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Abstract—Oil palm plantations are essential for Indonesia as 

a source of foreign exchange and a provider of employment 

opportunities. However, large-scale land clearing is considered a 

cause of deforestation, which harms the environment and society. 

So, it is necessary to manage plantations that are sustainable and 

still maintain the preservation of forests and biodiversity. One 

solution is to apply remote sensing technology. The research was 

conducted to develop a multi-class detection method for the 

growth rate of oil palm trees, with five categories: healthy palm, 

dead palm, yellowish palm, mismanaged palm, and smallish 

palm. The deep learning-based object detection method, YOLO 

Version 5 (YOLOv5), is used. This study compares the YOLOv5 

network models, namely YOLOv5s, YOLOv5m, YOLOv5l, and 

YOLOv5x. Parameter setting is also carried out in the BCE 

(Binary Cross Entropy) with Logits Loss Function to handle the 

problem of unbalanced data distribution in each class. The 

YOLOv5 model with the highest     value is the YOLOv5l and 

YOLOv5x, the YOLOv5x requires longer training time. In this 

study, hyperparameter optimization was also carried out using 

hyperparameter evolution techniques. However, it has yet to 

provide increased results because the experiments conducted in 

this study are still limited. 
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YOLOv5 

I. INTRODUCTION 

Palm oil consumption has witnessed a growth of 
approximately 9% annually in the last decade, and it is 
anticipated to rise further.  This optimistic outlook for the palm 
oil industry is attributable to its increasing demand in domestic 
and global markets. Since 2004, the use of palm oil has 
occupied the highest position, with an average growth of 8% 
per year. In Indonesia, oil palm serves as a plantation 
commodity that has an important role in the economy as a 
source of foreign exchange and a provider of employment. 
Indonesia is also the world's largest palm oil producer [1]. Oil 
palm plantations, despite their positive impact on the economy, 
are often associated with negative impacts that can harm 
society, such as environmental degradation and conflicts with 
local communities. [2]. Oil palm plantations are considered a 
cause of deforestation that can damage biodiversity, with 2% 
of Indonesia's forests being turned into plantation areas [3]. 
Based on the background and problems related to oil palm 
plantations, especially in Indonesia, it is necessary to manage 
oil palm plantations sustainably so as not to harm the 
community. That is with an agricultural system oriented 
towards economic, social, and ecological balance. With proper 
agricultural practice and technology, it is believed that oil palm 
plantations will continue growing, with environmental 

sustainability maintained. Precision agriculture aims to 
optimize the use of resources to achieve the best results while 
protecting the environment with land management systems [4]. 

Remote sensing technology has been widely used in 
mining, agriculture, and plantations. This technology can be 
used for remote monitoring of plantation areas. Monitoring 
plantations manually by human labor is difficult, especially in 
oil palm plantations in Indonesia characterized by large 
plantation areas and difficult access. Methods for obtaining 
optimal results for detecting individual trees have also been 
developed. Based on previous research, three groups of 
approaches are used for tree detection. The three methods are 
classical digital image processing [5] [6] [7] [8], classical 
machine learning [9] [10], and deep learning. The tree-
detection-based deep learning approach is divided into an 
approach based on CNN classification [11] [12] [13] [14] [15] 
[16] and another approach based on object detection [17] [18] 
[19] [20]. The first approach is based on classical digital image 
processing. There are four main stages to a classical digital 
image processing-based approach: image pre-processing, 
treetop detection, tree crown delineation, and post-processing. 
In the classical machine learning-based tree detection 
approach, feature extraction is required, which is then trained 
to build a classification model. The classification model is used 
to detect trees in images using the sliding window technique. 
The third approach is based on deep learning for tree detection. 
Deep learning methods are currently popular for object 
detection because of their object detection accuracy. 

There are advantages and disadvantages to each technique 
for oil palm tree detection. The classical digital image 
processing approach has the advantage that it does not require 
a training process for the construction of classification or 
detection models that require high and expensive 
computational costs. Another advantage is the time it takes to 
detect quickly. However, this classic digital image processing 
approach has a weakness. It is not easy to use to detect, 
especially in the case of overlapping trees. On the other hand, 
the classic machine learning approach has the advantage of 
seeing overlapping trees. However, accuracy depends on the 
feature extraction used. Another weakness is that, while the 
detection process generally uses a sliding window technique, it 
takes a long time to detect trees. In addition, the sample size of 
the training image must have been determined when 
constructing the classification model. In contrast, the objects 
we detected were of various sizes both the classical machine 
learning approach and the deep learning approach using the 
CNN classification-based method share similar advantages and 
disadvantages. However, the CNN classification-based method 
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does not necessitate feature extraction and has demonstrated 
superior performance. In contrast, the deep learning method 
based on object detection can detect objects that overlap with 
different trees or objects of various sizes and has a much faster 
detection process. This approach only requires a training 
process, which is costly and expensive in the computation, 
especially in cases with many classes. 

