
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

661 | P a g e

www.ijacsa.thesai.org

Auto JSON: An Automatic Transformation Model for

Converting Relational Database to Non-relational

Documents

K. Revathi
1
, T. Tamilselvi

2
, Batini Dhanwanth

3
, M. Dhivya

4

Department of Computer Science and Engineering, Panimalar Engineering College, Chennai, India
1, 2, 4

Department of Computer Science and Engineering, Panimalar Institute of Technology, Chennai, India
3

Abstract—In recent days, the demand for dealing large set of

distributed data obsoletes the relational database and its

structured query language (SQL) solutions in practice and paves

the way for novel solutions in the name of non-relational

database as not-only SQL (NoSQL). The NoSQL offers dynamic,

flexible, scalable, highly available, greater performance and near

real-time access to the distributed nature of voluminous data

used for current industrial applications. Apart from these giant

features of NoSQL, the SQL is still found to be in operation

because of its popularity and standard. This paper projected an

algorithm to convert the relational documents of MySQL into

any document oriented NoSQL databases automatically without

destructing the existing relational database setup and installing

the NoSQL from scratch in the core machines. Java Script

Object Notation (JSON) is a human readable data interchange

format, being used in web development. The characteristics of

JSON widened its use cases from web development to database

storage. The Mongo DB, one of the most popular document

oriented NoSQL adapts JSON format for its storage. The

proposed algorithm is built based on its schema definition and

the performance is captured through evaluating it against a

sample database from hospital management system. The findings

are discussed with great interest of addressing the challenges and

revealing the scope for improvement.

Keywords—Distributed data; document oriented NOSQL;

hospital management system; Mongo DB; my SQL

I. INTRODUCTION

Databases Management System was created as a result of
an increase in demand from industries for preserving their
customer, stock, and account-related data and the process of
obtaining relevant information from the data (DBMS).
Systematic maintenance, as well as the effective storage and
retrieval of data, are made possible by DBMS. Data are
initially maintained using file systems, which store information
directly in files without any connection to one another. Several
models were presented as a result of the constraints in data
access patterns that were found. International Business
Machines (IBM) created a hierarchical model in 1960 that
enables data organization in a tree structure by altering the
parent-child relationship.

The network model, put forth by Charles Bachman in 1969,
allows for the arrangement of data in a graph-like structure,
with nodes serving as records and arcs as the connections
between them. E. F. Codd created the relational model in 1970,

which organizes data as tables and is currently regarded as a
special model employed in important industries due of its
features [1].

When dealing with situations in the real world, the data is
contained in a single container referred to as an object. This
begins the object-oriented database that has been in use since
1985 [2]. In order to create a new database known as an object
relational database, the capabilities of relational databases and
object-oriented databases were combined. By adding more
dimensions to the data by displaying it as a cube, online
analytical processing capability (OLAP) is offered in place of
transaction processing.

Big data has replaced the traditional data that used to occur
over a longer period of time in sectors that deal with data
created every day. Even today's data volume is measured in
petabytes or zettabytes, and 50% of the data are unstructured.
The performance of the relational database, which exclusively
processes structured data, is good for reasonable workloads but
degrades as it is scaled up. Big data and analytical processing
have made Relational Database Management Systems
(RDBMS), which use Structured Query Language (SQL) to
operate, ineffective [3]. Carlo Strozzi was the first to suggest
Not Just SQL (NoSQL). This RDBMS was file-based and
lacked a SQL interface. NoSQL, often known as non-relational
databases, was first introduced in 2009 by Eric Evans [4, 5]. It
is recognized as a promising database to handle massive data.

NoSQL is an alternative to RDBMS, facilitate mechanisms
to store and retrieve enormous data in a distributed platform.
The features on NoSQL over RDBMS are listed below.

 Horizontal Scalability – new nodes can be added to
dynamic accommodate the storage requirements /
requests

 Sharding – balances the workload distribution over the
clusters in the distributed environment

 High Availability – due to its distributed nature, there is
no single point of failure. Replication promises the high
availability

 Better Throughput – offer better throughput to even
high volume data than RDBMS

 Faster Performance – facilitate faster performance for
big data than RDBMS

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

662 | P a g e

www.ijacsa.thesai.org

NoSQL is a popular language due to its enormous storage
capacity as well as the following characteristics that set it apart
from SQL.

