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Abstract—In December 2019, the COVID-19 epidemic was 

found in Wuhan, China, and soon hundreds of millions were 

infected. Therefore, several efforts were made to identify 

commercially available drugs to repurpose them against COVID-

19. Inferring potential drug indications through computational 

drug repositioning is an efficient method. The drug repositioning 

problem is a top-K recommendation function that presents the 

most likely drugs for specific diseases based on drug and disease-

related data. The accurate prediction of drug-target interactions 

(DTI) is very important for drug repositioning. Deep learning 

(DL) models were recently exploited for promising DTI 

prediction performance. To build deep learning models for DTI 

prediction, encoder-decoder architectures can be utilized. In this 

paper, a deep learning-based drug repositioning approach is 

proposed, which is composed of two experimental phases. Firstly, 

training and evaluating different deep learning encoder-decoder 

architecture models using the benchmark DAVIS Dataset. The 

trained deep learning models have been evaluated using two 

evaluation metrics; mean square error and the concordance 

index. Secondly, predicting antiviral drugs for Covid-19 using the 

trained deep learning models created during the first phase. In 

this phase, these models have been experimented to predict 

different antiviral drug lists, which then have been compared 

with a recently published antiviral drug list for Covid-19 using 

the concordance index metric. The overall experimental results of 

both phases showed that the most accurate three deep learning 

compound-encoder/protein-encoder architectures are 

Morgan/AAC, CNN/AAC, and CNN/CNN with best values for 

the mean square error, the first phase concordance index, and 

the second phase concordance index. 

Keywords—Antiviral drugs; computational drug repositioning; 

coronavirus; deep learning; drug-target interactions 

I. INTRODUCTION 

Since December 2019, Coronavirus disease (COVID-19) 
has become a crucial public issue across the world. There is a 
real need to develop antiviral drugs for COVID-19 to stop viral 
infections. Recent efforts have been carried out to design novel 
inhibitors or utilize a drug repurposing strategy to determine 
anti-COVID-19 drugs that can serve as promising inhibitors 
versus coronavirus protease [1, 2]. 

Drug discovery and development is a time-consuming, 
complicated and costly task, including the identification of 
candidates, synthesis, characterization, screening, assays for 
therapeutic efficacy, and clinical trials [3, 4, 5]. However, drug 
development success rates are extremely low. In clinical 
phrases, numerous investigational drugs have failed due to 
insufficient achievement, safety concerns, or commercial 

purposes [6]. Alternative drug development strategy drug 
repositioning seeks to identify novel uses for present drugs and 
can decrease the risk and costs associated with the 
development of new drugs [7, 8]. Inferring potential drug 
indications via computational drug repositioning is an efficient 
method. The drug repositioning problem is a top-K 
recommendation function that presents the most probable drugs 
for certain diseases based on drug and disease-related data. For 
drug repositioning, it is crucial to accurately predict drug-target 
interactions (DTI), which define the binding of substances to 
protein targets [9]. The precise identification of molecular drug 
targets is essential for drug discovery and development [10, 11] 
and is particularly important for discovering effective and safe 
treatments for new pathogens, such as SARS-CoV-2 [12]. 

Diverse issues in bioinformatics and cheminformatics 
applications [13], and more specifically, drug development and 
discovery [14], have been successfully solved using deep 
learning (DL) techniques [15, 16]. By comparing DL 
techniques to traditional machine learning (ML) algorithms, 
DL algorithms designed to predict drug-target binding 
affinities (DTBA) occasionally do better [17]. These DL-based 
DTBA prediction algorithms differ in two key aspects. The 
representation of the input data is the first aspect. The input 
drug features can include, for instance, extended connectivity 
fingerprint (ECFP), ligand maximum common substructure 
(LMCS), simplified molecular input line entry system 
(SMILES), or a combination of these features. The second 
aspect relates to the DL system design created using various 
neural network (NN) types [18]. The construction of the many 
NN types varies and may include a number of layers, hidden 
units, filter sizes, or an integrated activation function. Each 
variety of NN has particular advantages that make them better 
suited for particular applications. These variant types of NN are 
Feedforward Neural Networks; FNN, Radial Basis Function 
Neural Networks; RBNN, Multilayer Perceptron; MLP, 
Recurrent Neural Networks; RNN, Convolutional Neural 
Networks; CNN, and Modular Neural Networks; MNN, etc. 
[19]. 