From the background of the problem, multi-class detection 
with a deep learning method based on object detection in oil 
palm trees is state-of-the-art and still has exciting challenges. 
Zheng et al. [19], in their research, carried out multi-class 
detection of the growth rate of oil palm trees, with five 
categories: healthy palm, dead palm, yellowish palm, 
mismanaged palm, and smallish palm. However, it still has 
sub-optimal performance and needs improvement. One is the 
still low F1-score for the dead palm and mismanaged palm 
classes, namely 43.24% and 44.59%, respectively. The reason 
for this is that the class contains a relatively small sample of 
data compared to the quantity of data available in other 
categories. This study developed a research method based on 
the work of Zheng et al. to improve the detection results on the 
growth status of oil palm trees. Zheng et al. have published 
training datasets, which were used and compared in this 
research. This research has developed a model that utilizes 
YOLOv5 for detecting the growth status of oil palm trees, a 
technique that has already demonstrated success in detecting 
date palms [17] and tree damage [20]. This study has made 
several notable contributions, including: 1) utilizing the 
YOLOv5 method to detect tree growth status, 2) addressing the 
issue of unbalanced class distribution by adjusting the 
parameter of BCE with Logits Loss, and 3) conducting 
hyperparameter optimization experiments for YOLOv5. 

II. LITERATURE REVIEW 

In the development of deep learning methods based on 
object detection, such as R-CNN [21], R-CNN [22], faster R-
CNN [23], and YOLO [24], the detection process increases in 
terms of both speed and accuracy. Therefore, an object 
detection-based deep learning approach is the state-of-the-art 
approach of this research. There were three primary references 
used in this study. The first was a research study conducted by 
Zheng et al. In this research, we developed a model to detect 
the growth rate of oil palm trees, categorizing them into 
healthy palms, mismanaged palms, smallish palms, yellowish 
palms, and dead palms. The data used was derived from 
unmanned aerial vehicle (UAV) images of oil palm plantation 
areas in South Kalimantan and Papua, Indonesia. The features 
in the UAV image data were red, green, and blue (RGB) 
features. There were five classes: dead palms, healthy palms, 
mismanaged palms, smallish palms, and yellowish palms. The 
method for detecting oil palm trees is called Multi-Class Oil 
Palm Detection (MOPAD). There are three main modules in 
MOPAD. The first module is the Refined Pyramid Feature 
(RPF) Module for feature extraction, including four steps: 
rescaling, integration, refinement, and disintegration. The 
second is the Multi-Level Region Proposal Network (RPN) 
with faster R-CNN to generate oil palm candidates. The third is 
the Hybrid Class-Balanced Loss Module to improve the 
detection of multi-class palm oil using Class-Balanced Cross-
Entropy Loss (CBCEL) and Class-Balanced Smooth L1 Loss 

(CBSLL). An evaluation was carried out using the evaluation 
metrics recall, precision, and F1-score. Regarding the achieved 
performance, this study has produced in detecting oil palm 
trees at two sites, with F1-scores of 87.91% and 99.04%, 
precision values of 92.42% and 98.90%, and recall values of 
83.82% and 99.19% [19]. However, the detection of multi-
class oil palm trees was still low, with an average F1-score of 
72.83% and with the most frequently detected classes being 
dead palms and mismanaged palms. A few challenges persisted 
in this study, one of which was the low F1-scores in detecting 
the growth of oil palm trees. 

The latest object detection method widely used is YOLO. 
This method outperforms faster R-CNN in terms of detection 
speed. YOLOv5 was successfully implemented to detect tree 
damage due to snowfall automatically. The study utilized 
image data captured using drone technology from southeastern 
Norway, featuring RGB channels. The built model was then 
validated using precision (P), recall (R),        , and 
    ⌈        ⌉ accuracy metrics. The validation results for 
P, R,        , and     ⌈        ⌉  for all classes were 
0.62, 0.61, 0.65, and 0.37. In this research, we employed the 
YOLOv5 method to detect tree damages caused by snow, 
which has not been attempted in previous studies. Furthermore, 
our findings demonstrate that YOLOv5 is capable of 
addressing the challenge of class imbalance, particularly when 
the percentage of damaged and dead trees is considerably 
lower than that of healthy trees. [20]. 

The YOLOv5 method was also applied to automatically 
detect date palms using drone imagery [17]. The data for the 
study were obtained using drones on agricultural land in the 
United Arab Emirates. The research experiment was carried 
out by comparing several versions of the YOLOv5 network, 
including YOLOv5s (small), YOLOv5m (medium), YOLOv5l 
(large), and YOLOv5x (extra-large). The initial model weights 
were the pre-training weights from training on the COCO 
dataset to recognize 80 classes, which were then adjusted for 
hyperparameters to obtain optimal parameters. The 
hyperparameter tuning method used was to use a genetic 
learning algorithm. The test results showed that YOLOv5 had a 
higher     value than SSD300, YOLOv3, and YOLOv4. The 
detection speeds of YOLOv5s, YOLOv5m, and YOLOv5l 
were also higher than those of SSD300, YOLOv3, and 
YOLOv4, but YOLOv5x had the longest average detection 
time. The YOLOv5 method, recognized for its speed, is an 
efficient object detection approach that surpasses other CNN-
based methods such as R-CNN, fast R-CNN, and faster R-
CNN in terms of speed. 

