
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

529 | P a g e

www.ijacsa.thesai.org

Automatic Detection of Oil Palm Growth Rate Status

with YOLOv5

Desta Sandya Prasvita, Dina Chahyati, Aniati Murni Arymurthy

Faculty of Computer Science, University of Indonesia, Depok, Indonesia

Abstract—Oil palm plantations are essential for Indonesia as

a source of foreign exchange and a provider of employment

opportunities. However, large-scale land clearing is considered a

cause of deforestation, which harms the environment and society.

So, it is necessary to manage plantations that are sustainable and

still maintain the preservation of forests and biodiversity. One

solution is to apply remote sensing technology. The research was

conducted to develop a multi-class detection method for the

growth rate of oil palm trees, with five categories: healthy palm,

dead palm, yellowish palm, mismanaged palm, and smallish

palm. The deep learning-based object detection method, YOLO

Version 5 (YOLOv5), is used. This study compares the YOLOv5

network models, namely YOLOv5s, YOLOv5m, YOLOv5l, and

YOLOv5x. Parameter setting is also carried out in the BCE

(Binary Cross Entropy) with Logits Loss Function to handle the

problem of unbalanced data distribution in each class. The

YOLOv5 model with the highest value is the YOLOv5l and

YOLOv5x, the YOLOv5x requires longer training time. In this

study, hyperparameter optimization was also carried out using

hyperparameter evolution techniques. However, it has yet to

provide increased results because the experiments conducted in

this study are still limited.

Keywords—Automatic detection; deep learning; oil palm;

YOLOv5

I. INTRODUCTION

Palm oil consumption has witnessed a growth of
approximately 9% annually in the last decade, and it is
anticipated to rise further. This optimistic outlook for the palm
oil industry is attributable to its increasing demand in domestic
and global markets. Since 2004, the use of palm oil has
occupied the highest position, with an average growth of 8%
per year. In Indonesia, oil palm serves as a plantation
commodity that has an important role in the economy as a
source of foreign exchange and a provider of employment.
Indonesia is also the world's largest palm oil producer [1]. Oil
palm plantations, despite their positive impact on the economy,
are often associated with negative impacts that can harm
society, such as environmental degradation and conflicts with
local communities. [2]. Oil palm plantations are considered a
cause of deforestation that can damage biodiversity, with 2%
of Indonesia's forests being turned into plantation areas [3].
Based on the background and problems related to oil palm
plantations, especially in Indonesia, it is necessary to manage
oil palm plantations sustainably so as not to harm the
community. That is with an agricultural system oriented
towards economic, social, and ecological balance. With proper
agricultural practice and technology, it is believed that oil palm
plantations will continue growing, with environmental

sustainability maintained. Precision agriculture aims to
optimize the use of resources to achieve the best results while
protecting the environment with land management systems [4].

Remote sensing technology has been widely used in
mining, agriculture, and plantations. This technology can be
used for remote monitoring of plantation areas. Monitoring
plantations manually by human labor is difficult, especially in
oil palm plantations in Indonesia characterized by large
plantation areas and difficult access. Methods for obtaining
optimal results for detecting individual trees have also been
developed. Based on previous research, three groups of
approaches are used for tree detection. The three methods are
classical digital image processing [5] [6] [7] [8], classical
machine learning [9] [10], and deep learning. The tree-
detection-based deep learning approach is divided into an
approach based on CNN classification [11] [12] [13] [14] [15]
[16] and another approach based on object detection [17] [18]
[19] [20]. The first approach is based on classical digital image
processing. There are four main stages to a classical digital
image processing-based approach: image pre-processing,
treetop detection, tree crown delineation, and post-processing.
In the classical machine learning-based tree detection
approach, feature extraction is required, which is then trained
to build a classification model. The classification model is used
to detect trees in images using the sliding window technique.
The third approach is based on deep learning for tree detection.
Deep learning methods are currently popular for object
detection because of their object detection accuracy.

There are advantages and disadvantages to each technique
for oil palm tree detection. The classical digital image
processing approach has the advantage that it does not require
a training process for the construction of classification or
detection models that require high and expensive
computational costs. Another advantage is the time it takes to
detect quickly. However, this classic digital image processing
approach has a weakness. It is not easy to use to detect,
especially in the case of overlapping trees. On the other hand,
the classic machine learning approach has the advantage of
seeing overlapping trees. However, accuracy depends on the
feature extraction used. Another weakness is that, while the
detection process generally uses a sliding window technique, it
takes a long time to detect trees. In addition, the sample size of
the training image must have been determined when
constructing the classification model. In contrast, the objects
we detected were of various sizes both the classical machine
learning approach and the deep learning approach using the
CNN classification-based method share similar advantages and
disadvantages. However, the CNN classification-based method

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

530 | P a g e

www.ijacsa.thesai.org

does not necessitate feature extraction and has demonstrated
superior performance. In contrast, the deep learning method
based on object detection can detect objects that overlap with
different trees or objects of various sizes and has a much faster
detection process. This approach only requires a training
process, which is costly and expensive in the computation,
especially in cases with many classes.