Deep learning (DL) models for predicting drug-target 
interactions (DTI) often use encoder-decoder architectures 
[20]. The encoder converts ligand or protein representations 
into numerical vectors for training or evaluating the DL model. 
There are many different encoder-decoder architectures 
available for DTI prediction, but only a few have been 
explored in previous research. In this study, we propose a DL-
based method for drug repositioning, which involves two 
experimental phases. Firstly, training and evaluating different 
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deep network architectures of compound encoders (Morgan, 
CNN, CNN_RNN, MPNN, Transformer) and protein encoders 
(Transformer, AAC, CNN, CNN_RNN, Conjoint_triad) using 
the benchmark DAVIS Dataset [21]. The trained models have 
been evaluated using the mean square error and the 
concordance index metrics. Based on the experimental 
evaluation of this phase, the most superior five DL compound-
encoder/protein-encoder architectures are 
Morgan/Transformer, Morgan/AAC, CNN/AAC, 
Morgan/CNN, and CNN/CNN. Secondly, predicting antiviral 
drugs for Covid-19 using the trained models. In this phase, the 
trained models created in the first phase have been 
experimented with to predict different antiviral drug lists for 
Covid-19. These lists have been evaluated by comparing them 
to a recently published antiviral drug list for Covid-19 [22] 
using the concordance index metric. The experimental 
evaluation of this phase showed that the most superior five DL 
compound-encoder/protein-encoder architectures are 
Morgan/Conjoint_triad, Morgan/AAC, CNN/AAC, 
CNN/CNN, and CNN/CNN_RNN. The overall experimental 
evaluation of both phases showed that the most accurate three 
DL compound-encoder/protein-encoder architectures are 
Morgan/AAC, CNN/AAC, and CNN/CNN with best values for 
the mean square error, the first phase concordance index, and 
the second phase concordance index. To summarize, there are 
two main contributions to this paper: 

 Training and evaluating different twenty-one deep 
network architectures of compound encoders and 
protein encoders for drug repositioning using the 
benchmark DAVIS Dataset. 

 Predicting antiviral drug lists for Covid-19 using the 
trained twenty-one models, and then comparing them to 
a recently published antiviral drug list for Covid-19. 

The rest of this paper is organized in the following manner. 
While Section II provides an overview of the key scientific 
concepts, Section III reviews the related work. The conceptual 
model, system architecture, used benchmark DAVIS dataset, 
and reference Coronavirus antiviral medicine list are all 
described in Section IV along with the suggested technique. 
Section V describes the tools and libraries exploited in 
implementation and then presents the experimental evaluation 
using two main experiments: Evaluating the trained models 
using the DAVIS dataset and predicting antiviral drugs for 
Covid-19 using the trained models. Finally, the paper is 
concluded in Section VI. 

II. BACKGROUND 

DTIs have a very important function in the drug discovery 
procedure. DTIs recognize the interaction sites between protein 
targets and drug compounds and describe the attributes of the 
interactions sites. DTI aims in recognizing new ligands versus 
specified protein targets. A large number of researches have 
gotten advantages from recognizing DTIs containing drug 
repositioning [23, 24]. Costly and time-consuming laboratory 
tests are required to determine the affinity value for a sizable 
number of drug-target combinations. Therefore, computational 
approaches have gotten more attention in the recent years [25]. 