This study developed a research method based on the work 
of Zheng et al. to improve the detection results on the growth 
status of oil palm trees. Zheng et al. have published training 
datasets, which were used and compared in this research. This 
research built a model for detecting the growth status of oil 
palm trees using YOLOv5, which has been successfully 
applied in detecting date palms and tree damage. 

III. METHOD 

This research went through three main stages: 1) data 
preparation, 2) development of the YOLOv5 model, and 3) 
model testing. The data used were the image data provided in a 
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study by Zheng et al. During the data preparation stage, we 
regenerated the data and separated it into three parts: training 
data, validation data, and testing data. In the training phase, we 
concurrently utilized the training and validation data. We 
employed the training data to construct the model, while the 
validation data was used to test the model at each iteration and 
determine the best possible model. In the testing phase, we 
tested the model created during the training stage using the 
testing data and performed an evaluation.  Fig. 1 illustrates the 
stages of the research methods. 

 
Fig. 1. Research method. 

A. Data and Preparation 

The dataset used in this study was composed of data from 
previous studies [19], available at https://github.com/rs-
dl/MOPAD. The data acquisition location was Papua, 
Indonesia (140◦29′ 17′′E, 6◦57′ 42′′S), and the data acquisition 
was executed using a Skywalker X8 air bridge and a Sony 
a6000 camera. A spatial resolution of 8 cm with three RGB 
bands was used. This area had various types of land cover, 
such as oil palm plantations, rivers, buildings, other vegetation, 
etc. 

For further processing for the development of the YOLOv5 
model, the data obtained is carried out at the data preparation 
stage, namely data regeneration and reformatting. There were 
2,303 image data, each measuring 1,024 x 1,024 pixels. Data 
regeneration was performed using the roboflow online tool. 
There were three stages in data regeneration: train/split test, 
pre-processing the data by scaling, and generating YOLOv5 
format compliant data. In the train/test split process, the data 
were divided into training, validation, and testing data, each 
totaling 1,600 data, 135 data, and 136 data (70%, 15%, and 
15%). The rescaling process resized the data from 1,024 x 
1,024 pixels to 416 x 416 pixels. Next, necessary formatting 
adjustments were made to YOLOv5. 

TABLE I.  THE NUMBER OF IMAGES FOR TRAINING, VALIDATION, AND 

TESTING DATA 

Type 
Training 

Data 

Validation 

Data 

Testing 

Data 
Total 

Healthy palm 79,988 17,453 17,401 114,842 

Dead palm 193 45 57 295 

Mismanaged palm 407 68 51 526 

Smallish palm 24,486 4,832 4,721 34,039 

Yellowish palm 1,339 270 275 1,884 

Total 106,413 22,668 22,505 151,586 

The dataset included annotations of oil palm trees classified 
into five labels based on their growth rate. Specifically, the 
study detected five growth stages of oil palm trees, including 
dead palms, healthy palms, mismanaged palms, smallish 
palms, and yellowish palms. Overall, the dataset contained 
151,586 oil palm tree annotations for all classes.  Table I shows 
the number of annotations for each category and training, 
validation, and testing data. 

B. The YOLOv5 Network Architecture 

The object detection neural network architecture consists of 
three main components: the backbone extracts image features, 
the neck incorporates the features extracted from the previous 
layers, and the head predicts object classes and bounding 
boxes. The YOLOv5 architecture can be seen in Fig. 2. 

YOLOv5 has many key components in each part of its 
networks, such as focus, Conv (convolution), C3, and Spatial 
Pyramid Pooling (SPP). The focus module divides the input 
image into four parallel slices (S) to create a feature map using 
the convolution module. The convolution module is a basic 
module that uses convolution operations combined with batch 
normalization and a leaky-ReLU activation function for feature 
extraction. The C3 module is designed based on a Cross-Stage 
Partial (CSP) connection network that is used to improve 
model learning capabilities. The backbone model uses the SPP 
module for mixing and unifying spatial features. It down-
samples the input features through three parallel max pooling 
layers and then aggregates them to the featured initial. 

 

Fig. 2. The network architecture of YOLOv5. 
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C. Dealing with Imbalanced Data 

An imbalance in class distribution can lead to the model 
better at predicting classes with more data and worse at 
predicting classes with fewer data. The dataset used in this 
study has a highly unbalanced distribution. Fig. 3 shows that 
the healthy oil palm class had a wide data distribution, as 
marked with a yellow bar. However, there was very little data 
on yellowish, mismanaged, and dead palm classes depicted in 
red bars. 

 
Fig. 3. Data distribution for each class. 

The loss function for objectivity in YOLOv5, class 
probability, was calculated using BCE with Logits Loss 
Function. The parameters in BCE with Logits Loss were 
adjusted to overcome the problem of the unbalanced proportion 
of data in the class. Setting BCE with the Logits Loss 
parameter made trading of recall and precision possible by 
adding weight to positive examples. In the case of multi-label 
classification, the loss (  (   )) can be explained in equation 
(1). 