From the background of the problem, multi-class detection
with a deep learning method based on object detection in oil
palm trees is state-of-the-art and still has exciting challenges.
Zheng et al. [19], in their research, carried out multi-class
detection of the growth rate of oil palm trees, with five
categories: healthy palm, dead palm, yellowish palm,
mismanaged palm, and smallish palm. However, it still has
sub-optimal performance and needs improvement. One is the
still low F1-score for the dead palm and mismanaged palm
classes, namely 43.24% and 44.59%, respectively. The reason
for this is that the class contains a relatively small sample of
data compared to the quantity of data available in other
categories. This study developed a research method based on
the work of Zheng et al. to improve the detection results on the
growth status of oil palm trees. Zheng et al. have published
training datasets, which were used and compared in this
research. This research has developed a model that utilizes
YOLOv5 for detecting the growth status of oil palm trees, a
technique that has already demonstrated success in detecting
date palms [17] and tree damage [20]. This study has made
several notable contributions, including: 1) utilizing the
YOLOv5 method to detect tree growth status, 2) addressing the
issue of unbalanced class distribution by adjusting the
parameter of BCE with Logits Loss, and 3) conducting
hyperparameter optimization experiments for YOLOv5.

II. LITERATURE REVIEW

In the development of deep learning methods based on
object detection, such as R-CNN [21], R-CNN [22], faster R-
CNN [23], and YOLO [24], the detection process increases in
terms of both speed and accuracy. Therefore, an object
detection-based deep learning approach is the state-of-the-art
approach of this research. There were three primary references
used in this study. The first was a research study conducted by
Zheng et al. In this research, we developed a model to detect
the growth rate of oil palm trees, categorizing them into
healthy palms, mismanaged palms, smallish palms, yellowish
palms, and dead palms. The data used was derived from
unmanned aerial vehicle (UAV) images of oil palm plantation
areas in South Kalimantan and Papua, Indonesia. The features
in the UAV image data were red, green, and blue (RGB)
features. There were five classes: dead palms, healthy palms,
mismanaged palms, smallish palms, and yellowish palms. The
method for detecting oil palm trees is called Multi-Class Oil
Palm Detection (MOPAD). There are three main modules in
MOPAD. The first module is the Refined Pyramid Feature
(RPF) Module for feature extraction, including four steps:
rescaling, integration, refinement, and disintegration. The
second is the Multi-Level Region Proposal Network (RPN)
with faster R-CNN to generate oil palm candidates. The third is
the Hybrid Class-Balanced Loss Module to improve the
detection of multi-class palm oil using Class-Balanced Cross-
Entropy Loss (CBCEL) and Class-Balanced Smooth L1 Loss

(CBSLL). An evaluation was carried out using the evaluation
metrics recall, precision, and F1-score. Regarding the achieved
performance, this study has produced in detecting oil palm
trees at two sites, with F1-scores of 87.91% and 99.04%,
precision values of 92.42% and 98.90%, and recall values of
83.82% and 99.19% [19]. However, the detection of multi-
class oil palm trees was still low, with an average F1-score of
72.83% and with the most frequently detected classes being
dead palms and mismanaged palms. A few challenges persisted
in this study, one of which was the low F1-scores in detecting
the growth of oil palm trees.

The latest object detection method widely used is YOLO.
This method outperforms faster R-CNN in terms of detection
speed. YOLOv5 was successfully implemented to detect tree
damage due to snowfall automatically. The study utilized
image data captured using drone technology from southeastern
Norway, featuring RGB channels. The built model was then
validated using precision (P), recall (R), , and
 ⌈ ⌉ accuracy metrics. The validation results for
P, R, , and ⌈ ⌉ for all classes were
0.62, 0.61, 0.65, and 0.37. In this research, we employed the
YOLOv5 method to detect tree damages caused by snow,
which has not been attempted in previous studies. Furthermore,
our findings demonstrate that YOLOv5 is capable of
addressing the challenge of class imbalance, particularly when
the percentage of damaged and dead trees is considerably
lower than that of healthy trees. [20].

The YOLOv5 method was also applied to automatically
detect date palms using drone imagery [17]. The data for the
study were obtained using drones on agricultural land in the
United Arab Emirates. The research experiment was carried
out by comparing several versions of the YOLOv5 network,
including YOLOv5s (small), YOLOv5m (medium), YOLOv5l
(large), and YOLOv5x (extra-large). The initial model weights
were the pre-training weights from training on the COCO
dataset to recognize 80 classes, which were then adjusted for
hyperparameters to obtain optimal parameters. The
hyperparameter tuning method used was to use a genetic
learning algorithm. The test results showed that YOLOv5 had a
higher value than SSD300, YOLOv3, and YOLOv4. The
detection speeds of YOLOv5s, YOLOv5m, and YOLOv5l
were also higher than those of SSD300, YOLOv3, and
YOLOv4, but YOLOv5x had the longest average detection
time. The YOLOv5 method, recognized for its speed, is an
efficient object detection approach that surpasses other CNN-
based methods such as R-CNN, fast R-CNN, and faster R-
CNN in terms of speed.

