
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

62 | P a g e

www.ijacsa.thesai.org

A New Task Scheduling Framework for Internet of

Things based on Agile VNFs On-demand Service

Model and Deep Reinforcement Learning Method

Li YANG

Department of Electronic Information Engineering, Leshan Vocational and Technical College,

Leshan 614099, Sichuan, China

Abstract—Recent innovations in the Internet of Things (IoT)

have given rise to IoT applications that require quick response

times and low latency. Fog computing has proven to be an

effective platform for handling IoT applications. It is a significant

challenge to deploy fog computing resources effectively because of

the heterogeneity of IoT tasks and their delay sensitivity. To take

advantage of idle resources in IoT devices, this paper presents an

edge computing concept that offloads edge tasks to nearby IoT

devices. The IoT-assisted edge computing should meet two

conditions, edge services should exploit the computing resources

of IoT devices effectively and edge tasks offloaded to IoT devices

do not interfere with local IoT tasks. Two main phases are

included in the proposed method: virtualization of edge nodes,

and task scheduling based on deep reinforcement learning. The

first phase offers a layered edge framework. In the second phase,

we applied deep reinforcement learning (DRL) to schedule tasks

taking into account the diversity of tasks and the heterogeneity of

available resources. According to simulation results, our proposed

task scheduling method achieves higher levels of task satisfaction

and success than existing methods.

Keywords—Internet of things; task scheduling; edge

computing; resource allocation

I. INTRODUCTION

The recent rapid development of artificial intelligence [1,
2], machine learning [3], optical networks [4, 5], smart grids
[6], cloud computing [7, 8], 5G connectivity [9], Blockchain,
and Internet of Things (IoT) [10, 11] is leading to an
exponential growth in data usage across a wide range of
engineering and commerce disciplines. Over the last decade,
the IoT has been recognized for its remarkable potential in
computer science. It brings out an environment in which many
intelligent objects with limited resources can interact with each
other through different technologies [12]. The IoT tries to link
the physical and virtual worlds by equipping physical devices
with processing, networking, detection, and identification
functions. The IoT objects are employed in different
applications, such as vehicle networks, energy management,
traffic control, medical treatment, and healthcare, aiming to
gather information about the physical world [13, 14]. In this
regard, to obtain valuable information and fulfil the assigned
tasks, a massive amount of data is produced that brings
challenging problems for efficient information processing,
especially for the specific scenarios requiring real-time data
handling. Considering edge computing capability in real-time

processing, the computing IoT tasks can be offloaded to edge
devices for implementation [15, 16].

Moreover, since the IoT services and applications are
increasing daily, a practical approach to serving the growing
needs in different application domains becomes vital [17, 18].
To address the mentioned problems, achieve high resource
utilization, reduce communication costs, and improve the
lifetime of IoT networks, task scheduling methods can have
significant impacts [19, 20]. These methods aim to schedule
the existing tasks in a suitable sequence to accomplish tasks
under problem-specific constraints, such as communication
costs among IoT objects, resource utilization, and the
operational lifetime of sensor nodes [21].

Nowadays, Network Function Virtualization (NFV) is
known as a superior technology in telecommunication
networks. It refers to centralizing and virtualizing network
functions that can be run in data centres on standard and
commercial off-the-shelf (COTS) hardware instead of
distributed and proprietary hardware [22]. Using NFV, network
device purchases and related maintenance costs can be reduced
effectively. As a logical consequence of NFV, Virtual Network
Functions (VNFs) take advantage of middleware to virtualize
network functions. The deployment of VNFs on commodity
hardware reduces the need for dedicated hardware devices to
perform individual network functions. Our main objective is to
improve edge computing operational efficiency by
implementing the agile VNF on-demand model and the deep
reinforcement learning-based task scheduling method. The
proposed method includes two main phases, virtualization of
edge nodes and task scheduling based on the deep
reinforcement learning method. In the first step, a layered edge
framework is presented. In the second step, we employed deep
reinforcement learning (DRL) to solve task scheduling
problems considering the tasks' diversity and the heterogeneity
of available resources. This article makes the following major
contribution.