 ACID Free: The acronym ACID stands for atomicity,
consistency, isolation, and durability and supports the
SQL transaction notion [6, 7]. NoSQL, a distributed
database, provides improved data storage by relying on
consistency but does not guarantee ACID properties.

 BASE: BASE stands for fundamentally available, soft
state (data may vary over time), and finally consistency.
It assures a high degree of availability through
replication (no requirement to have identical copies in
all nodes for all the time). In order to prioritize
availability above consistency, eBay proposed this
database design behavior, and NoSQL adopts it [6-9].

 CAP: Eric Brewer proposed the CAP theorem at a
symposium on the fundamentals of distributed
computing in 2000. It states that in network shared data
systems, there is a trade-off between consistency,
availability, and partition tolerance. BASE, which is a
reverse notion of ACID and it is derived from the CAP
theorem, is not feasible to hold up in distributed
database, any two only achievable at time [6, 8] and
depicted in Fig. 1.

Fig. 1. Visual representation of CAP theorem.

The rest of the paper is organized as follows: In Section II
the significant past efforts made are analyzed and the basic
detail about migration is discussed. The Section III discusses
the migration algorithm in high interest. Section IV discloses
the results obtained out of the device and Section V is intended
to conclude the work.

II. LITERATURE REVIEW

A. Motivations for Migration Model

The latest and well-known initiatives to convert relational
databases to NoSQL databases in order to address the emerging
demand of modern applications have been thoroughly
examined and are given in this section.

For the effective conversion of relational data into non-
relational ones, the researchers offered a variety of
methodologies, including data model-based, cloud-based,
layer-based, web-based, and cross query engine based ones
[10]. According to a research article by Liana Stanescu et al.
[11], a base algorithmic view, the necessity of converting
MySQL, a relational database, to a NoSQL database, nurturing
the features of Mongo DB through addressing the fundamental
principles to be followed in the transformation process, was
elaborately captured.

Also, a framework was created using the NET platform,
and an algorithm was created. The effectiveness of the
algorithm was assessed based on the execution time of Create,
Read, Update, and Delete (CRUD) operations over the
databases provided with different workloads [12, 13]. The
tuples are projected as documents, the columns are shown as
fields in Mongo DB, and each MySQL database is represented
as a collection. Using either embedding or referencing
techniques, the key relationships in MySQL should be
translated into Mongo DB.

Mahamood [14] described a method and created an
interface using VB. Net that automatically converts Microsoft
SQL Server tables to Mongo DB collections, in a manner
comparable to the work mentioned with Liana Stanescu et al.
[13].

Researchers Gyorodi, Kumar, Krishnan and Nair also
conducted performance evaluations of MySQL and Mongo DB
[15-18]. The results of the experiment demonstrated Mongo
DB's superior efficiency. Additionally, the effectiveness is
confirmed using the Yahoo Cloud Server Benchmarking
(YCSB) tool by Kumar and Chakraborttii [19-20]. Saber et al.
[21] discussed the efficiency of Mongo DB for handling
Internet of Things (IoT) data in comparison to relational
databases.

Singh [22] created a data conversion method that converts
relational databases into Mongo DB collections and was
discovered to be a successful pattern for cloud storage. In
addition to the data transformation paradigm, Bajwa et al. [23]
suggested data cleaning methods. A query-based
transformation module to move from relational to non-
relational data was developed by Al-Mahruqi et al. [24] and is
designed to be used with apps.

B. Elemental Facts on Migration Model

The tables in MySQL databases are transformed into a
collection of documents like in Mongo DB throughout the
migration process, which is illustrated in Fig. 2 as a general
process flow.

The mentioned transformation by Liana Stanestcu et al.
[11-13] uses the metadata information of relational data bases
and influences the Entity Relationship (ER) model, maps the
key relations (1:1, 1: N, and M: N) found in RDBMS that are
framed using primary and foreign keys against the relationship
models in Mongo DB as embedding and referenced or linking.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

663 | P a g e

www.ijacsa.thesai.org

Fig. 2. The generic flow of migration process.