This study developed a research method based on the work
of Zheng et al. to improve the detection results on the growth
status of oil palm trees. Zheng et al. have published training
datasets, which were used and compared in this research. This
research built a model for detecting the growth status of oil
palm trees using YOLOv5, which has been successfully
applied in detecting date palms and tree damage.

III. METHOD

This research went through three main stages: 1) data
preparation, 2) development of the YOLOv5 model, and 3)
model testing. The data used were the image data provided in a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

531 | P a g e

www.ijacsa.thesai.org

study by Zheng et al. During the data preparation stage, we
regenerated the data and separated it into three parts: training
data, validation data, and testing data. In the training phase, we
concurrently utilized the training and validation data. We
employed the training data to construct the model, while the
validation data was used to test the model at each iteration and
determine the best possible model. In the testing phase, we
tested the model created during the training stage using the
testing data and performed an evaluation. Fig. 1 illustrates the
stages of the research methods.

Fig. 1. Research method.

A. Data and Preparation

The dataset used in this study was composed of data from
previous studies [19], available at https://github.com/rs-
dl/MOPAD. The data acquisition location was Papua,
Indonesia (140◦29′ 17′′E, 6◦57′ 42′′S), and the data acquisition
was executed using a Skywalker X8 air bridge and a Sony
a6000 camera. A spatial resolution of 8 cm with three RGB
bands was used. This area had various types of land cover,
such as oil palm plantations, rivers, buildings, other vegetation,
etc.

For further processing for the development of the YOLOv5
model, the data obtained is carried out at the data preparation
stage, namely data regeneration and reformatting. There were
2,303 image data, each measuring 1,024 x 1,024 pixels. Data
regeneration was performed using the roboflow online tool.
There were three stages in data regeneration: train/split test,
pre-processing the data by scaling, and generating YOLOv5
format compliant data. In the train/test split process, the data
were divided into training, validation, and testing data, each
totaling 1,600 data, 135 data, and 136 data (70%, 15%, and
15%). The rescaling process resized the data from 1,024 x
1,024 pixels to 416 x 416 pixels. Next, necessary formatting
adjustments were made to YOLOv5.

TABLE I. THE NUMBER OF IMAGES FOR TRAINING, VALIDATION, AND

TESTING DATA

Type
Training

Data

Validation

Data

Testing

Data
Total

Healthy palm 79,988 17,453 17,401 114,842

Dead palm 193 45 57 295

Mismanaged palm 407 68 51 526

Smallish palm 24,486 4,832 4,721 34,039

Yellowish palm 1,339 270 275 1,884

Total 106,413 22,668 22,505 151,586

The dataset included annotations of oil palm trees classified
into five labels based on their growth rate. Specifically, the
study detected five growth stages of oil palm trees, including
dead palms, healthy palms, mismanaged palms, smallish
palms, and yellowish palms. Overall, the dataset contained
151,586 oil palm tree annotations for all classes. Table I shows
the number of annotations for each category and training,
validation, and testing data.

B. The YOLOv5 Network Architecture

The object detection neural network architecture consists of
three main components: the backbone extracts image features,
the neck incorporates the features extracted from the previous
layers, and the head predicts object classes and bounding
boxes. The YOLOv5 architecture can be seen in Fig. 2.

YOLOv5 has many key components in each part of its
networks, such as focus, Conv (convolution), C3, and Spatial
Pyramid Pooling (SPP). The focus module divides the input
image into four parallel slices (S) to create a feature map using
the convolution module. The convolution module is a basic
module that uses convolution operations combined with batch
normalization and a leaky-ReLU activation function for feature
extraction. The C3 module is designed based on a Cross-Stage
Partial (CSP) connection network that is used to improve
model learning capabilities. The backbone model uses the SPP
module for mixing and unifying spatial features. It down-
samples the input features through three parallel max pooling
layers and then aggregates them to the featured initial.

Fig. 2. The network architecture of YOLOv5.

Dataset

Training

Data

Validation

Data

Testing

Data

Training

YOLOv5

Model

Detection

Evaluation

Evaluation

Training Phase Testing Phase

Hyperparaeter

Optimization

YOLOv5s YOLOv5m

YOLOv5l YOLOv5x

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

532 | P a g e

www.ijacsa.thesai.org

C. Dealing with Imbalanced Data

An imbalance in class distribution can lead to the model
better at predicting classes with more data and worse at
predicting classes with fewer data. The dataset used in this
study has a highly unbalanced distribution. Fig. 3 shows that
the healthy oil palm class had a wide data distribution, as
marked with a yellow bar. However, there was very little data
on yellowish, mismanaged, and dead palm classes depicted in
red bars.

Fig. 3. Data distribution for each class.

The loss function for objectivity in YOLOv5, class
probability, was calculated using BCE with Logits Loss
Function. The parameters in BCE with Logits Loss were
adjusted to overcome the problem of the unbalanced proportion
of data in the class. Setting BCE with the Logits Loss
parameter made trading of recall and precision possible by
adding weight to positive examples. In the case of multi-label
classification, the loss (()) can be explained in equation
(1).