 We analyze the optimization of time scheduling and the
assignment of virtual machines in edge computing
using model-free DRL-based task scheduling. VM
availability, task characteristics, and queue dynamics
are considered in the formulation of the problem as an
MDP problem.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

63 | P a g e

www.ijacsa.thesai.org

 In this case, the action is represented as a pair of VMs
and tasks, whose dimension may be extremely large. In
the MDP formulation, a new mechanism is designed to
decouple the scheduling time step from the real-time
step. With this mechanism, the action space remains
linear with the product of the number of VMs and the
queue size, and multiple tasks can be scheduled
simultaneously.

The rest of the paper in organized as follows. Related
works are reviewed in Section II. The proposed task scheduling
method is described in Section III. Section IV reports the
simulation results. Finally, the conclusion is presented in
Section V.

II. RELATED WORK

Al-Habob, Dobre [23] considers offloading multiple tasks
concurrently to several mobile edge computing servers.
Offloading latency and failure probability are minimized by
scheduling interdependent subtasks for servers. Models based
on conflict graphs and genetic algorithms are used to solve
scheduling problems. Experimental findings demonstrate that
these algorithms approach optimal solutions found by
exhaustive searches. In addition, even though parallel
offloading employs orthogonal channels, sequential offloading
is more likely to fail than parallel offloading. In contrast,
parallel offloading provides lower latency. Latency gaps
between parallel and sequential schemes decrease as the
dependency between sub-tasks increases.

Chen, Guo [24] examine the business processes of edge
cloud task scheduling. The authors propose an algorithm to
optimize resource-constrained task scheduling using the
construction of profit matrices, classification, and clustering
preprocessing. Tasks with similar characteristics are grouped
and categorized using clustering preprocessing. On the basis of
the constructed profit matrix, a resource-constrained task
scheduling strategy is derived. In the second step, edge cloud
components such as virtual machines, user requests, tasks, and
resources are constructed using Petri nets. As a final step, the
suggested mechanism is evaluated through several
experiments. According to simulations, the algorithm
maximizes profit while managing tasks efficiently, reliably,
and with a high load balance.

A mathematical formulation of the fog node task
scheduling problem is presented by Azizi, Shojafar [25] to
reduce fog node energy consumption while maintaining IoT
QoS requirements. The goal of their model was to reduce
deadline violation time. The authors proposed two partially
greedy algorithms, semi-greedy with priority awareness and
multi-start semi-greedy with priority awareness, to map IoT
tasks to fog nodes efficiently. The proposed approaches were
evaluated in terms of system lifespan, latency, energy, and the
IoT task completion rate. In comparison with existing
algorithms, tests indicate that the introduced algorithms
improve task deadline compliance and reduce the total time
spent violating deadlines.

Kanbar and Faraj [26] developed the Region Aware
Dynamic Scheduling (RADISH) model, which consists of five
consecutive processes. To reduce latency in scheduling, they

implemented a bi-class neural network based on task nature to
classify incoming tasks based on their nature, taking into
account login credentials, emails, passwords, types of services,
and quality of service parameters. In the second process, the
improved moth flame optimization is used to schedule
classified tasks considering workload, deadline, priority, and
energy. Third, load balancing is accomplished by clustering
potential fields. With the aim of balancing server load and
improving efficiency, three repository systems have been
implemented. The final step involves introducing the Hopcroft-
Karp algorithm that takes into account the VM state and
minimizes allocation times and enhances the quality of service.

Hybrid Flamingo Search with a Genetic Algorithm
(HFSGA) is implemented by Hussain and Begh [27] to
optimize task scheduling for cost minimization. HFSGA and
other well-known optimization algorithms are compared on
seven essential benchmark optimization functions.
Furthermore, Friedman Rank Tests are conducted to ascertain
the results' significance. Implementing the model produces
better results regarding task completion percentages,
makespan, and costs. This work shows better results than
existing algorithms such as round-robin, genetic, PSO, and
ACO.

In order to secure the allocation of tasks on cloud and fog
nodes, Najafizadeh, Salajegheh [28] proposed a multi-objective
simulated annealing algorithm. A compromise solution is
found by applying the goal-programming approach. In
addition, a new goal called client-driven access level and
schedule is created in regard to distributing tasks among fog
and cloud nodes. The proposed algorithm was found to be 50%
more efficient regarding deadlines, 88% more efficient
regarding control levels, and 10% more efficient regarding
service delays in comparison to moth-flame optimization, tabu
search, and PSO algorithms.