The following discusses in depth the various Mongo DB
schema designs that might be used to reproduce the established
RDBMS relationships and their recommended method of
implementation [25, 26] by Gopinath et al. 2017, Yassine &
Awad 2018.

In Mongo DB, there are only two modeling options for
one-to-one (1:1) relationships: embedding or linking. When a
document is embedded using arrays inside another document,
all associated documents are shown as a single document. The
embedding strategy increases data size, affects write
performance, but makes retrieval simpler because it is
combined with a single read. Although though documents are
maintained separately, linking involves referencing one
document's id through a field in another document using an

automatically created key since relational databases store the
data using foreign keys. In contrast to embedding, it shrinks the
data yet affects read performance. Embedding is the best
option because it offers effective retrieval.

There are three different techniques to model the one-to-
many (1: N) relationship: embedding, linking, and bucketing.
The first two still function. While bucketing is a third strategy
that conforms to efficient retrieval while combining the
advantages of embedding and connecting through slicing data
into buckets with set data limits. Time series data applications
benefit from bucketing. The methods for modeling the 1: N
connection that was covered is depicted as a code snippet in
Fig. 3.

Fig. 3. Strategies to map 1: N relationship in Mongo DB.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

664 | P a g e

www.ijacsa.thesai.org

The Fig. 4 illustrates two modeling approaches that are
commonly used to represent many-to-many (M: N)
relationships: two-way embedding and one-way embedding. In
two-way embedding, one can insert one document into another

by mirroring the foreign keys of the two documents in each
field. When the size of the one-way embedding is extremely
imbalanced, it is found to be useful as an optimal solution
because it only enables embedding in one direction.

Fig. 4. Methodologies to map M: N relationship in Mongo DB.

C. Identified Research Gaps

The major efforts are for converting MySQL to Mongo DB
was realized in [10-14, 22-26]. In most of the attempts,
transformation mechanism was rooted from its schema design.
The data type and key relationship exists between the tables
plays an significant role in deciding the transformation
strategy. Moreover the conversion is automated through an
interface developed. In addition to key-relationship, table
volume can be utilized in order to take precise decision about
opting for embedding or linking. No existing work focused on
time series data. By accounting current data type utilized in
modern applications, the proposed work provided an
automated database conversion solution for time series data.

III. AUTO JSON: A MIGRATION MODEL

The proposed work employs MySQL as a source database
and selects Mongo DB as the destination NOSQL database
based on inspiration drawn from related contributions listed in

the preceding section. The proposed algorithm that automates
the transformation of tables in source to collections in desired
database is discussed in this section elaborating the data with
the execution environment used for it.

A. Hospital Management System: A Source Database

A software program known as a hospital management
system controls medical setup operations without the need of
paper. The HMS incorporates all pertinent data, including
those on doctors, patients, and related services. A hypothetical
hospital administration scenario is used as the input database,
and Fig. 5 depicts the appropriate relationships between the
tables in the database.

Five tables make up the database, and connectors are used
to create the relationship between the tables. Each class's
primary key attribute is represented by the first entry in that
class. It is beyond of scope to go into depth about class
functions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

665 | P a g e

www.ijacsa.thesai.org

Fig. 5. A class diagram of typical HMS.

B. Migration Algorithm

Tables can be converted into collections using the
suggested method's options for bucketing, embedding, linking,
one-way embedding, and two-way embedding.

TABLE I. ALGORITHMIC STEPS FOR AUTO MIGRATION ALGORITHM

Algorithm 1: Auto JSON (SQL DB, Relationship _Mode,

Table_Volume, Data _Type)
Input: Relational Table (MySQL)

Output: JSON Documents (Mongo DB)

Extract meta data of SQL DB

Observe the data pattern and relationship exists among the tables

 | if(Relationship_Mode == 1:1 && Table_Volume==High) then

 | Perform Linking

 | else if (Relationship_Mode == 1: N && Data_type==

 | Time_series) then

 | Perform Bucketing

 | else if (Relationship_Mode == 1: N && Data_type!=

 | Time_series) then

 | Perform Linking

 | else if (Relationship_Mode == M: N &&

 | Table_Volume==High) then

 | Perform Two Way Embedding

 | else if (Relationship_Mode == M: N &&

 | Table_Volume==Low) then

 | Perform One Way Embedding

 | else

 | Perform Embedding

Return the Collections in Mongo DB

The decision is significantly impacted by a number of
factors, including table size, data type, and relationship
method. These parameters are referenced about using meta-
data that is given in the source database's information schema.