 () * +

 () ()

Where is the class number, is the sample size in the
batch, and is the weight of the positive for class . For
example, if the data set contains 5 positive and 200 negative
examples of a class, then the for that class must

equal

 . The loss will act as if the data set contains

40×5=200 positive examples [25].

D. Training the Network

Model training was performed utilizing transfer learning
from pre-trained weights of 100 epochs trained on the large
Common Objects in Context (COCO) dataset. The pre-trained
model was trained to recognize 80 types of objects. The
training was carried out for 300 epochs to train the model to
recognize objects corresponding to the dataset’s five oil palm
growth status categories. At each epoch, validation data were
executed using the ⌈ ⌉ evaluation metric value.
The best model was chosen with the highest ⌈ ⌉
value. The training image data input size was 416 x 416 pixels,
with a batch size of 32.

This research built training models for four different
versions of YOLOv5, namely, YOLOv5s, YOLOv5m,

YOLOv5l, and YOLOv5x. The difference between the four
YOLOv5 versions lies in the number of feature extraction
modules in the convolution layer. YOLOv5s has the least
feature extraction modules and kernels, and YOLOv5x has the
highest feature extraction and kernels. The bigger the model,
the better the result, but it has more parameters, requires more
CUDA memory, and takes longer to train.

YOLOv5 has around 30 hyperparameters which are used
for various training settings. In addition to using
hyperparameters in the pre-trained model COCO dataset, this
research also optimized the hyperparameters. A
hyperparameter tuning process was carried out using
hyperparameter evolution [26]. Hyperparameter evolution is a
powerful optimization method that uses a genetic algorithm
(GA) to optimize hyperparameters in various stages. The first
stage is hyperparameter initialization, which utilizes the default
parameters of YOLOv5 COCO. The second stage is defining
fitness, where the objective function is set to measure how well
the model performs. The third stage is evolution, where the GA
is utilized to find the optimal set of hyperparameters. Finally,
the visualization stage provides a graphical representation of
the optimization process. The metric evaluation value of
 ⌈ ⌉ determines the fitness value. The number of
evolutions performed is 300, with each epoch being 10.
Visualizations are performed to evaluate the evolution results.
Considering the cost of the YOLO training process, the model
used for hyperparameter evolution in this study was YOLOv5s
only.

E. Evaluation

The model was tested using both validation and testing
data. Validation data was used during each epoch of the
training process to test the model, while testing data was used
to evaluate the final YOLOv5 model. Testing of the object
detection model was carried out using the mean average
precision () evaluation metric. The is the average
precision () in all detected classes. The value is only for
each category. The average of 11 interpolation points on the
precision-recall curve was calculated to obtain the value.
According to the 2017 COCO challenge evaluation guidelines,
 was calculated by the average over 80 object classes
and all 10 thresholds from 0.5 to 0.95 with a step size of
0.05, i.e., ⌈ ⌉. The calculation of the value
can be seen in equations (2) and (3).

∑

 (2)

 (3)

To obtain the value, precision and recall values were
needed to build a precision-recall curve. Precision is the ratio
of the correct prediction for positive data compared to the
overall positive predicted result. The precision value can be
calculated using the following equation, TP (true positive) is
the positive data correctly predicted to the positive class, and
FP (false positive) is predicted as an object but false. The
precision value can be obtained by using equation (4).

 (4)

114842

34039

1884

526

295

0 40000 80000 120000

Healthy Palm

Smallish Palm

Yellowish Palm

Mismanaged Palm

Dead Palm

Number of Trees

C
at

e
go

ry

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

533 | P a g e

www.ijacsa.thesai.org

A recall is the ratio of true positive predictions to the total
number of correct positive data. The recall value can be
calculated using the following equation, TP (true positive) is
the positive data correctly predicted to the positive class, and
FN (false negative) incorrectly predicts the object there. The
recall value can be obtained using equation (5).

 (5)

In object detection, TP and FP values are determined using
the value. The value is used as the threshold. If the
 threshold value is 0.5, and the value for a prediction is
0.7, then the prediction result is expressed as TP. Meanwhile, if
the threshold is 0.3, it is expressed as FP. Equation (6) is
used to calculate the value. An illustration of the
calculation of the IoU value can be seen in Fig. 4.

 (6)

Fig. 4. Illustration of calculation of value; (a) The ground truth; (b) The

red color is the area of overlap, and the blue area is the area of union.

The expected model is a model with high precision and
recall values. Therefore, the ideal to measure the model is F1-
Score. Mathematically it can be expressed in equation (7).

 (7)

IV. RESULTS AND DISCUSSION

A. BCE with Logits Loss Setting Parameters

One positive class weight vector was chosen as the
parameter to manage imbalanced classes in the BCE with
Logits Loss function. Positive classes were the class categories
in the dataset that you want to detect, namely, the healthy,
smallish, yellowish, mismanaged, and dead palm classes. The
formula for determining class weight vectors can be seen in
equation (8), where c is the detected object category. The
number of positive classes is the amount of data in class c, and
the number of negative classes is the amount of data in classes
other than class c.