Task scheduling in edge computing requires the
consideration of two special problems: time scheduling and
resource allocation. The task execution order is determined by
time scheduling, while resource allocation is responsible for
allocating tasks to suitable virtual machines (VMs) for
execution. In the field of edge computing, a number of
scheduling issues have been explored [29-33]. However, the
majority of existing works focus on resource allocation, while
time scheduling has received little attention. Tan, Han [34]
proposed a general model to minimize task response times
when tasks are offloaded to edge servers. Zhang, Du [35]
proposed a scheduling algorithm based on Lyapunov
optimization in order to minimize the communication delay
and the computing delay. Chen, Thomas [36] developed a dual-
scheduling framework to accommodate the unstable capacity
of servers and task arrival rates in heterogeneous vehicular
edge computing. In [37], a mixed integer nonlinear
programming (MINLP) algorithm was employed for data-
parallel offloading and scheduling of computationally-intensive
data-parallel tasks in order to minimize the average completion
time. According to [38], tasks with the lowest delay are
scheduled first using the shortest-job-first (SJF) scheduling
method.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

64 | P a g e

www.ijacsa.thesai.org

Alameddine, Sharafeddine [39] explored the use of device-
to-device collaboration for task offloading by taking into
consideration the mobility of humans in order to optimize the
task assignment and power management. The issue of energy-
efficient task scheduling for IoT edge computing has been
addressed in [20] by a heuristic algorithm. In these methods,
ideal mathematical models are used and optimization is
achieved through mixed-integer nonlinear programming
(MINLP) or heuristic algorithms. In spite of the fact that these
model-oriented algorithms can produce excellent results, they
are not well suited to dynamic environments in which task
arrival rates and popularity are unknown in advance. It is also
important to note that the model-based task scheduling
algorithms are largely concerned with optimizing one-step
instead of pursuing long-term objectives. In these algorithms,
the availability of resources is assumed to be fixed during the
scheduling period.

III. PROPOSED TASK SCHEDULING METHOD

In our proposed mechanism, each gateway node serves as a
connection point for several IoT nodes connected to the
gateway node based on their shortest distance. Our main aim is
to propose an edge computing service model based on
gateways to maximize IoT resource utilization, accelerate the
processing of users’ service requests, and enhance edge
computing efficiency. The proposed model involves user
requests passing through the edge gateway, which determines
whether to process tasks. To decrease data processing time, the
controller forwards service requests to the cloud if the edge
gateway is unable to process them. The edge computing
service model contains three main components, lightweight
VNF configuration, scheduler, and resource estimation.
According to the proposed model, when a request for a service
is received, it is checked whether or not an adequate amount of
computing resources is available to fulfil such demand. In this
regard, one of the following events may occur. Depending on
the outcome of the task scheduling algorithm, the edge
gateway processes the requests through the scheduler and
queues them in the system. On the other hand, requests are
transferred directly to the cloud if the edge gateway lacks the
resources.

Improving edge gateway operational efficiency is the main
aim of task scheduling methods. Since the service requests are
different from each other, a task scheduling algorithm
determines how to meet the demands of each request. A
scheduling method reduces time spent on tackling high-
demand tasks as a primary objective. Our main objective is
implementing on-demand models for agile VNFs and deep
reinforcement learning-based task scheduling methods to
enhance edge computing efficiency. The proposed method
includes two main phases, virtualization of edge nodes and task
scheduling based on the deep reinforcement learning method.

In order to simplify the task scheduling process, we will
only focus on computational resources. In order to make
scheduling decisions, the scheduler monitors the status
information of incoming tasks and virtual machines (VMs),
including the task sizes, the expected completion time, the
computing speed (in million instructions per second (MIPS)),
and the waiting time. The scheduler determines when to

schedule (e.g., the scheduling order and the start time for each
task) and where to schedule (e.g., which VM is assigned to
each task) based on the observations. In order to schedule the
tasks, they are divided into two sets: a waiting set and a
backlog queue. A task in the waiting set occupies a waiting slot
that can be observed fully, whereas the scheduler can only
observe the number of tasks in the backlog queue. In each
scheduling time step, the scheduler selects at most one task
from the waiting slot for scheduling. In this study, we examine
the scheduling of tasks in edge computing when only one edge
server is deployed. It is the objective to maximize the long-
term task satisfaction of all tasks, which is achieved by:

 ∑ ∑

(1)

where gi,j is the task satisfaction of the task i scheduled to
VM j.