A crucial step in predicting drug-target interactions DTI is 
feature extraction (also called feature encoding) from the input 
data. Feature extraction obtains useful, discriminating, and 
non-trivial information from input data to facilitate subsequent 
learning phases. Fig. 1 illustrates the two types of feature 
encoding techniques: data-driven and non-data-driven. The 
main distinction between these two groupings is that data-
driven approaches develop characteristics for each input 
automatically. In strategies that are not data-driven, features are 
calculated in a fixed way for each input. The data-driven 
approaches are mainly based on deep learning methods, which 
is a set of machine learning algorithms that uses a model of the 
human visual system to create new hierarchical feature 
representations [26]. 

 

Fig. 1. Feature encoding methods [26]. 

A neural network with two or more hidden layers is 
deemed a deep learning. The input layer receives the input 
features directly, while the output layer generates predictions 
through a series of non-linear transformations utilizing hidden 
layers. Each output node corresponds to a class-based 
prediction task. If there is only one node in the output layer, 
then the network is considered a single-task deep learning. 
Otherwise, it is known as a multi-task deep learning [27]. 

A basic sequence, a derived atomic fingerprint, or a mixture 
of both can constitute the input feature space for a deep 
network. Numerous studies have used a network's input to be a 
raw molecular sequence. Other works convert a raw sequence 
to a more appropriate form, such as one-hot coding, to feed it 
to deep networks like CNN. In one-hot coding, each character 
in the sequence is represented by a binary vector with its 
matching bit set to one and the other bits set to zero. 

There are many feature encoding architectures in DTI 
prediction such as Convolutional Neural Network CNN and 
Message-Passing Neural Network MPNN. For example, the 
Transformer encoders [28] are multi-layered bidirectional 
Transformer encoders following the initial Transformer model. 
The Transformer encoder is capable of modelling a sequence 
without the aid of a CNN or RNN. Transformer, in contrast to 
these earlier sequence processing layers, can efficiently encode 
the relationship between far-flung tokens (atoms) in a 
sequence. Various Transformer-based NLP models surpass 
earlier techniques in many benchmarks due to this effective 
context modelling. 

Molecular descriptors must be created from symbolic 
representations of molecules, such as the SMILES (Simplified 
Molecular Input Line Entry System) format, in order to do 
deep learning. “Morgan Fingerprints,” a vector representation 
of molecular attributes, is a commonly adopted way to describe 
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a molecule. Morgan fingerprint, also known as extended-
connectivity fingerprint (ECFP) [29], is often used algorithm, 
or encoder specification. ECFPs are innovative category of 
topological fingerprints for molecular characterization. For the 
purpose of modelling structure-activity, ECFPs were created. 
ECFPs are circular fingerprints with a variety of useful 
properties: their ability to be calculated quickly; they are not 
predefined and can represent an essentially infinite number of 
different molecular features; and their features indicate the 
presence of specific substructures, which makes it simpler to 
interpret analysis results. 

 
Fig. 2. One-dimension convolutional layer operation on a protein sequence 

and a molecule sequence [26]. 

The most popular deep neural network encoder is CNN, 
which operates on a grid data structure like digital images. As 
depicted in Fig. 2 [26], CNN consists of multiple convolutional 
and pooling layers arranged in an arbitrary order. 
Convolutional layers discover a series of filters that derive a 
group of local patterns from a specific receptive field of the 
layer input. In subsequent convolutional layers, the receptive 
field also expands. By down-sampling the layer's input, the 
pooling layer expands the receptive field. Moreover, the 
pooling layer does not define any additional parameters. The 
CNN input might consist of one-dimensional or two-
dimensional matrices that are scanned along the sequence in 
only one or two directions, respectively. Until now, 1D CNNs 
have been used for DNA sequences for categorization, DNA-
protein binding, and motif extraction, among other tasks [30, 
31, 32]. 