  (   )     *           +
   

                      (    )  (      )           

Where   is the class number,   is the sample size in the 
batch, and    is the weight of the positive for class  . For 
example, if the data set contains 5 positive and 200 negative 
examples of a class, then the            for that class must 

equal 
   

 
   . The loss will act as if the data set contains 

40×5=200 positive examples [25]. 

D. Training the Network 

Model training was performed utilizing transfer learning 
from pre-trained weights of 100 epochs trained on the large 
Common Objects in Context (COCO) dataset. The pre-trained 
model was trained to recognize 80 types of objects. The 
training was carried out for 300 epochs to train the model to 
recognize objects corresponding to the dataset’s five oil palm 
growth status categories. At each epoch, validation data were 
executed using the     ⌈        ⌉ evaluation metric value. 
The best model was chosen with the highest     ⌈        ⌉ 
value. The training image data input size was 416 x 416 pixels, 
with a batch size of 32. 

This research built training models for four different 
versions of YOLOv5, namely, YOLOv5s, YOLOv5m, 

YOLOv5l, and YOLOv5x. The difference between the four 
YOLOv5 versions lies in the number of feature extraction 
modules in the convolution layer. YOLOv5s has the least 
feature extraction modules and kernels, and YOLOv5x has the 
highest feature extraction and kernels. The bigger the model, 
the better the result, but it has more parameters, requires more 
CUDA memory, and takes longer to train. 

YOLOv5 has around 30 hyperparameters which are used 
for various training settings. In addition to using 
hyperparameters in the pre-trained model COCO dataset, this 
research also optimized the hyperparameters. A 
hyperparameter tuning process was carried out using 
hyperparameter evolution [26]. Hyperparameter evolution is a 
powerful optimization method that uses a genetic algorithm 
(GA) to optimize hyperparameters in various stages. The first 
stage is hyperparameter initialization, which utilizes the default 
parameters of YOLOv5 COCO. The second stage is defining 
fitness, where the objective function is set to measure how well 
the model performs. The third stage is evolution, where the GA 
is utilized to find the optimal set of hyperparameters. Finally, 
the visualization stage provides a graphical representation of 
the optimization process. The metric evaluation value of 
    ⌈        ⌉ determines the fitness value. The number of 
evolutions performed is 300, with each epoch being 10. 
Visualizations are performed to evaluate the evolution results. 
Considering the cost of the YOLO training process, the model 
used for hyperparameter evolution in this study was YOLOv5s 
only. 

E. Evaluation 

The model was tested using both validation and testing 
data. Validation data was used during each epoch of the 
training process to test the model, while testing data was used 
to evaluate the final YOLOv5 model. Testing of the object 
detection model was carried out using the mean average 
precision (   ) evaluation metric. The     is the average 
precision (  ) in all detected classes. The    value is only for 
each category. The average of 11 interpolation points on the 
precision-recall curve was calculated to obtain the    value. 
According to the 2017 COCO challenge evaluation guidelines, 
    was calculated by the average    over 80 object classes 
and all 10     thresholds from 0.5 to 0.95 with a step size of 
0.05, i.e.,     ⌈        ⌉. The calculation of the     value 
can be seen in equations (2) and (3). 

    
 

 
∑    
 
                                     (2) 

                       (3) 

To obtain the    value, precision and recall values were 
needed to build a precision-recall curve. Precision is the ratio 
of the correct prediction for positive data compared to the 
overall positive predicted result. The precision value can be 
calculated using the following equation, TP (true positive) is 
the positive data correctly predicted to the positive class, and 
FP (false positive) is predicted as an object but false. The 
precision value can be obtained by using equation (4). 

          
  

     
   (4) 
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A recall is the ratio of true positive predictions to the total 
number of correct positive data. The recall value can be 
calculated using the following equation, TP (true positive) is 
the positive data correctly predicted to the positive class, and 
FN (false negative) incorrectly predicts the object there. The 
recall value can be obtained using equation (5). 

       
  

     
     (5) 

In object detection, TP and FP values are determined using 
the     value. The     value is used as the threshold. If the 
    threshold value is 0.5, and the     value for a prediction is 
0.7, then the prediction result is expressed as TP. Meanwhile, if 
the     threshold is 0.3, it is expressed as FP. Equation (6) is 
used to calculate the     value. An illustration of the 
calculation of the IoU value can be seen in Fig. 4. 

    
               

             
  (6) 

 

Fig. 4. Illustration of calculation of     value; (a) The ground truth; (b) The 

red color is the area of overlap, and the blue area is the area of union. 

The expected model is a model with high precision and 
recall values. Therefore, the ideal to measure the model is F1-
Score. Mathematically it can be expressed in equation (7). 

     
                

                
  (7) 

IV. RESULTS AND DISCUSSION 

A. BCE with Logits Loss Setting Parameters 

One positive class weight vector was chosen as the 
parameter to manage imbalanced classes in the BCE with 
Logits Loss function. Positive classes were the class categories 
in the dataset that you want to detect, namely, the healthy, 
smallish, yellowish, mismanaged, and dead palm classes. The 
formula for determining class weight vectors can be seen in 
equation (8), where c is the detected object category. The 
number of positive classes is the amount of data in class c, and 
the number of negative classes is the amount of data in classes 
other than class c. 