A. First Phase: Virtualization of Edge Nodes

This step proposes a virtualized edge framework to support
Cloud-to-Things applications at all layers. The virtualization
process involves three stages: virtualizing objects, network
functions, and services. The implementation of object
virtualization allows physical sensors to gain IP capability
without compromising their unique functionalities. In order to
represent heterogeneous physical entities, we need to create a
unified software Virtual Object (VO) on edge nodes. An
abstract VO is capable of interacting over the Internet with
various hosts.

Additionally, it can act as a close neighbour to physical
objects through wireless or wired connections available at the
edge. VOs provide semantic descriptions of actual objects.
Although physical objects have heterogeneous functions, they
generally have limited memory and components such as
communication modules, sensing modules, and power supply
units. These components can be expanded and installed on
edge devices for real physical objects as virtual software
instances.

As illustrated in Fig. 1(a), two critical streams of object
virtualization are taken into account to illustrate VO-hosting
solutions: hardware-level and OS-level virtualization. VOs are
compatible with established operating systems. Edge players,
such as providers, developers, and end users, can develop
dedicated hosting platforms with advanced features, such as
memory, hardware interface, and CPU, in order to achieve
better performance. Fig. 1(b) provides more details about the
sensor virtualization framework. Both virtual sensor
instructions and physical sensor data are stored in the "Sync
Flag". Version numbers are used to synchronize actual and
virtual objects. "Energy Manager" indicates the battery life of
physical sensors and turns them on. Compared to physical
sensors, virtual sensors are composed of V-communication, V-
processing, and V-sensing components. In the left column,
"Actuator Flag" contains the instructions given to the physical
sensor, and "Sensor Flag" holds the sensor's collected data. V-
processing is the equivalent of physical sensor processing. A
predefined local or network storage device can be used as an
external memory.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

65 | P a g e

www.ijacsa.thesai.org

Host OS

Edge Hardware

Virtualization Layer

Guest Sensor Guest Sensor

OS-Level Virtualization

Virtualization Layer

Edge Hardware

Guest Sensor Guest Sensor

Hardware-Level Virtualization

Guest OS Guest OS

Power Supply

Amplifier

Actuator

Sensor

Sync Flag

AD/DA

Memory

CPU

Expansion Slot

Receiver

Baseband

Transmitter

Sensing Proccessing Communication

Hardware Sensory Node

Energy

Manager

Actuator Flag

Sensor Flag

Sync Flag

External Memory

Memory

V-CPU

Instance Manager

RX1 RX2

VC-Manager

TX1 TX2

V-Sensing V-Processing V-Communication

Virtual Sensory Instance

Figure 1 – (a)

Figure 2 – (b)

(a)

Host OS

Edge Hardware

Virtualization Layer

Guest Sensor Guest Sensor

OS-Level Virtualization

Virtualization Layer

Edge Hardware

Guest Sensor Guest Sensor

Hardware-Level Virtualization

Guest OS Guest OS

Power Supply

Amplifier

Actuator

Sensor

Sync Flag

AD/DA

Memory

CPU

Expansion Slot

Receiver

Baseband

Transmitter

Sensing Proccessing Communication

Hardware Sensory Node

Energy

Manager

Actuator Flag

Sensor Flag

Sync Flag

External Memory

Memory

V-CPU

Instance Manager

RX1 RX2

VC-Manager

TX1 TX2

V-Sensing V-Processing V-Communication

Virtual Sensory Instance

Figure 1 – (a)

Figure 2 – (b)

(b)

Fig. 1. Object virtualization scheme.