In CNN, Fig. 2 depicts how to apply the one-dimension 
convolutional layer on a small molecule sequence or a protein 
sequence. In Fig. 2A, a protein sequence is depicted as an 
amino acids’ sequence contained in a matrix where every 
amino acid is encoded by a single-hot code (all bits are zeros 
except the corresponding bit of the symbol is one). As seen, by 
reducing the loss function on both positive and negative task 
samples, the filter is moved along the sequence. Fig. 2B depicts 
the SMILE sequence as a string of characters. Every character 
represents an atom or molecule structural indicator. Every 
character is then encoded with a one-hot code and inserted in 
each matrix column. In both instances, the learned filter is 
displayed. 

III. RELATED WORK 

Deep learning methods are now widely used in many 
research fields like; speech recognition [33, 34, 35] and image 
processing [36, 37, 38], involving bioinformatics such as 
genomics works [39,40] and quantitative-structure activity 
relationship (QSAR) researches in drug discovery [41]. The 
primary benefit of deep learning architectures aims to offer 
improved raw data representations through non-linear 
modifications in every layer [42]; hence facilitates the learning 
of the data's hidden patterns. 

Several studies utilizing Deep Neural Networks (DNN) for 
the prediction of DTI binary class with various input models 
for drugs and proteins have been conducted previously 
[43,44,45], as well as a few studies utilizing stacked auto-
encoders [46] and deep belief networks [47]. Likewise, stacked 
auto-encoder-based models using Convolutional Neural 
Networks (CNNs) and Recurrent Neural Networks (RNNs) 
were used to describe genomic and chemical structures as real-
valued vectors [48, 49]. The protein-ligand interaction scoring 
is performed by using deep learning methods. The protein-
ligand interaction scoring commonly utilizes CNNs, which 
learn from the three-dimensional compositions of the protein-
ligand complexes [50, 51, 52, 53]. 

Pahikkala et al. [54] used a method called KronRLS 
(Kronecker Regularized Least Squares), which only requires 
two dimension-based chemical similarity-based representations 
of the medications and the Smith-Waterman similarity 
representation of the targets. Latterly, the SimBoost approach 
was suggested to forecast the scores of binding affinity with a 
gradient boosting machine by utilizing feature engineering to 
provide DTI [55]. They exploited similarity-based information 
of DT pairings and attributes acquired from the pairs' network-
based interactions. Both kinds of research obtained similarity-
based information using 2D representations of the substances 
and typical machine learning algorithms. 

The ensemble of deep learning models (EnsembleDLM) for 
DTI prediction was presented [56]. EnsembleDLM utilizes a 
set of chemical compounds and proteins and assembles the 
predictions from numerous deep neural networks. It provides 
good achievements in cross-domain applications spanning 
various bio-activity types and protein classes. By using transfer 
learning, the EnsembleDLM obtained a good performance 
(Pearson correlation coefficient and concordance index). 

To construct negative DTIs, a new similarity-based strategy 
was presented [57]. Multiple least absolute shrinkage and 
selection operator (LASSO) models were presented to 
incorporate various collections of feature sets in order to 
investigate the strength of prediction and forecast DTIs. In 
addition, LASSO Deep Neural Network (LASSO-DNN) model 
was developed to predict DTIs based on the features retrieved 
from the LASSO models with the highest achievement. 
LASSO-DNN was compared to LASSO, standard logistic 
(SLG) regression, support vector machine (SVM), and 
conventional DNN models. The LASSO-DNN outperformed 
the SLG, LASSO, SVM, and regular DNN models, as 
demonstrated by the results of the experiments. 
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Wang et al. [58] provided the three-step strategy for 
identifying obscure DTIs using deep learning. The first step is 
an illustration of drug-target pairings, where the drug 
compounds are encoded as fingerprint characteristics. In 
contrast, the protein sequence features are produced by 
applying Legendre Moments (LM) to a position-specific 
scoring matrix (PSSM), including evolutionary protein 
information. The second step involves compression and fusion 
of features. The sparse principal component analysis (SPCA) 
was utilized to reduce the dimension and redundancy of the 
features. 