          , -   
                          

                          
 (8) 

Table II provides the result of setting the BCE with Logits 
Loss parameter and its calculations. 

TABLE II.  BCE WITH LOGITS LOSS PARAMETER SETTING 

Class Count BCEWithLogitsLoss Setting 

Healthy 

Palm 
114842 

                  

      
      

Smallish 

Palm 
34039 

                   

     
       

Yellowish 

Palm 
1884 

                    

    
        

Mismanaged 

Palm 
526 

                     

   
        

Dead Palm 295 
                     

   
         

To set the BCE with the Logits Loss parameter in 
YOLOv5, it can be found in the file yolov5/utils/loss.py. There 
were two variables, namely BCEcls, and BCEobj. BCEobj was 
for objects or backgrounds, and BCEcls was for object classes. 
The parameter was defined in h['cls_pw'] by changing the 
value of the vector. 

 
The parameter was defined in h['cls_pw'] by changing the 

value of the vector as follows. 

 

B. Results of the Training Process 

The training was conducted with two experiments to obtain 
the optimal model for detecting oil palm trees. The initial 
experiment employed a pre-trained model, whereas the 
subsequent one involved leveraging the evolution method to 
optimize hyperparameters. Notably, the training procedure was 
executed utilizing Google Colab Pro+. 

 Training with Pre-Trained Default Models 

The experiment in the training process was to compare all 
YOLOv5 networks, including YOLOv5s, YOLOv5m, 
YOLOv5l, and YOLOv5x. The training used 300 epochs with 
a batch size of 16. Table III compares evaluation metrics and 
training time for all YOLOv5 models. 

YOLOv5l produced the highest     value among all 
YOLOv5 models, with     ⌈        ⌉ of 0.90. Although the 
YOLOv5x model had a deeper network, it did not improve the 
results and even had the lowest average F1-score of 0.95. 
YOLOv5s, YOLOv5m, and YOLOv5l had a training time of 3 
hours, and YOLOv5x had a training time of five hours with 
300 epochs. 

(a) (b) 

# Define criteria  
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], 

device=device))  

BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], 

device=device)) 

# Define criteria  

BCEcls = 

nn.BCEWithLogitsLoss(pos_weight=torch.tensor(torch.tensor([[512., 
287., 0.3, 3.5, 79]]), device=device)) 

BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], 

device=device)) 
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TABLE III.  COMPARISON OF EVALUATION METRICS AND TRAINING TIME 

OF THE YOLOV5 MODEL 

Model 

YOLOv5 
P R 

    

 ⌈        ⌉ 
Average 

F1-score 
Time 

YOLOv5s 0.95 0.96 0.86 0.96 3.005 hours 

YOLOv5m 0.95 0.97 0.89 0.96 3.185 hours 

YOLOv5l 0.96 0.98 0.90 0.97 3.652 hours 

YOLOv5x 0.95 0.95 0.90 0.95 5.550 hours 

 Training with the Model by Tuning the Hyperparameter 
Evolution 

Hyperparameter optimization experiments were carried out 
using the YOLOv5 model with the smallest network, namely, 
YOLOv5s. The number of evolutions used was 300, each using 
ten epochs. Fig. 5 is a visualization of the hyperparameter 
tuning process evolve. The yellow color indicates higher 
concentrations. The vertical distribution suggests that the 
parameter had been deactivated and not mutated. 

 
Fig. 5. Visualization of hyperparameter optimization results. 

The evolved model did not improve yields compared to the 
default models. Fig. 6 compares the     ⌈        ⌉ and F1-
scores for detecting oil palm trees. The process of 
hyperparameters optimization with evolution required high 
costs, and evolutions required GPU processing that took days. 
In other words, some experimental limitations still existed at 
this stage, with a limited number of evolutions, namely, 300, 
and 10 epochs for each evolution. 

 
Fig. 6. Model comparison with hyperparameter evolution model and pre-

trained models. 

C. Model Testing Process 

We compared the performance of YOLOv5 on small, 
medium, large, and extra-large networks using testing data. To 
evaluate the results, we used the F1-score and 
    ⌈        ⌉ metrics on the testing data. The difference in 
F1 score, precisely in the mismanaged palm class, was quite 
far, with the lowest F1-score obtained using YOLOv5s. The 
F1-score for the mismanaged palm class increased significantly 
using YOLOv5l, in which case the increase amounted to 
11.3%. Results showed that the detection of the mismanaged 
oil palm class had the lowest F1-score. The highest F1-score 
was found in the dead palm class using YOLOv5l. The F1-
score comparison for each YOLO-v5 model can be seen in Fig. 
7. 

 

Fig. 7. Comparison of F1-Scores across YOLOv5 models. 
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Fig. 8. Comparison of     ⌈        ⌉ values across YOLOv5 models. 