 , -

 (8)

Table II provides the result of setting the BCE with Logits
Loss parameter and its calculations.

TABLE II. BCE WITH LOGITS LOSS PARAMETER SETTING

Class Count BCEWithLogitsLoss Setting

Healthy

Palm
114842

Smallish

Palm
34039

Yellowish

Palm
1884

Mismanaged

Palm
526

Dead Palm 295

To set the BCE with the Logits Loss parameter in
YOLOv5, it can be found in the file yolov5/utils/loss.py. There
were two variables, namely BCEcls, and BCEobj. BCEobj was
for objects or backgrounds, and BCEcls was for object classes.
The parameter was defined in h['cls_pw'] by changing the
value of the vector.

The parameter was defined in h['cls_pw'] by changing the

value of the vector as follows.

B. Results of the Training Process

The training was conducted with two experiments to obtain
the optimal model for detecting oil palm trees. The initial
experiment employed a pre-trained model, whereas the
subsequent one involved leveraging the evolution method to
optimize hyperparameters. Notably, the training procedure was
executed utilizing Google Colab Pro+.

 Training with Pre-Trained Default Models

The experiment in the training process was to compare all
YOLOv5 networks, including YOLOv5s, YOLOv5m,
YOLOv5l, and YOLOv5x. The training used 300 epochs with
a batch size of 16. Table III compares evaluation metrics and
training time for all YOLOv5 models.

YOLOv5l produced the highest value among all
YOLOv5 models, with ⌈ ⌉ of 0.90. Although the
YOLOv5x model had a deeper network, it did not improve the
results and even had the lowest average F1-score of 0.95.
YOLOv5s, YOLOv5m, and YOLOv5l had a training time of 3
hours, and YOLOv5x had a training time of five hours with
300 epochs.

(a) (b)

Define criteria
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']],

device=device))

BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']],

device=device))

Define criteria

BCEcls =

nn.BCEWithLogitsLoss(pos_weight=torch.tensor(torch.tensor([[512.,
287., 0.3, 3.5, 79]]), device=device))

BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']],

device=device))

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

534 | P a g e

www.ijacsa.thesai.org

TABLE III. COMPARISON OF EVALUATION METRICS AND TRAINING TIME

OF THE YOLOV5 MODEL

Model

YOLOv5
P R

 ⌈ ⌉
Average

F1-score
Time

YOLOv5s 0.95 0.96 0.86 0.96 3.005 hours

YOLOv5m 0.95 0.97 0.89 0.96 3.185 hours

YOLOv5l 0.96 0.98 0.90 0.97 3.652 hours

YOLOv5x 0.95 0.95 0.90 0.95 5.550 hours

 Training with the Model by Tuning the Hyperparameter
Evolution

Hyperparameter optimization experiments were carried out
using the YOLOv5 model with the smallest network, namely,
YOLOv5s. The number of evolutions used was 300, each using
ten epochs. Fig. 5 is a visualization of the hyperparameter
tuning process evolve. The yellow color indicates higher
concentrations. The vertical distribution suggests that the
parameter had been deactivated and not mutated.

Fig. 5. Visualization of hyperparameter optimization results.

The evolved model did not improve yields compared to the
default models. Fig. 6 compares the ⌈ ⌉ and F1-
scores for detecting oil palm trees. The process of
hyperparameters optimization with evolution required high
costs, and evolutions required GPU processing that took days.
In other words, some experimental limitations still existed at
this stage, with a limited number of evolutions, namely, 300,
and 10 epochs for each evolution.

Fig. 6. Model comparison with hyperparameter evolution model and pre-

trained models.

C. Model Testing Process

We compared the performance of YOLOv5 on small,
medium, large, and extra-large networks using testing data. To
evaluate the results, we used the F1-score and
 ⌈ ⌉ metrics on the testing data. The difference in
F1 score, precisely in the mismanaged palm class, was quite
far, with the lowest F1-score obtained using YOLOv5s. The
F1-score for the mismanaged palm class increased significantly
using YOLOv5l, in which case the increase amounted to
11.3%. Results showed that the detection of the mismanaged
oil palm class had the lowest F1-score. The highest F1-score
was found in the dead palm class using YOLOv5l. The F1-
score comparison for each YOLO-v5 model can be seen in Fig.
7.

Fig. 7. Comparison of F1-Scores across YOLOv5 models.

0.64

0.82

0.606

0.82

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

MAP50-95 F1-Score

COCO Pre-trained Model Hyperparameter Evolution Model

0.65

0.70

0.75

0.80

0.85

0.90

0.95

F1
-S

co
re

s

Category

YOLOV5s YOLOV5m YOLOV5l YOLOV5x

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

535 | P a g e

www.ijacsa.thesai.org

Fig. 8. Comparison of ⌈ ⌉ values across YOLOv5 models.