Eventually, the prediction task that used the deep long 
short-term memory (DeepLSTM) model was exploited. The 
experimental results proved that the suggested technique 
outperforms other DTI prediction methods. 

DTI prediction model with 2D paired distance maps of 
proteins and molecular graphs as inputs for targets and 
medicines was presented [59]. To retrieve the interactive 
effects of targets and drugs, the mutual interaction neural 
network (MINN) by integrating two interacting transformers 
(Interformer, for short) with an enhanced communicative 
message passing neural network (CMPNN) (titled Inter-
CMPNN) was proposed. 

In conclusion, the majority of computational algorithms 
suggested forecasting DT interactions concentrated on binary 
classification, wheresoever the primary objective is to assess 
whether or not a drug-target pair interacts. Yet, the interactions 
of protein-ligand suppose a continuum of binding affinity 
values, often known as binding strength. Increased availability 
of affinity information in drug-target KBs (knowledge bases) 
enables the application of sophisticated learning approaches 
like deep learning architectures to predict binding affinities. 
The main contribution of this research is to train and evaluate 
twenty-one different deep network architectures of compound 
encoders and protein encoders for drug repositioning. 

IV. RESEARCH METHODOLOGY 

A. Proposed Approach 

Fig. 3 shows the proposed approach conceptual model, 
which exploits a benchmark dataset called DAVIS [21] and a 
reference Coronavirus antiviral drug list [22], and then outputs 
a ranked list of candidate drugs for Coronavirus for each 
trained deep learning model. According to various compound-
decoders/protein-decoders, twenty-one DL models have been 
trained. 

 

Fig. 3. The proposed approach conceptual model. 

This research work has two main objectives. Firstly, 
training and evaluating models of different deep learning 
compound-encoders and protein-encoders using the benchmark 
DAVIS Dataset. Secondly, predicting antiviral drugs for 
Covid-19 using the trained models. To achieve these 
objectives, Fig. 4 shows the system architecture, which 
includes two phases: the training phase and the prediction 
phase. In the training phase, both drug compounds and disease 
target proteins of the DAVIS dataset are encoded using 
different neural network architectures and then their 
embeddings are decoded to generate the trained model.  For 
example, as shown in Fig. 4, the drug compound is encoded 
using the Transformer architecture, and the disease target 
protein is encoded using the CNN architecture. The procedure 
of converting ligand or protein representations into numerical 
vectors utilized to train or assess a model of machine learning 
is known as encoding. Table I and Table II show the 
compound-encoders and protein-encoders exploited in this 
research, respectively. The cross-validation technique was 
applied on all DAVIS dataset instances. 

 
Fig. 4. The system architecture. 

TABLE I.  THE COMPOUND-ENCODERS AND THEIR DESCRIPTIONS 

Compound Encoder Description 

Morgan Extended-Connectivity Fingerprints 

CNN Convolutional Neural Network on SMILES 

CNN_RNN A GRU/LSTM on top of a CNN on SMILES 

MPNN Message-passing neural network 

Transformer Transformer Encoder on ESPF 
 

TABLE II.  THE PROTEIN-ENCODERS AND THEIR DESCRIPTIONS 

Protein Encoder Description 

Morgan Transformer Encoder on ESPF 

CNN Amino acid composition up to 3-mers 

CNN_RNN Convolutional Neural Network on target seq 

MPNN A GRU/LSTM on top of a CNN on target seq 

Transformer Conjoint triad features 

 

In the prediction phase, the proposed solution exploits the 
trained model to predict a ranked list of drugs candidate for 
Coronavirus. The predicted ranked list of drugs is evaluated 
versus a reference list of antiviral drugs published recently for 
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Coronavirus. Fig. 5 shows how different trained models are 
generated and how different deep learning architectures are 
exploited. For example, the trained model 1 was generated by 
encoding drug compounds and disease target proteins using 
DNN and CNN, respectively. In the same way, the trained 
model 2 was generated by encoding drug compounds and 
disease target proteins using DNN and Transformer, 
respectively. In this research, twenty-one combinations of 
neural network architectures were experimented. 