To manage virtual and physical nodes as well as VNFs in
the proposed method, an Object Virtualization Manager
(OVM) is required. As depicted in Fig. 2, the OVM manages
and orchestrates physical and virtual entities. Initially, the
OVM deploys and programs the corresponding VOs, monitors
and coordinates their operation, discovers and registers them,
and creates and terminates them. In this regard, the OVM
stores the configuration files of VOs editable by remote or
local users. In order to perform automatic self-configuration for
service deployment, the OVM downloads the configuration

profiles of registered VOs. A VO will be migrated to a more
resourceful container if its container is overloaded. VNFs, as
software instances, contain several portions of VMs that run
network functions on standard hardware. In order to
decompose the VNF into reusable components, which can be
designed as executable microservices and optimized, upgraded,
and configured independently, network functions typically
involve several approaches, including verification, computing,
media access control, coding, and signaling. These components
combine to form VNFs in micro containers.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

66 | P a g e

www.ijacsa.thesai.org

Cloud

Virtual Edge

Things

SVMs

NFVMS

External service

Redirection

Network Resource

Programing

Network Function

Deploymen

Neighbor discovery

and Configure

Health monitor and

Synchronization

VFN database

VFN orchestration

VFN provisioning & monitoring

Interactivity with application providers

Physical network infrastructure management & configuration

Sensor registration & roaming management

VO discovery & registry

VO management & coordination

VO programming

VSB provisioning & monitoring

VSB database

VSB orchestration

E
d

g
el

et
s

U
se

r
A

p
p

li
ca

ti
o
n

 I
n

te
rf

a
ce

User

User

Users

SV-API

NFV-API

OV-API

VOs

VNFs

VS Blocks

OVMs

Fig. 2. Virtualization of edge computing framework for IoT environment.

B. Second Phase: Task Scheduling based on Deep

Reinforcement Learning

Scheduling tasks in edge computing involves two main
concerns, allocation of resources and schedule. Resource
allocation involves assigning tasks to the appropriate virtual
machines, and time scheduling determines the order of task
execution. To maximize the quality of experience, our task
scheduling strategy considers the expected delay requirement
for heterogeneous virtual machine resources. The level of task
satisfaction acts as a reward in the deep reinforcement learning
algorithm. Network edge servers handle computationally-

intensive tasks owing to the difficulty of performing them on
local devices. The edge servers are configured with various
virtual machines that differ in terms of computational capacity
and execution time. The scheduler is responsible for
monitoring the status of virtual machines and incoming tasks.
The waiting time, the speed of computing, the expected
completion time, and task size are significant factors in
scheduling decision-making. Observations confirm that the
scheduler decides the scheduling order and the start time of
each task, determining suitable virtual machines. Fig. 3 shows
the general layout of the proposed task-scheduling framework.

SVMs

NFVMs

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

67 | P a g e

www.ijacsa.thesai.org

Application

Base Station

Tasks

Back log Queue

Waiting Slot

Edge Server

Server Server Server

Virtual Machines

S
c
h

ed
u

le
r

Fig. 3. Proposed task scheduling framework.

IV. EXPERIMENTAL RESULTS

A numerical evaluation of the proposed task scheduling
mechanism is presented in this section. Pytorch running on
Python 3 produced all simulation results. A comparison was
made between the proposed mechanism and two baselines. We
implemented the task scheduling policy using a four-layer
DNN structure. Each hidden layer encompasses 64 neurons
with a rectified linear unit (ReLU) as an activation function.
The output layer consists of (M+1)×O neurons, where M refers
to the number of VMs and O denotes the maximum tasks in the
waiting slot. In training, we set the discount factor to 0.99,
which indicates that the current decision is affected by future
steps. The learning rate is set to 10−4, and gradient descent is
performed using the Adam optimizer. The paper focuses on
scheduling tasks in the edge system by considering only
computational resources. VM resources and task characteristics
are the only environment parameters considered in calculating

residual computation delay. IoT devices generate tasks and
send them to the base station for transmission. The edge server
receives these tasks periodically. Latency is expected to range
from 5 to 10 seconds, with transmission delays ranging from 1
to 5 seconds. Task sizes range from 500 to 4000 MI. Virtual
machines have a processing capacity ranging from 1000 to
2000 MIPS. Waiting slots are set to O=5 and backlog queues to
|b|=5.