The comparison of     ⌈        ⌉  for each YOLOv5 
model can be seen in Fig. 8. The evaluation of the detection of 
oil palm growth rate showed that the model is suitable for 
detecting healthy oil palm trees. The highest     ⌈        ⌉ 
value for the healthy palm oil class was 0.849, in which 
YOLOv5x was used. The class that was difficult to detect 
using YOLOv5 was the mismanaged oil palm tree class. The 
lowest     ⌈        ⌉  value was 0.478, obtained with 
YOLOv5s, and the highest was 0.554, obtained with 
YOLOv5m. Detection of smallish and yellowish palms using 
YOLOv5 models was still difficult, but the     ⌈        ⌉ 
values for these classes were better than that of the 
mismanaged class. For the dead palm class, the 
    ⌈        ⌉ value was also quite good, which was above 
0.7. 

Based on the evaluation of     ⌈        ⌉ , the 
YOLOv5s model had the lowest scores for all classes. 
YOLOv5m, YOLOv5l, and YOLOv5x were in the range of 
    ⌈        ⌉  evaluation values, which were not much 
different. YOLOv5x was sufficient to increase the value of 
    ⌈        ⌉ by 0.04 compared to other YOLOv5 models. 
If we look at the results of the     ⌈        ⌉ evaluation, 
using the YOLOv5 model with medium and large networks 
generated good detection results. Using the YOLOv5 extra-
large network, there was not much increase in the detection 
results. Only the yellowish palm class saw a significant 
increase in the     ⌈        ⌉ value by around 0.4. 

D. Evaluation of Detection Results 

The     ⌈        ⌉  evaluation metric shows that the 
model was very good at detecting healthy palms and quite 
good at detecting dead palms. It can be seen in Fig. 9, an 
example of a randomly selected detected image. The detection 
results circled in red in Fig. 9(b), 9(c), and 9(d) are the results 
of mismanaged class errors (FP for mismanaged classes). The 
objects should have been detected as healthy oil palm trees but 
came out as ambiguous detection results. For instance, the 
objects were detected more than twice as mismanaged and 

healthy palms. The detection results for the mismanaged class 
also showed ambiguity in that one object was detected more 
than once, as shown in Fig. 9(a). A tree of the mismanaged 
palm class was detected more than once. As seen in the image 
with a yellow circle, the oil palm tree objects overlapped. False 
positive (FP) detection errors in the yellowish palm class can 
also be seen in Fig. 9. The yellowish class detection results are 
marked with a green box and a blue circle. Some objects 
should have been detected as members of the healthy palm 
class, but they were detected as part of the yellowish palm class 
instead. From the analysis of detection results, it was 
acknowledged that the model still had FP errors in detecting 
mismanaged and yellowish palms. From the characteristics of 
the image, it can be analyzed that FP errors in both the 
mismanaged and yellowish palm classes occurred in tree 
objects that overlapped each other. 

 
Fig. 9. Detection results for the first image sample: (a) YOLOv5s Model; (b) 

YOLOv5m Model; (c) YOLOv5l Model; (d) YOLOv5x Model. 

Fig. 10 is an example of another detection result; there were 
trees in the mismanaged palm category that did not overlap, 
which are marked with purple bounding boxes. In contrast to 
the previous image, this image provides precise detection 
results, where oil palm trees of the mismanaged palm class 
were successfully detected without any false positive (FP) 
detection. Fig. 10 also compares YOLOv5 in each network 
(small, medium, large, and extra-large). In the area marked 
with blue circles, YOLOv5s, and YOLOv5m showed FP in the 
healthy palm class, where the background was detected as 
healthy palms. The YOLOv5l and YOLOv5x models could 
improve the detection results, as the red circles show. 
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Fig. 10. Detection results for the second image sample: (a) YOLOv5s model; 

(b) YOLOv5m model; (c) YOLOv5l model; (d) YOLOv5x model. 

E. Comparison of the Proposed Method with Previous 

Research 

A comparison between the method proposed in previous 
studies and YOLOv5 was made. In the research conducted 
previously by [19], the evaluation of detection results was 
carried out using the F1-score. Zheng et al. named the 
detection method MOPAD, with an average F1-score of 72%. 
In addition, they also conducted experiments with other 
methods, such as CNN and Faster R-CNN, with an average of 
28% and 56% for the two methods. As seen in Table IV, this 
study has improved F1-score results even with the YOLOv5s 
network, with an average F1-score of 72%. The highest F1-
score was obtained using YOLOv5x, with an average F1-score 
of 86%. 

The highest average F1-Score is the YOLOv5x model, but 
the difference in the average F1-Score is only 1% compared to 
the YOLOv5l. The training time for the YOLOv5x model is 
longer than the YOLOv5l, with a difference in training time of 
about two hours. It can be seen in Table IV. The analysis 
results show that the best oil palm growth rate detection model 
is YOLOv5l. Besides having a faster training time, YOLOv5l 
outperforms its competitors in detecting five different classes 
related to the growth rate of oil palm trees. Specifically, three 
categories - dead palm, mismanaged palm, and smallish palm - 
achieve the highest F1-score with YOLOv5l. The evaluation of 
each class was as follows: healthy palms on YOLOv5x, dead 
palms on YOLOv5l, mismanaged palms on YOLOv5l, 
smallish palms on YOLOv5l, and yellowish palms on 
MOPAD. 