 
Fig. 5. Predicting twenty-one different drug-ranked lists for coronavirus. 

B. The Benchmark Dataset 

The selectivity assays of the set of kinase proteins and the 
pertinent inhibitors with their definite dissociation constant 
(Kd) values are included in the DAVIS dataset [21]. The 
DAVIS dataset compound SMILES strings were retrieved 
from the Pubchem compound database using their Pubchem 
CIDs [60]. The DAVIS dataset's protein sequences were 
retrieved from the UniProt protein repository using gene names 
and RefSeq accession codes [61]. Table III shows the number 
of Drug-Target Interaction Instances. 

TABLE III.  DAVIS DATASET SUMMARY 

Proteins Compounds Interactions 

424 68 30056 

C. The Reference Coronavirus Antiviral Drug List 

Recently, [22] used virtual screening and molecular 
docking methods to locate prospective inhibitors from existing 
drugs that can respond to COVID-19. Based on their binding 
energy (kcal/mol), the authors ranked 121 drugs as potent 
drugs against SARS-CoV-2 since they tightly bind to their 
main protease. Table IV presents a list of ranked Drugs based 
on their docking scores Binding energy (BE). 

V. RESULTS AND DISCUSSION 

A. Implementation Setup 

In this research, the DeepPurpose DTI prediction tool was 
exploited. This tool provides a set of eight ligand encoders that 
can be combined with other protein representations and 
architectures to generate new models [62]. The DeepPurpose 
tool contains seven distinct protein encoders, which can be 
divided into two distinct categories: expert-designed 

algorithms and text-processing based on neural networks. 
Among algorithmic encoders, the ACC encoder produces a 
vector of 8420 elements describing the frequency of all amino 
acid k-mers for k values up to three [63]. In contrast, the 
conjoint triad encoder offers a 3-mer frequency count utilizing 
a restricted amino acid alphabet [64]. Neural network encoders, 
in contrast, apply directly on the sequence. 

TABLE IV.  A LIST OF RANKED DRUGS BASED ON THEIR DOCKING SCORES 

BINDING ENERGY (BE) [22] 