The effects of task popularity skewness, task arrival rate,
and virtual machine count on task satisfaction and success ratio
were studied. Fig. 4 and Fig. 5 illustrate the excremental
outcomes. As illustrated in Fig. 4, the number of virtual
machines and the task arrival rate are associated with the
cumulative degree of task satisfaction. With the popularity
skewness set at 0.3, the task arrival rate ranges from 3 to 7, and
the number of virtual machines increases from 3 to 5.
According to Fig. 5, the cumulative task satisfaction degree

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

68 | P a g e

www.ijacsa.thesai.org

decreases as the task arrival rate increases. A higher arrival rate
means that more tasks are waiting for scheduling in the edge
system simultaneously, which lengthens their waiting time. As
the number of VMs increases, the average task satisfaction
degree also increases. Tasks can be scheduled across multiple
virtual machines, resulting in shorter waiting times. Fig. 5
shows the skewness of task popularity versus task satisfaction
degree. Task popularity skewness ranges from 0.1 to 0.9 with
three virtual machines. A higher cumulative task satisfaction is
associated with greater skewness in task popularity. Each type
of task has a different popularity skewness. As task popularity
skewness increases, smaller tasks become more popular while
larger tasks become less popular, thus reducing the overall
waiting time.

Fig. 4. Task satisfaction degree vs. task arrival rate.

Fig. 5. Task satisfaction degree vs. popularity skewness.

Shortest Job First (SJF) [38] and First Come First Service
(FCFS) [37] algorithms are chosen as benchmarks for
evaluating the performance of the proposed task scheduling
mechanism. SJF and FCFS assign the scheduled task to virtual
machines with the highest instant reward. This leads to the
scheduling of tasks in a greedy manner. These benchmarks can
therefore be categorized into greedy-FCFS and greedy-SFJ. A
comparison was made between our proposed method and these
benchmarks in terms of task success rate and task satisfaction

rate. Total task satisfaction is affected by the average task
satisfaction degree, which makes it possible to evaluate the
algorithm's overall quality. The task is considered complete
when the response time is less than the expected delay.
According to Eq. (1), the task success ratio can be obtained by
dividing the number of satisfied tasks by the number of tasks in
total.

∑

(1)

Fig. 6 and Fig. 7 show how performance is affected by
varying task arrival rates. In all algorithms, the average task
success ratio and level of task satisfaction decrease as task
arrival rates rise. Our method is significantly more efficient
than the greedy-FCFS and greedy-SJF scheduling algorithms.
In particular, the suggested method can increase average task
satisfaction degrees by around 50% and 25% over greedy-
FCFS and greedy-SJF. As FCFS schedules earlier-arriving
tasks first, subsequent tasks may be delayed when the earlier-
arriving tasks demand a lot of CPU power. For long tasks,
greedy SFJ prioritizes shorter tasks over longer ones. The
expected delay demand is not taken into account by greedy-
FCFS or greedy-SJF algorithms.

Fig. 6. Task satisfaction degree vs. task arrival rate.

Fig. 7. Task success rate vs. task arrival rate.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

69 | P a g e

www.ijacsa.thesai.org

Fig. 8 and Fig. 9 compare our task scheduling mechanism
with the baselines in terms of task popularity. A higher
skewness factor results in a higher degree of task satisfaction
and a higher success ratio. The proposed algorithm can
significantly improve task satisfaction, as shown in Fig. 8. The
gap widens with increasing popularity factor values compared
to greedy-SJF and greedy-FCFS algorithms. The greedy-SJF
algorithm suffers from performance degradation due to a larger
proportion of small tasks being assigned as popularity
increases. The higher skewness factor allows for more accurate
predictions of task lengths, leading to more efficient
scheduling. This leads to better results for popularity-based
algorithms compared to greedy-SJF and greedy-FCFS
algorithms. The improved task satisfaction and success ratio
observed in Fig. 8 are a direct result of this improved
scheduling efficiency.

Fig. 8. Task satisfaction degree vs. populariry skewness.

Fig. 9. Task success rate vs. popularity skewness.

V. CONCLUSION

With the rapid growth of IoT applications, edge and IoT
devices have expanded their services in recent years. Fog
computing offers a latency sensitivity advantage over cloud
computing for IoT-enabled smart applications. Task scheduling
effectively reduces application computation time and latency

while improving quality of service. This paper's proposed task
scheduling framework comprises two main phases:
virtualization of edge nodes and task scheduling based on deep
reinforcement learning. The first phase offers a layered edge
framework. In the second phase, we applied DRL to schedule
tasks taking into account the diversity of tasks and the
heterogeneity of available resources. Simulations indicate that
our proposed task scheduling method leads to greater levels of
task satisfaction and success than existing approaches.