The comparison of ⌈ ⌉ for each YOLOv5
model can be seen in Fig. 8. The evaluation of the detection of
oil palm growth rate showed that the model is suitable for
detecting healthy oil palm trees. The highest ⌈ ⌉
value for the healthy palm oil class was 0.849, in which
YOLOv5x was used. The class that was difficult to detect
using YOLOv5 was the mismanaged oil palm tree class. The
lowest ⌈ ⌉ value was 0.478, obtained with
YOLOv5s, and the highest was 0.554, obtained with
YOLOv5m. Detection of smallish and yellowish palms using
YOLOv5 models was still difficult, but the ⌈ ⌉
values for these classes were better than that of the
mismanaged class. For the dead palm class, the
 ⌈ ⌉ value was also quite good, which was above
0.7.

Based on the evaluation of ⌈ ⌉ , the
YOLOv5s model had the lowest scores for all classes.
YOLOv5m, YOLOv5l, and YOLOv5x were in the range of
 ⌈ ⌉ evaluation values, which were not much
different. YOLOv5x was sufficient to increase the value of
 ⌈ ⌉ by 0.04 compared to other YOLOv5 models.
If we look at the results of the ⌈ ⌉ evaluation,
using the YOLOv5 model with medium and large networks
generated good detection results. Using the YOLOv5 extra-
large network, there was not much increase in the detection
results. Only the yellowish palm class saw a significant
increase in the ⌈ ⌉ value by around 0.4.

D. Evaluation of Detection Results

The ⌈ ⌉ evaluation metric shows that the
model was very good at detecting healthy palms and quite
good at detecting dead palms. It can be seen in Fig. 9, an
example of a randomly selected detected image. The detection
results circled in red in Fig. 9(b), 9(c), and 9(d) are the results
of mismanaged class errors (FP for mismanaged classes). The
objects should have been detected as healthy oil palm trees but
came out as ambiguous detection results. For instance, the
objects were detected more than twice as mismanaged and

healthy palms. The detection results for the mismanaged class
also showed ambiguity in that one object was detected more
than once, as shown in Fig. 9(a). A tree of the mismanaged
palm class was detected more than once. As seen in the image
with a yellow circle, the oil palm tree objects overlapped. False
positive (FP) detection errors in the yellowish palm class can
also be seen in Fig. 9. The yellowish class detection results are
marked with a green box and a blue circle. Some objects
should have been detected as members of the healthy palm
class, but they were detected as part of the yellowish palm class
instead. From the analysis of detection results, it was
acknowledged that the model still had FP errors in detecting
mismanaged and yellowish palms. From the characteristics of
the image, it can be analyzed that FP errors in both the
mismanaged and yellowish palm classes occurred in tree
objects that overlapped each other.

Fig. 9. Detection results for the first image sample: (a) YOLOv5s Model; (b)

YOLOv5m Model; (c) YOLOv5l Model; (d) YOLOv5x Model.

Fig. 10 is an example of another detection result; there were
trees in the mismanaged palm category that did not overlap,
which are marked with purple bounding boxes. In contrast to
the previous image, this image provides precise detection
results, where oil palm trees of the mismanaged palm class
were successfully detected without any false positive (FP)
detection. Fig. 10 also compares YOLOv5 in each network
(small, medium, large, and extra-large). In the area marked
with blue circles, YOLOv5s, and YOLOv5m showed FP in the
healthy palm class, where the background was detected as
healthy palms. The YOLOv5l and YOLOv5x models could
improve the detection results, as the red circles show.

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

m
A

P

Category

YOLOV5s YOLOV5m YOLOV5l YOLOV5x

(a) (b)

(c) (d)

 Healthy Palm

 Dead Palm
 Mismanaged Palm

 Smallish Palm

Yellowish Palm

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

536 | P a g e

www.ijacsa.thesai.org

Fig. 10. Detection results for the second image sample: (a) YOLOv5s model;

(b) YOLOv5m model; (c) YOLOv5l model; (d) YOLOv5x model.

E. Comparison of the Proposed Method with Previous

Research

A comparison between the method proposed in previous
studies and YOLOv5 was made. In the research conducted
previously by [19], the evaluation of detection results was
carried out using the F1-score. Zheng et al. named the
detection method MOPAD, with an average F1-score of 72%.
In addition, they also conducted experiments with other
methods, such as CNN and Faster R-CNN, with an average of
28% and 56% for the two methods. As seen in Table IV, this
study has improved F1-score results even with the YOLOv5s
network, with an average F1-score of 72%. The highest F1-
score was obtained using YOLOv5x, with an average F1-score
of 86%.

The highest average F1-Score is the YOLOv5x model, but
the difference in the average F1-Score is only 1% compared to
the YOLOv5l. The training time for the YOLOv5x model is
longer than the YOLOv5l, with a difference in training time of
about two hours. It can be seen in Table IV. The analysis
results show that the best oil palm growth rate detection model
is YOLOv5l. Besides having a faster training time, YOLOv5l
outperforms its competitors in detecting five different classes
related to the growth rate of oil palm trees. Specifically, three
categories - dead palm, mismanaged palm, and smallish palm -
achieve the highest F1-score with YOLOv5l. The evaluation of
each class was as follows: healthy palms on YOLOv5x, dead
palms on YOLOv5l, mismanaged palms on YOLOv5l,
smallish palms on YOLOv5l, and yellowish palms on
MOPAD.