Drug BE Drug BE 

Beclabuvir -10.4 Pibrentasvir -6.9 

Nilotinib -9.9 Valaciclovir -6.9 

Tirilazad -9.6 Valganciclovir -6.9 

Paritaprevir -9.2 Pirodavir -6.8 

Raltegravir -9.1 Vidarabine -6.8 

Venetoclax -9 Zanamivir -6.8 

Bictegravir -8.9 Daclatasvir -6.7 

Danoprevir -8.9 Alovudine -6.6 

Pimodivir -8.8 Entecavir -6.6 

Voxilaprevir -8.7 Famciclovir -6.6 

Faldaprevir -8.6 Idoxuridine -6.6 

Setrobuvir -8.6 Laninamivir -6.6 

Letermovir -8.5 Tenofovir -6.6 

Bisantrene -8.4 Cidofovir -6.5 

Rilpivirine -8.4 Dasabuvir -6.5 

Indinavir -8.2 Didanosine -6.5 

Ombitasvir -8.2 Efavirenz -6.5 

Saquinavir -8.2 Fiacitabine -6.5 

Simeprevir -8.2 Lobucavir -6.5 

Digitoxin -8.1 Penciclovir -6.5 

Dolutegravir -8.1 Telbivudine -6.5 

Remdesivir -8.1 Tenofovir disoproxil -6.5 

Lopinavir -8 Umifenovir -6.5 

Maraviroc -8 Capravirine -6.4 

Calanolide A -7.9 Grazoprevir -6.4 

Darunavir -7.9 Interferon alfa-2b -6.4 

Elbasvir -7.9 Peramivir -6.4 

Etravirine -7.9 Sorivudine -6.4 

Velpatasvir -7.9 Zidovudine -6.4 

Vesatolimod -7.9 Boceprevir -6.3 

Digoxin -7.8 Emivirine -6.3 

Tipranavir -7.8 Gancicolovir -6.3 

Amprenavir -7.7 Ribavirin -6.3 

Maribavir -7.7 Stavudine -6.3 
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Nelfinavir -7.7 Cenicriviroc -6.2 

Ruzasvir -7.7 Dexelvucitabine -6.2 

Sofosbuvir -7.7 MK-0608 -6.2 

Doravirine -7.6 Oseltamivir -6.2 

Mericitabine -7.6 R1479 -6.2 

Ritonavir -7.6 Taribavirin -6.1 

Atazanavir -7.5 Chloroquine -6 

Dapivirine -7.5 Hydroxychloroquine -6 

Delavirdine -7.5 Ledipasvir -6 

Fosamprenavir -7.5 Elvucitabine -5.9 

Asunaprevir -7.4 Emtricitabine -5.9 

Baloxavir marboxil -7.4 Tromantadine -5.9 

Elvitegravir -7.3 Acyclovir -5.8 

Sovaldi -7.3 PSI-6130 -5.8 

Tenofovir alafenamide -7.3 Triazavirin -5.8 

Vedroprevir -7.3 Aciclovir -5.7 

Galidesivir -7.2 Fingolimod -5.7 

Methylprednisolone -7.2 Lamivudine -5.7 

Clevudine -7.1 Zalcitabine -5.7 

Telaprevir -7.1 Ingavirin -5.6 

Thalidomide -7.1 Rimantadine -4.6 

Abacavir -7 Favipiravir -4.4 

Adefovir dipivoxil -7 Amantadine -4.3 

Cobicistat -7 Docosanol -4.3 

Nevirapine -7 Foscarnet -4.3 

Tenofovie alafenamide -7   

Every amino acid is transformed into a numerical value as a 
fixed-length one-dimension array using the DeepPurpose CNN 
encoder. Subsequently, it employs a convolutional neural 
network [65] to learn spatial information from the sequence 
(local amino acid neighborhoods) that may be pertinent to the 
DTI binding model. 

Fig. 6 shows different compound-encoders and different 
protein-encoders developed by the DeepPurpose DTI 
prediction tool [60]. 

 
Fig. 6. Compound-encoders and protein-encoders developed by the 

DeepPurpose tool [62]. 

The DeepPurpose DTI prediction tool enables developers 
to set some pamperers for the model training phase. Table V 
shows some parameter settings for NN architectures, which 
had been used during the model training phase. 

TABLE V.  PARAMETER SETTINGS FOR NN-BASED TRAINED MODEL 

Parameter Range 

Filter length 
(compounds) 

[32,64,96] 

Filter length (proteins) [32,64,96] 

Hidden neurons 1024; 1024; 512 

Batch size 256 

Epoch 100 

Learning rate 0.001 

CNN Drug Kernels [4,8,12] 

CNN Target Kernels [4,8,12] 
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B. Evaluation Metrics 

1) Mean squared error (MSE): During training, a learning 

model attempts to reduce the gap between the actual (real) 

value and the prediction. The mean squared error (MSE) is 

picked as the loss function because a regression problem is 

used. Equation 1 shows how the MSE is calculated. 
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Where P is the vector of predictions, Y is the vector of 
actual outputs, and n represents the total number of samples. 