Previous attempts focused on the sort of relation that already
existed with keys between tables and left out any consideration
for the data's nature or table volume. The proposed research
optimizes the selection of transformation by taking these
aspects into account, as shown in Table I.

The Extract, Transform, and Load (ETL) principle
underlies the migration algorithm's operation. In order to
convert tables into JSON collections, the meta-data of the table
schema must first be extracted. Careful consideration of the
schema information, such as field type, table volume, and
relationship type, enables selection of options like linking,
embedding, bucketing, and one-way or two-way embedding.
Lastly, the collections are uploaded to a cloud storage system
for further data analytics. Without installing the underlying
database packages, the migration method automates the
conversion of relational model tables to collections of non-
relational model tables.

IV. RESULTS AND DISCUSSIONS

This section provides the details on the experimentation
environment, evaluation methodologies and metrics to
demonstrate the performance of the proposed migration
strategy.

A. Experimetation Setup

The Auto JSON algorithm is coded as python program and
executed on the Mongo DB ATLAS platform. Mongo DB
ATLAS is a cloud database as a service (DBaaS) contributed
by the Mongo DB. It has various provisions listed as follows.

 Provides all the features of Mongo DB

 Simplifies the automation process without overlooking
the infrastructure, configuration of database, backups
and so on.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

666 | P a g e

www.ijacsa.thesai.org

 Ensures security and privacy.

 Facilitates choice of deploying the generated database
in one of the platforms like Amazon Web Services
(AWS), Google Cloud Platform (GCP) or Microsoft
Azure.

B. Dataset and Queries for Evaluation

Evaluation is done using data that is in line with the
hospital management system described in the preceding
section. Compared to creation and read/retrieve, the scope for
updating and deleting a record is minimal. The common users
are restricted with the read-only and other security privileges.
Hence, the following fundamental actions were picked to
demonstrate the efficacy of the migration model that converts
SQLDB to Mongo DB:

 Create with Insert

 Select

Among various DB functions, create function only
allocates the space for data whereas the insertion command
only populates the data into the space preserved by create. The
delete command removes the entry from the space. Likewise
the update command attempts to accommodate few changes on
the data. The transformation task has its major focus on
creating and presenting the same as JSON collections of
Mongo DB. Here create function means a allocating a space
provided with the data by means of insertion. Thus the
comparative analysis of migration algorithm from MySQL and
Mongo DB is captured by means of projecting the efficiency
with respect to the basic operations named Create and Select.

The steps taken to record the performance of the suggested
migration model is listed as follows:

 Register for a Mongo DB ATLAS user account.

 Put in the required libraries to assist migration.

 pip install jsonmerge

 pip install pymongo

 pip install sqlalchemy

 Use Python to create the SQLDB code .

 Transform to Mongo DB Collection by running the
migration algorithm in python as illustrated in Fig. 6.

Fig. 6. Screenshot of completion of migration.

C. Performance Evaluation

The primary objective of the proposed work is to improve
the efficiency in terms of execution time and memory
utilization. In general execution or response time with respect
to the database operations is calculated by accounting the time
of observing the result set from the query initiation time. As
aligned with this, the formula to evaluate response time is
given in Eq. (1).

RT = QC - QI (1)

Where RT is the response time, QC is for query completion
time and QI is known as query initiation time. In this case, the
query is simply initiated by selecting a transformation
operation, and it is completed by collecting the appropriate
result set as collections. Since the source database contains
non-time series data, bucketing is no longer within the purview
of this project. The Fig. 7 displays the execution time plot of
transformation operations.

Fig. 7. Execution plot of transformation operations.

The next important metrics is demonstrating the effective
memory utilization of the proposed algorithm. This is derived
by invoking a comparison over consumption of memory
against source and destination database. The effective memory
utilization of proposed algorithm is formulated in Eq. (2) and
pictorial representation is illustrated in Fig. 8.