REFERENCES

[1] Vahedifard, F., et al., Artificial intelligence for radiomics; diagnostic
biomarkers for neuro-oncology. World Journal of Advanced Research
and Reviews, 2022. 14(3): p. 304-310.

[2] Saeidi, S.A., et al. A novel neuromorphic processors realization of
spiking deep reinforcement learning for portfolio management. in 2022
Design, Automation & Test in Europe Conference & Exhibition
(DATE). 2022. IEEE.

[3] Akhavan, J. and S. Manoochehri. Sensory data fusion using machine
learning methods for in-situ defect registration in additive
manufacturing: a review. in 2022 IEEE International IOT, Electronics
and Mechatronics Conference (IEMTRONICS). 2022. IEEE.

[4] Khosravi, F., et al. Implementation of an Elastic Reconfigurable Optical
Add/Drop Multiplexer based on Subcarriers for Application in Optical
Multichannel Networks. in 2022 International Conference on
Electronics, Information, and Communication (ICEIC). 2022. IEEE.

[5] Khosravi, F., et al., Improving the performance of three level code
division multiplexing using the optimization of signal level spacing.
Optik, 2014. 125(18): p. 5037-5040.

[6] Haghshenas, S.H., M.A. Hasnat, and M. Naeini, A Temporal Graph
Neural Network for Cyber Attack Detection and Localization in Smart
Grids. arXiv preprint arXiv:2212.03390, 2022.

[7] Taami, T., S. Krug, and M. O’Nils. Experimental characterization of
latency in distributed iot systems with cloud fog offloading. in 2019 15th
IEEE International Workshop on Factory Communication Systems
(WFCS). 2019. IEEE.

[8] Pourghebleh, B., et al., The importance of nature-inspired meta-heuristic
algorithms for solving virtual machine consolidation problem in cloud
environments. Cluster Computing, 2021: p. 1-24.

[9] He, P., et al., Towards green smart cities using Internet of Things and
optimization algorithms: A systematic and bibliometric review.
Sustainable Computing: Informatics and Systems, 2022. 36: p. 100822.

[10] Pourghebleh, B., et al., A roadmap towards energy‐ efficient data
fusion methods in the Internet of Things. Concurrency and Computation:
Practice and Experience, 2022: p. e6959.

[11] Kumar, A., et al., Smart power consumption management and alert
system using IoT on big data. Sustainable Energy Technologies and
Assessments, 2022: p. 102555.

[12] Stoyanova, M., et al., A survey on the internet of things (IoT) forensics:
challenges, approaches, and open issues. IEEE Communications Surveys
& Tutorials, 2020. 22(2): p. 1191-1221.

[13] Khan, W.Z., et al., Industrial internet of things: Recent advances,
enabling technologies and open challenges. Computers & Electrical
Engineering, 2020. 81: p. 106522.

[14] Mohseni, M., F. Amirghafouri, and B. Pourghebleh, CEDAR: A cluster-
based energy-aware data aggregation routing protocol in the internet of
things using capuchin search algorithm and fuzzy logic. Peer-to-Peer
Networking and Applications, 2022: p. 1-21.

[15] Cui, Y.-y., et al., A novel offloading scheduling method for mobile
application in mobile edge computing. Wireless Networks, 2022. 28(6):
p. 2345-2363.

[16] Alqarni, M.M., A. Cherif, and E. Alkayal, A Survey of Computational
Offloading in Cloud/Edge-based Architectures: Strategies, Optimization
Models and Challenges. KSII Transactions on Internet and Information
Systems (TIIS), 2021. 15(3): p. 952-973.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

70 | P a g e

www.ijacsa.thesai.org

[17] Zhang, D., et al., Task offloading method of edge computing in internet
of vehicles based on deep reinforcement learning. Cluster Computing,
2022. 25(2): p. 1175-1187.

[18] Kamalov, F., et al., Internet of Medical Things Privacy and Security:
Challenges, Solutions, and Future Trends from a New Perspective.
Sustainability, 2023. 15(4): p. 3317.