TABLE IV. COMPARISON OF THE PROPOSED METHOD WITH PREVIOUS

RESEARCH

Method Healthy Dead
Mis-

managed
Smallish Yellowish

Average

F1-score

CNN

(ResNet-

101)

[19]

0.75 0.07 0.03 0.36 0.19 0.28

Faster

R-CNN

[19]

0.90 0.06 0.42 0.66 0.74 0.56

MOPAD

[19]
0.91 0.55 0.51 0.77 0.88 0.72

YOLOv5s 0.89 0.90 0.68 0.82 0.80 0.82

YOLOv5m 0.89 0.90 0.76 0.84 0.79 0.84

YOLOv5l 0.89 0.91 0.80 0.86 0.81 0.85

YOLOv5x 0.91 0.90 0.77 0.85 0.85 0.86

V. CONCLUSION

This study found several contributions, including: 1) The
application of the YOLOv5 method for detecting the growth
level of oil palm trees. 2) A comparison of the YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x models. 3) Handling
unbalanced class distributions by setting positive class vector
parameters in the BCE with the Logits Loss function. 4)
Conducting experiments to optimize hyperparameters with
evolutions.

Based on the experiments conducted in this study, the
YOLOv5 model improved the results of detecting the growth
level of oil palm trees. The highest F1-score was obtained with
the YOLOv5x model, but it took the longest learning time. The
YOLOv5l model is the best because the training time is
shorter, and the difference in F1 scores is slightly smaller than
the YOLOv5x model by 1%. In addition to outperforming
other YOLOv5 models' F1-score, the evaluation results for
each class show YOLOv5l achieved the highest F1-score for 3
out of 5 classes. The detection results showed that the model
still had errors in predicting trees of the mismanaged and
yellowish palm classes, and the FP value for overlapping trees
was still relatively high.

Setting positive class vector parameters in the BCE with the
Logits Loss function could solve the unbalanced class
distribution problem; where there was an imbalance in the class
distribution, there the imbalance was extreme. Still, adjusting
BCE with Logits Loss function parameters could produce an
evaluation value for each class that was still quite good.
Hyperparameter optimization by evolutions required high
costs, where the training process could take days to complete.
This study was limited to hyperparameter optimization
experiments on the YOLOv5s model with 300 evolutions and
ten epochs for each evolution. The hyperparameter
optimization with evolutions results did not show a significant
increase in the model.

This study applied a deep learning method based on object
detection, a state-of-the-art method in oil palm tree detection
research. This research still faced challenges, especially in
detecting multi-class oil palm trees. It is insufficient to only

(a) (b)

(c)
(d)

 Healthy Palm

 Dead Palm

 Mismanaged Palm Smallish Palm

Yellowish Palm

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

537 | P a g e

www.ijacsa.thesai.org

feature RGB images for detecting tree growth and health level,
providing only color and texture information. To better detect
the growth level of oil palm trees, it is advisable to add remote
sensing sensors.

ACKNOWLEDGMENT

This research is partially supported by an internal
publication grant from the Faculty of Computer Science,
University of Indonesia.

REFERENCES

[1] Kementrian Perindustrian RI, Tantangan dan Prospek Hilirisasi Sawit
Nasional Analisis Pembangunan Industri. 2021.

[2] Ngadi and M. Noveria, “Keberlanjutan Perkebunan Kelapa Sawit di
Indonesia dan Prospek Pengembangan Perbatasan,” J. Masy. Indones.,
vol. 43, no. 1, pp. 95–111, 2017.

[3] E. Meijaard et al., Kelapa sawit dan Keanekaragaman Hayati Analisis
situasi oleh Satuan Tugas Kelapa Sawit IUCN. 2018.

[4] E. N. Ginting and D. Wiratmoko, “Potensi dan Tantangan Penerapan
Precision Farming dalam Upaya Membangun Perkebunan Kelapa Sawit
yang Berkelanjutan,” War. PPKS, vol. 26, no. 2, pp. 55–65, 2021.

[5] H. Z. M. Shafri, N. Hamdan, and M. I. Saripan, “Semi-automatic
detection and counting of oil palm trees from high spatial resolution
airborne imagery,” Int. J. Remote Sens., vol. 32, no. 8, pp. 2095–2115,
2011, doi: 10.1080/01431161003662928.

[6] J. Yang, Z. Kang, S. Cheng, Z. Yang, and P. H. Akwensi, “An
Individual Tree Segmentation Method Based on Watershed Algorithm
and Three-Dimensional Spatial Distribution Analysis from Airborne
LiDAR Point Clouds,” IEEE J. Sel. Top. Appl. Earth Obs. Remote
Sens., vol. 13, pp. 1055–1067, 2020, doi:
10.1109/JSTARS.2020.2979369.