TABLE IV.  COMPARISON OF THE PROPOSED METHOD WITH PREVIOUS 

RESEARCH 

Method Healthy Dead 
Mis-

managed 
Smallish Yellowish 

Average 

F1-score 

CNN 

(ResNet-

101) 

[19] 

0.75 0.07 0.03 0.36 0.19 0.28 

Faster 

R-CNN 

[19] 

0.90 0.06 0.42 0.66 0.74 0.56 

MOPAD 

[19] 
0.91 0.55 0.51 0.77 0.88 0.72 

YOLOv5s 0.89 0.90 0.68 0.82 0.80 0.82 

YOLOv5m 0.89 0.90 0.76 0.84 0.79 0.84 

YOLOv5l 0.89 0.91 0.80 0.86 0.81 0.85 

YOLOv5x 0.91 0.90 0.77 0.85 0.85 0.86 

V. CONCLUSION 

This study found several contributions, including: 1) The 
application of the YOLOv5 method for detecting the growth 
level of oil palm trees. 2) A comparison of the YOLOv5s, 
YOLOv5m, YOLOv5l, and YOLOv5x models. 3) Handling 
unbalanced class distributions by setting positive class vector 
parameters in the BCE with the Logits Loss function. 4) 
Conducting experiments to optimize hyperparameters with 
evolutions. 

Based on the experiments conducted in this study, the 
YOLOv5 model improved the results of detecting the growth 
level of oil palm trees. The highest F1-score was obtained with 
the YOLOv5x model, but it took the longest learning time. The 
YOLOv5l model is the best because the training time is 
shorter, and the difference in F1 scores is slightly smaller than 
the YOLOv5x model by 1%. In addition to outperforming 
other YOLOv5 models' F1-score, the evaluation results for 
each class show YOLOv5l achieved the highest F1-score for 3 
out of 5 classes. The detection results showed that the model 
still had errors in predicting trees of the mismanaged and 
yellowish palm classes, and the FP value for overlapping trees 
was still relatively high. 

Setting positive class vector parameters in the BCE with the 
Logits Loss function could solve the unbalanced class 
distribution problem; where there was an imbalance in the class 
distribution, there the imbalance was extreme. Still, adjusting 
BCE with Logits Loss function parameters could produce an 
evaluation value for each class that was still quite good. 
Hyperparameter optimization by evolutions required high 
costs, where the training process could take days to complete. 
This study was limited to hyperparameter optimization 
experiments on the YOLOv5s model with 300 evolutions and 
ten epochs for each evolution. The hyperparameter 
optimization with evolutions results did not show a significant 
increase in the model. 

This study applied a deep learning method based on object 
detection, a state-of-the-art method in oil palm tree detection 
research. This research still faced challenges, especially in 
detecting multi-class oil palm trees. It is insufficient to only 
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feature RGB images for detecting tree growth and health level, 
providing only color and texture information. To better detect 
the growth level of oil palm trees, it is advisable to add remote 
sensing sensors. 

ACKNOWLEDGMENT 

This research is partially supported by an internal 
publication grant from the Faculty of Computer Science, 
University of Indonesia. 

REFERENCES 

[1] Kementrian Perindustrian RI, Tantangan dan Prospek Hilirisasi Sawit 
Nasional Analisis Pembangunan Industri. 2021. 

[2] Ngadi and M. Noveria, “Keberlanjutan Perkebunan Kelapa Sawit di 
Indonesia dan Prospek Pengembangan Perbatasan,” J. Masy. Indones., 
vol. 43, no. 1, pp. 95–111, 2017. 

[3] E. Meijaard et al., Kelapa sawit dan Keanekaragaman Hayati Analisis 
situasi oleh Satuan Tugas Kelapa Sawit IUCN. 2018. 

[4] E. N. Ginting and D. Wiratmoko, “Potensi dan Tantangan Penerapan 
Precision Farming dalam Upaya Membangun Perkebunan Kelapa Sawit 
yang Berkelanjutan,” War. PPKS, vol. 26, no. 2, pp. 55–65, 2021. 

[5] H. Z. M. Shafri, N. Hamdan, and M. I. Saripan, “Semi-automatic 
detection and counting of oil palm trees from high spatial resolution 
airborne imagery,” Int. J. Remote Sens., vol. 32, no. 8, pp. 2095–2115, 
2011, doi: 10.1080/01431161003662928. 

[6] J. Yang, Z. Kang, S. Cheng, Z. Yang, and P. H. Akwensi, “An 
Individual Tree Segmentation Method Based on Watershed Algorithm 
and Three-Dimensional Spatial Distribution Analysis from Airborne 
LiDAR Point Clouds,” IEEE J. Sel. Top. Appl. Earth Obs. Remote 
Sens., vol. 13, pp. 1055–1067, 2020, doi: 
10.1109/JSTARS.2020.2979369. 

[7] T. Yun et al., “Individual tree crown segmentation from airborne LiDAR 
data using a novel Gaussian filter and energy function minimization-
based approach,” Remote Sens. Environ., vol. 256, no. December 2020, 
p. 112307, 2021, doi: 10.1016/j.rse.2021.112307. 