[19] Hasan, M.Z. and H. Al‐Rizzo, Task scheduling in Internet of Things
cloud environment using a robust particle swarm optimization.
Concurrency and Computation: Practice and Experience, 2020. 32(2): p.
e5442.

[20] Abdel-Basset, M., et al., Energy-aware marine predators algorithm for
task scheduling in IoT-based fog computing applications. IEEE
Transactions on Industrial Informatics, 2020.

[21] Shadroo, S., A.M. Rahmani, and A. Rezaee, The two-phase scheduling
based on deep learning in the Internet of Things. Computer Networks,
2021. 185: p. 107684.

[22] Guizani, N. and A. Ghafoor, A network function virtualization system
for detecting malware in large IoT based networks. IEEE Journal on
Selected Areas in Communications, 2020. 38(6): p. 1218-1228.

[23] Al-Habob, A.A., et al., Task scheduling for mobile edge computing
using genetic algorithm and conflict graphs. IEEE Transactions on
Vehicular Technology, 2020. 69(8): p. 8805-8819.

[24] Chen, L., et al., Resource constrained profit optimization method for
task scheduling in edge cloud. IEEE Access, 2020. 8: p. 118638-118652.

[25] Azizi, S., et al., Deadline-aware and energy-efficient IoT task scheduling
in fog computing systems: A semi-greedy approach. Journal of network
and computer applications, 2022. 201: p. 103333.

[26] Kanbar, A.B. and K.H.A. Faraj, Region aware dynamic task scheduling
and resource virtualization for load balancing in IoT-fog multi-cloud
environment. Future Generation Computer Systems, 2022.

[27] Hussain, S.M. and G.R. Begh, Hybrid heuristic algorithm for cost-
efficient QoS aware task scheduling in fog–cloud environment. Journal
of Computational Science, 2022. 64: p. 101828.

[28] Najafizadeh, A., et al., Multi-objective Task Scheduling in cloud-fog
computing using goal programming approach. Cluster Computing, 2022.
25(1): p. 141-165.

[29] Li, Z., et al., Credit-based payments for fast computing resource trading
in edge-assisted Internet of Things. IEEE Internet of Things Journal,
2019. 6(4): p. 6606-6617.

[30] Wang, P., et al., Joint task assignment, transmission, and computing
resource allocation in multilayer mobile edge computing systems. IEEE
Internet of Things Journal, 2018. 6(2): p. 2872-2884.

[31] Li, S., et al., Joint admission control and resource allocation in edge
computing for internet of things. IEEE Network, 2018. 32(1): p. 72-79.

[32] Zhang, X., et al., Resource allocation for a UAV-enabled mobile-edge
computing system: Computation efficiency maximization. IEEE Access,
2019. 7: p. 113345-113354.

[33] Ataie, I., et al. D 2 FO: Distributed Dynamic Offloading Mechanism for
Time-Sensitive Tasks in Fog-Cloud IoT-based Systems. in 2022 IEEE
International Performance, Computing, and Communications
Conference (IPCCC). 2022. IEEE.

[34] Tan, H., et al. Online job dispatching and scheduling in edge-clouds. in
IEEE INFOCOM 2017-IEEE Conference on Computer
Communications. 2017. IEEE.

[35] Zhang, Y., et al., Resource scheduling for delay minimization in multi-
server cellular edge computing systems. IEEE Access, 2019. 7: p.
86265-86273.

[36] Chen, X., et al., A hybrid task scheduling scheme for heterogeneous
vehicular edge systems. IEEE Access, 2019. 7: p. 117088-117099.

[37] Chiang, Y.-H., T. Zhang, and Y. Ji, Joint cotask-aware offloading and
scheduling in mobile edge computing systems. IEEE Access, 2019. 7: p.
105008-105018.

[38] Li, C., et al., Collaborative cache allocation and task scheduling for data-
intensive applications in edge computing environment. Future
Generation Computer Systems, 2019. 95: p. 249-264.

[39] Alameddine, H.A., et al., Dynamic task offloading and scheduling for
low-latency IoT services in multi-access edge computing. IEEE Journal
on Selected Areas in Communications, 2019. 37(3): p. 668-682.