2) Concordance index (CI): The Concordance Index (CI) 

was used to evaluate the effectiveness of a model that 

outputs continuous values [17]. CI determines whether the 

anticipated binding affinity values of two random drug–

target pairs were predicted in the same sequence as their true 

values were. Equation 2 shows how the CI is calculated. 
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Where    represents the prediction value for the greater 

affinity   ,    represents the prediction value for the lesser 

affinity   , Z is a normalization constant, and h(x) is the step 

function. 

C. Phase 1: Evaluating the Trained Models using the Davis 

Dataset 

Based on exploiting different deep learning compound-
encoders/protein-encoders, twenty-one trained models were 
evaluated using the benchmark DAVIS Dataset. The cross-
validation technique was applied. Both Fig. 7 and Fig. 8 show 
the evaluation results for the different twenty-one trained 
models in terms of MSE (Mean Square Error) and CI 
(Concordance Index) evaluation metrics. It is noted that the 
most superior five DL compound-encoder/protein-encoder 
architectures are Morgan/Transformer, Morgan/AAC, 
CNN/AAC, Morgan/CNN, and CNN/CNN. 

 
Fig. 7. The MSE evaluation results for the different twenty-one trained 

models. 

 

Fig. 8. The CI evaluation results for the different 21 trained models. 

D. Phase 2: Predicting Antiviral Drugs for Covid-19 using 

the Trained Models 

To evaluate the predicting accuracy for the trained models 
versus the 121-reference antiviral ranked drugs, the 
Concordance Index was used to compare each predicted ranked 
list versus the reference antiviral ranked drugs. Fig. 9 shows 
the Concordance Index calculating algorithm for a Predicted 
Drug List versus the Covid-19 Drug Reference List. Fig. 10 
shows the Concordance Index for the twenty-one Predicted 
Drug Lists versus the Covid-19 Drug Reference List. As shown 
in Fig. 10, the most superior five DL compound-
encoder/protein-encoder architectures are 
Morgan/Conjoint_triad, Morgan/AAC, CNN/AAC, 
CNN/CNN, and CNN/CNN_RNN. 

The overall experimental evaluation for the two 
experimental phases can be summarized in Fig. 11, which 
shows the evaluation results using the CI metric for the 
different twenty-one trained models in the model testing phase 
using the DAVIS dataset and in the predicting phase versus the 
coronavirus drug reference list. As shown in Fig. 12, it is worth 
noting that the most accurate three deep learning compound-
encoder/protein-encoder architectures are Morgan/AAC, 
CNN/AAC, and CNN/CNN with best values for the mean 
square error, the first phase concordance index, and the second 
phase concordance index. 

 

Fig. 9. The concordance index calculating algorithm for a predicted drug list 

versus the Covid-19 drug reference list. 
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Fig. 10. The concordance index for the twenty-one predicted drug lists versus 

the Covid-19 drug reference list. 

 

Fig. 11. Evaluating twenty-one different trained models using two metrics: 

Covid-19 repositioning CI and model testing CI. 

 

Fig. 12. The most accurate three deep learning compound-encoder / protein-

encoder architectures: Morgan / AAC, CNN / AAC, and CNN / CNN. 

VI. CONCLUSION 

This research proposed a deep learning-based drug 
repositioning method to train and evaluate twenty-one models 
based on deep learning compound-encoders and protein- 
encoders. The trained models have been evaluated using two 
experiments. Firstly, testing the trained models by applying the 
cross-validation technique on the benchmark DAVIS Dataset. 
Secondly, comparing the predicted antiviral drug lists by the 
trained models to a recently published antiviral drug list for 
Covid-19. The experimental evaluation showed the most 
accurate three deep learning compound-encoder/protein-

encoder architectures are Morgan/AAC, CNN/AAC, and 
CNN/CNN with best values for the mean square error, the first 
phase concordance index, and the second phase concordance 
index. As a future work, the same 21 different deep network 
architectures of protein and compound encoders are suggested 
to be trained and to be evaluated using other datasets and other 
viral diseases. 
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