detection of Nephrops burrows using deep 
learning. The results show that the deep learning algorithms 
are very effective in detecting the burrows automatically. The 
ResNet101 model performs better and achieves the mAP of 
81.59. This practice helps the marine scientists to correctly 
estimate the abundance of Nephrops from the underwater 
videos. The automatic detection algorithms could replace the 
manual counting process of marine experts and provide an 
accurate count in very less time. 

In future work, we will plan to use a bigger curated dataset 
from different stations working under the ICES. The more 
data will improve the performance of accuracy of the deep 
learning models. Also, the newer model based on YOLO 
architecture will be trained in the future work.  Finally, we 
will plan to integrate the spatial and temporal information of 
the Nephrops burrows to estimate the burrow sizes and their 
complexes. 

ACKNOWLEDGMENT 

We thank the Spanish Oceanographic Institute, Cádiz, 
Spain for providing the dataset for research. 

REFERENCES 

[1] T. Rimavicius and A. Gelzinis, “A comparison of the deep learning 
methods for solving seafloor image classification task,” 
Communications in Computer and Information Science, vol. 756, pp. 
442–453, 2017. 

[2] H. Qin, X. Li, Z. Yang and M. Shang, “When underwater imagery 
analysis meets deep learning: A solution at the age of big visual data,” in 
Proc OCEANS’15 MTS/IEEE, Washington, DC, USA, pp. 1–5, 2015. 

[3] FAO  2021a . “FAO yearbook. fishery and aquaculture statistics 
201 /FAO annuaire,” in Statistiques des p  ches et de l aquaculture 
201 /FAO anuario. estad sticas de pesca y acuicultura 201    
(Rome/Roma: FAO). 

[4] Issifu, I., Alava, J. J., Lam, V. W., and Sumaila, U. R. (2022). Impact of 
ocean warming, overfishing and mercury on European fisheries: A risk 
assessment and policy solution framework. Front. Mar. Sci. 8. doi: 
10.3389/fmars.2021.770805. 

[5] M. Jiménez, I. Sobrino and F. Ramos, “Objective methods for defining 
mixed-species trawl fisheries in spanish waters of the gulf of cádiz,” 
Fisheries Research, vol. 67, no. 2, pp. 195–206, 2004. 

[6] Fischer, W., G. Bianchi and W.B. Scott 1981 Lobsters. 5: pag.var. In 
FAO Species identification sheets for fishery purposes. Eastern Central 
Atlantic (fishing areas 34, 47; in part). Canada Funds-in-Trust. Ottawa, 
Department of Fisheries and Oceans Canada, by arrangement with the 
Food and Agriculture Organization of the United Nations. 1-7. 

[7] Naseer, A., Baro, E. N., Khan, S. D., Vila, Y., Doyle, J. (2022). 
Automatic Detection of Nephrops Norvegicus Burrows from 
Underwater Imagery Using Deep Learning. CMC-Computers, Materials 
& Continua, 70(3), 5321–5344. 

[8] Microsoft CSE group.  2020, June 3 , “Visual object tagging tool 
(VOTT), an electron app for building end to end object detection models 
from images and videos, v2.2.0. [Online]. Available: 
https://github.com/microsoft/VoTT. 

[9] R. Girsshick, J. Donahue, T. Darrell and J. Malik, “Region-based 
convolutional networks for accurate object detection and segmentation,” 
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 
38, no. 1, pp. 142–158, 2016. 

[10] S. Ren, K. He, R. Girshick and J. Sun, “Faster R-cNN: Towards real-
time object detection with region proposal networks,” IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 
6, pp. 1137–1149, 2017. 

[11] R. Shima, H. Yunan, O. Fukuda, H. Okumura, K. Arai et al. “Object 
classification with deep convolutional neural network using spatial 

 a  MobileNetv2   b  Inceptionv2  

 c  ResNet50   d  ResNet101  

https://github.com/microsoft/VoTT


(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 3, 2023 

499 | P a g e  

www.ijacsa.thesai.org 

information,” in Proc. Int. Conf. on Intelligent Informatics and 
Biomedical Sciences (ICIIBMS), Okinawa, Japan, pp. 135–139, 2017. 

[12] S. Soltan, A. Oleinikov, M. Demirci and A. Shintemirov, “Deep 
learning-based object classification and position estimation pipeline for 
potential use in robotized pick-and-place operations,” Robotics, vol. 9, 
no. 3, 2020. 

[13] S. Masubuchi, E. Watanabe, Y. Seo, S. Okazaki, K. Watanabe et al. 
“Deep-learning-based image segmentation integrated with optical 
microscopy for automatically searching for two-dimensional materials,” 
npj 2D Mater Appl, vol. 4, no. 3, pp. 1–9, 2020. 

[14] https://machinelearningmastery.com/how-to-use-transfer-learning-when-
developing-convolutional-neural-network-models/. 

[15] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, 
“Rethinking the inception architecture for computer vision,” in Proc. 
IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, 
NV, USA, pp. 2818–2826, 2016. 

[16] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L. Chen, 
“Mobilenetv2: inverted residuals and linear bottlenecks,” in Proc. Conf. 

on Computer Vision and Pattern Recognition, Salt Lake City, UT, pp. 
4510–4520, 2018. 

[17] Understanding and Coding a ResNet in Keras. Available 
online: https://towardsdatascience.com/understanding-and-coding-a-
resnet-in-keras-446d7ff84d33. 

[18] TensorFlow Core v2.8.0. Available 
online: https://www.tensorflow.org/api_docs/python/tf/ 
keras/applications/resnet/ResNet101 (accessed on 20 March 2022). 

[19] https://www.wgu.edu/blog/neural-networks-deep-learning-
explained2003.html#close. 

[20] R. Pascanu, T. Mikolov and Y. Bengio. “On the difficulty of training 
recurrent neural networks,” ArXiv Preprint, vol. 1211, 5063, pp. 1–12, 
2012. [Online]. Available: https://arxiv.org/pdf/1211.5063.pdf. 

[21] M. Everingham, L. Van Gool, Cl. Williams, J. Winn and A. Zisserman, 
"The pascal Visual Object Classes (VOC) challenge," International 
Journal of Computer Vision, vol 88, pp. 303-338, 2010. 

 

https://machinelearningmastery.com/how-to-use-transfer-learning-when-developing-convolutional-neural-network-models/
https://machinelearningmastery.com/how-to-use-transfer-learning-when-developing-convolutional-neural-network-models/
https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33
https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33
https://www.tensorflow.org/api_docs/python/tf/%20keras/applications/resnet/ResNet101
https://www.tensorflow.org/api_docs/python/tf/%20keras/applications/resnet/ResNet101
https://www.wgu.edu/blog/neural-networks-deep-learning-explained2003.html#close
https://www.wgu.edu/blog/neural-networks-deep-learning-explained2003.html#close
https://arxiv.org/pdf/1211.5063.pdf