MEU = (MC / MR) * 100 (2)

Where MEU stands for effective memory utilization, MC
denotes memory consumptions observed in Mongo DB
collections and MR gives memory consumptions observed in
MySQL relations.

Fig. 8. Comparative analysis of memory usage.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

667 | P a g e

www.ijacsa.thesai.org

Fig. 9. Evaluated result of create operation.

Fig. 10. Assessment map of select operation.

With respect to memory usage, Mongo DB preserves
approximately 30% of memory as average when compared to
MySQL. The efficiency mappings in association with basic
queries into consideration are portrayed as Fig. 9 and 10,
respectively.

V. CONCLUSION

It comes as no surprise that cloud and data storage provides
enormous data storage that is compatible with ZB as well as
mobile phones that provide storage in addition to 256 gigabytes
(GB). A reliable, available, intact, quick, and secure database is
necessary to extract intelligent information from this vast
amount of data. The ideal substitute for handling massive data
in multiple phases, such as transmission, storage, and analysis,
is Mongo DB. Based on its schema information, an effort is
performed here to convert the columnar SQL data to Mongo
DB collections. The earlier methods mainly focused on
relationship mode obtained by key and ignored the data volume
and nature. Table type and size play important roles in
selecting an appropriate transformation choice in this method.

The developed migration mechanism is tested using Python
programming in the Mongo DB ATLAS environment. It
captures the responsiveness in terms of transformation and
query execution efficiency. A faster reaction is made possible
by linking, which is 5.9% faster than two-way embedding,
7.6% faster than one-way embedding, and 8.4% faster than
embedding. As comparison to the average relational table, the
create operation performs 10% faster, and the select operation

executes 13% faster. With relational databases taken into
account, the memory utilization ratio of the migration
procedure is estimated to be 30% on average.

In future the effectiveness of proposed migration model can
be evaluated with complex queries including Update and
Delete involving time-series data.

AUTHORS’ CONTRIBUTION

Author 1 implemented the concept and drafted the article
with assistance of authors 3 and 4, respectively. The author 2
reviewed the article.

CONFLICT OF INTEREST

The authors declare that have no competing interest.

REFERENCES

[1] S. Praveen, U. Chandra and A. A. Wani, “A Literature Review on
Evolving Database”, International Journal of Computer Applications,
vol. 162, no. 9, pp. 35-41, 2017.

[2] H. Alzahrani,, “Evolution of Object-Oriented Database Systems”,
Global Journal of Computer Science and Technology, vol. 16, no. 3, pp.
33-36, 2016.

[3] M. A. Ali, M. R. Ahmed, M. A. Khatun and K. Sundaraj, “A literature
review on NoSQL database for big data processing”, International
Journal of Engineering & Technology, vol. 7, no. 2, pp. 902-906, 2018.

[4] J. R. Lourenco, B. Cabral, P. Carrerio, M. Vieira and J. Bernardino,
“Choosing the right NoSQL database for the job: a quality attribute
evaluation”, Journal of Big Data, vol. 2, no. 18, pp. 1-26, 2015.

[5] Priyanka and Amit Pal, “A Review of NoSQL Databases, Types and
Comparison with Relational Database”, International Journal of
Engineering Science and Computing, vol. 6, no. 5, pp. 4963-4966, 2016.

[6] V. Sharma and M. Dave, “SQL and NoSQL Databases”, International
Journal of Advanced Research in Computer Science and Software
Engineering, vol. 2, no. 8, pp. 20-27, 2012.

[7] R. T. Mason, “NoSQL Databases and Data Modeling Techniques for a
Document-oriented NoSQL Database”, In Proc. of the Informing
Science & IT Education Conference, pp. 259-268, 2015.

[8] D. G. Chandra, “BASE analysis of NoSQL database”, Future Generation
Computer Systems, vol. 52, pp. 13-21, 2015.

[9] K. Sahatqija, J. Ajdari, X. Zenuni, B. Raufi and F. Ismaili, “Comparison
between relational and NOSQL databases”, In Proc. of the International
Convention MIPRO, pp. 216-221, 2018.

[10] S. Ghotiya, J. Mandal and S. Kandasamy, “Migration from relational to
NoSQL database”, In Proc. of IOP Conf. Series: Materials Science and
Engineering, vol. 263, pp. 1-8, 2017.