[7] T. Yun et al., “Individual tree crown segmentation from airborne LiDAR
data using a novel Gaussian filter and energy function minimization-
based approach,” Remote Sens. Environ., vol. 256, no. December 2020,
p. 112307, 2021, doi: 10.1016/j.rse.2021.112307.

[8] A. Harikumar, P. D’Odorico, and I. Ensminger, “A Fuzzy Approach to
Individual Tree Crown Delineation in Uav Based Photogrammetric
Multispectral Data,” in International Geoscience and Remote Sensing
Symposium, 2020, pp. 4132–4135.

[9] Y. Wang, X. Zhu, and B. Wu, “Automatic detection of individual oil
palm trees from UAV images using HOG features and an SVM
classifier,” Int. J. Remote Sens., vol. 40, no. 19, pp. 7356–7370, 2019,
doi: 10.1080/01431161.2018.1513669.

[10] A. P. D. Corte et al., “Forest inventory with high-density UAV-Lidar:
Machine learning approaches for predicting individual tree attributes,”
Comput. Electron. Agric., vol. 179, no. April, p. 105815, 2020, doi:
10.1016/j.compag.2020.105815.

[11] D. S. Prasvita, M. M. Santoni, R. Wirawan, and N. Trihastuti,
“Klasifikasi Pohon Kelapa Sawit Pada Data Fusi Citra Lidar Dan Foto
Udara Menggunakan Convolutional Neural Network,” JIPI (Jurnal Ilm.
Penelit. dan Pembelajaran Inform., vol. 6, no. 2, pp. 406–415, 2021, doi:
10.29100/jipi.v6i2.2437.

[12] W. Li, H. Fu, L. Yu, and A. Cracknell, “Deep learning based oil palm
tree detection and counting for high-resolution remote sensing images,”
Remote Sens., vol. 9, no. 1, 2017, doi: 10.3390/rs9010022.

[13] W. Li, H. Fu, and L. Yu, “Deep convolutional neural network based
large-scale oil palm tree detection for high-resolution remote sensing
images,” in International Geoscience and Remote Sensing Symposium
(IGARSS), 2017, vol. 2017-July, pp. 846–849, doi:
10.1109/IGARSS.2017.8127085.

[14] N. A. Mubin, E. Nadarajoo, H. Z. M. Shafri, and A. Hamedianfar,
“Young and mature oil palm tree detection and counting using
convolutional neural network deep learning method,” Int. J. Remote
Sens., vol. 40, no. 19, pp. 7500–7515, 2019, doi:
10.1080/01431161.2019.1569282.

[15] W. Li, R. Dong, H. Fu, and L. Yu, “Large-Scale Oil Palm Tree
Detection from High-Resolution Satellite Images Using Two-Stage
Convolutional Neural Networks,” Remote Sens., vol. 11, no. 1, 2019,
doi: 10.3390/rs11010011.

[16] S. R. Aliandra and D. S. Prasvita, “Application of Median Filter Method
for Classification of Oil Palm Tree on LiDAR Images,” pp. 441–444,
2022.

[17] T. Jintasuttisak, E. Edirisinghe, and A. Elbattay, “Deep neural network
based date palm tree detection in drone imagery,” Comput. Electron.
Agric., vol. 192, no. November 2021, p. 106560, 2022, doi:
10.1016/j.compag.2021.106560.

[18] Z. Hao et al., “Automated tree-crown and height detection in a young
forest plantation using mask region-based convolutional neural network
(Mask R-CNN),” ISPRS J. Photogramm. Remote Sens., vol. 178, no.
May, pp. 112–123, 2021, doi: 10.1016/j.isprsjprs.2021.06.003.

[19] J. Zheng et al., “Growing status observation for oil palm trees using
Unmanned Aerial Vehicle (UAV) images,” ISPRS J. Photogramm.
Remote Sens., vol. 173, no. August 2020, pp. 95–121, 2021, doi:
10.1016/j.isprsjprs.2021.01.008.

[20] S. Puliti and R. Astrup, “Automatic detection of snow breakage at single
tree level using YOLOv5 applied to UAV imagery,” Int. J. Appl. Earth
Obs. Geoinf., vol. 112, no. August, p. 102946, 2022, doi:
10.1016/j.jag.2022.102946.

[21] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp.
580–587, 2014, doi: 10.1109/CVPR.2014.81.

[22] R. Girshick, “Fast R-CNN,” Proc. IEEE Int. Conf. Comput. Vis., vol.
2015 Inter, pp. 1440–1448, 2015, doi: 10.1109/ICCV.2015.169.

[23] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, 2017, doi:
10.1109/TPAMI.2016.2577031.

[24] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 779–788,
2016, doi: 10.1109/CVPR.2016.91.

[25] The PyTorch Foundation, “BCEWITHLOGITSLOSS,” 2022.
https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.
html.

[26] G. Jocher, “Hyperparameter Evolution,” https://docs.ultralytics.com/,
2022. https://docs.ultralytics.com/tutorials/hyperparameter-evolution/.