[8] A. Harikumar, P. D’Odorico, and I. Ensminger, “A Fuzzy Approach to 
Individual Tree Crown Delineation in Uav Based Photogrammetric 
Multispectral Data,” in International Geoscience and Remote Sensing 
Symposium, 2020, pp. 4132–4135. 

[9] Y. Wang, X. Zhu, and B. Wu, “Automatic detection of individual oil 
palm trees from UAV images using HOG features and an SVM 
classifier,” Int. J. Remote Sens., vol. 40, no. 19, pp. 7356–7370, 2019, 
doi: 10.1080/01431161.2018.1513669. 

[10] A. P. D. Corte et al., “Forest inventory with high-density UAV-Lidar: 
Machine learning approaches for predicting individual tree attributes,” 
Comput. Electron. Agric., vol. 179, no. April, p. 105815, 2020, doi: 
10.1016/j.compag.2020.105815. 

[11] D. S. Prasvita, M. M. Santoni, R. Wirawan, and N. Trihastuti, 
“Klasifikasi Pohon Kelapa Sawit Pada Data Fusi Citra Lidar Dan Foto 
Udara Menggunakan Convolutional Neural Network,” JIPI (Jurnal Ilm. 
Penelit. dan Pembelajaran Inform., vol. 6, no. 2, pp. 406–415, 2021, doi: 
10.29100/jipi.v6i2.2437. 

[12] W. Li, H. Fu, L. Yu, and A. Cracknell, “Deep learning based oil palm 
tree detection and counting for high-resolution remote sensing images,” 
Remote Sens., vol. 9, no. 1, 2017, doi: 10.3390/rs9010022. 

[13] W. Li, H. Fu, and L. Yu, “Deep convolutional neural network based 
large-scale oil palm tree detection for high-resolution remote sensing 
images,” in International Geoscience and Remote Sensing Symposium 
(IGARSS), 2017, vol. 2017-July, pp. 846–849, doi: 
10.1109/IGARSS.2017.8127085. 

[14] N. A. Mubin, E. Nadarajoo, H. Z. M. Shafri, and A. Hamedianfar, 
“Young and mature oil palm tree detection and counting using 
convolutional neural network deep learning method,” Int. J. Remote 
Sens., vol. 40, no. 19, pp. 7500–7515, 2019, doi: 
10.1080/01431161.2019.1569282. 

[15] W. Li, R. Dong, H. Fu, and L. Yu, “Large-Scale Oil Palm Tree 
Detection from High-Resolution Satellite Images Using Two-Stage 
Convolutional Neural Networks,” Remote Sens., vol. 11, no. 1, 2019, 
doi: 10.3390/rs11010011. 

[16] S. R. Aliandra and D. S. Prasvita, “Application of Median Filter Method 
for Classification of Oil Palm Tree on LiDAR Images,” pp. 441–444, 
2022. 

[17] T. Jintasuttisak, E. Edirisinghe, and A. Elbattay, “Deep neural network 
based date palm tree detection in drone imagery,” Comput. Electron. 
Agric., vol. 192, no. November 2021, p. 106560, 2022, doi: 
10.1016/j.compag.2021.106560. 

[18] Z. Hao et al., “Automated tree-crown and height detection in a young 
forest plantation using mask region-based convolutional neural network 
(Mask R-CNN),” ISPRS J. Photogramm. Remote Sens., vol. 178, no. 
May, pp. 112–123, 2021, doi: 10.1016/j.isprsjprs.2021.06.003. 

[19] J. Zheng et al., “Growing status observation for oil palm trees using 
Unmanned Aerial Vehicle (UAV) images,” ISPRS J. Photogramm. 
Remote Sens., vol. 173, no. August 2020, pp. 95–121, 2021, doi: 
10.1016/j.isprsjprs.2021.01.008. 

[20] S. Puliti and R. Astrup, “Automatic detection of snow breakage at single 
tree level using YOLOv5 applied to UAV imagery,” Int. J. Appl. Earth 
Obs. Geoinf., vol. 112, no. August, p. 102946, 2022, doi: 
10.1016/j.jag.2022.102946. 

[21] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature 
hierarchies for accurate object detection and semantic segmentation,” 
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 
580–587, 2014, doi: 10.1109/CVPR.2014.81. 

[22] R. Girshick, “Fast R-CNN,” Proc. IEEE Int. Conf. Comput. Vis., vol. 
2015 Inter, pp. 1440–1448, 2015, doi: 10.1109/ICCV.2015.169. 

[23] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks,” IEEE Trans. 
Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, 2017, doi: 
10.1109/TPAMI.2016.2577031. 

[24] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look 
once: Unified, real-time object detection,” Proc. IEEE Comput. Soc. 
Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 779–788, 
2016, doi: 10.1109/CVPR.2016.91. 

[25] The PyTorch Foundation, “BCEWITHLOGITSLOSS,” 2022. 
https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.
html. 

[26] G. Jocher, “Hyperparameter Evolution,” https://docs.ultralytics.com/, 
2022. https://docs.ultralytics.com/tutorials/hyperparameter-evolution/. 

 