[11] L. Stanescu, M. Brezovan and D. D. Burdescu, “An Algorithm for
Mapping the Relational Databases To MongoDB – A Case Study”,
International Journal of Computer Science and Applications, vol. 14, no.
1, pp. 65-79, 2017.

[12] L. Stanescu, M. Brezovan and D. D. Burdescu, “Automatic Mapping of
MySQL Databases to NoSQL MongoDB”, In Proc. of the Federated
Conference on Computer Science and Information Systems, vol. 8, pp.
837–840, 2016.

[13] L. Stanescu, M. Brezovan, C. A. Spahiu and D. D. Burdescu, “'A
Framework for Mapping the MySQL Databases To MongoDB –
Algorithm, Implementation and Experiments”, International Journal of
Computer Science and Applications, vol. 15, no. 1, pp. 65-82, 2018.

[14] A. A. Mahmood, “Automated Algorithm for Data Migration from
Relational to NoSQL Databases”, Al-Nahrain Journal for Engineering
Sciences, vol. 21, no. 1, pp. 60-65, 2018.

[15] C. Gyorodi, R. Gyorodi, G. Pecherle and A. Olah, “A Comparative
Study: MongoDB vs. MySQL”, In Proc. of 13th International
Conference on Engineering of Modern Electric Systems, pp. 1-6, 2015.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

668 | P a g e

www.ijacsa.thesai.org

[16] L. Kumar, S. Rajawat and K. Joshi, “Comparative analysis of NoSQL
(MongoDB) with MySQL Database”, International Journal of Modern
Trends in Engineering and Research, vol. 2, no. 5, pp. 120-127, 2015.

[17] A. Krishan and R. Wagh, “A Study of Performance NoSQL Databases”,
International Journal of Innovative Research in Advanced Engineering,
vol. 4, no. 4, pp. 32-36, 2017.

[18] S. M. Nair, R. Roy and S. M. Varghese, “Performance Evaluation of
MongoDB and CouchDB Databases”, International Journal of Scientific
Research in Science and Technology, vol. 3, no. 7, pp. 21-24, 2017.

[19] R. S. Kumar and R. R. Mary, “Comparative Performance Analysis of
various NoSQL Databases: MongoDB, Cassandra and HBase on Yahoo
Cloud Server”, Imperial Journal of Interdisciplinary Research, vol. 3, no.
4, pp. 265-269, 2017.

[20] C. Chakraborttii, “Performance Evaluation of NoSQL Systems Using
Yahoo Cloud Serving Benchmarking Tool”, In Proc. of UCSC Research
Symposium, pp. 1-9, 2015.

[21] W. Saber, M. M. Eyada, M. M., El Genidy and F. Amer, “Performance
Evaluation of IoT Data Management Using MongoDB Versus MySQL
Databases in Different Cloud Environment”, IEEE Access, vol. 8, pp.
110656-110668, 2020.

[22] A. Singh, “Data Migration from Relational Database to MongoDB”,
Global Journal of Computer Science and Technology, vol. 19, no. 2, pp.
17-21, 2019.

[23] I. S. Bajwa, S. Ramzan, B. Ramzan and W. Anwar, “Intelligent Data
Engineering for Migration to NoSQL Based Secure Environments”,
IEEE Access, vol. 7, pp. 69042-69057, 2019.

[24] R. S. Al-Mahruqi, M. H. Alalf and T. R. Dean, “A Semi-automated
Framework for Migrating Web applications from SQL to Document
Oriented NoSQL Database”, In Proc. of the 29th Annual International
Conference on Computer Science and Software Engineering, pp. 1-10,
2019.

[25] M. P. Gopinath, G. S. Tamilzharasi, S. L. Aarthy and R.
Mohanasundram, “An Analysis and Performance Evaluation of NOSQL
Databases for Efficient Data Management in E-Health Clouds”,
International Journal of Pure and Applied Mathematics, vol. 117, no. 21,
pp. 177-197, 2017.

[26] F. Yassine and M. A. Awad, “Migrating from SQL to NOSQL Database:
Practices and Analysis”, In Proc. of 13th International Conference on
Innovations in Information Technology, pp. 58-62, 2018.

