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Abstract—Recent innovations in the Internet of Things (IoT) 

have given rise to IoT applications that require quick response 

times and low latency. Fog computing has proven to be an 

effective platform for handling IoT applications. It is a significant 

challenge to deploy fog computing resources effectively because of 

the heterogeneity of IoT tasks and their delay sensitivity. To take 

advantage of idle resources in IoT devices, this paper presents an 

edge computing concept that offloads edge tasks to nearby IoT 

devices. The IoT-assisted edge computing should meet two 

conditions, edge services should exploit the computing resources 

of IoT devices effectively and edge tasks offloaded to IoT devices 

do not interfere with local IoT tasks. Two main phases are 

included in the proposed method: virtualization of edge nodes, 

and task scheduling based on deep reinforcement learning. The 

first phase offers a layered edge framework. In the second phase, 

we applied deep reinforcement learning (DRL) to schedule tasks 

taking into account the diversity of tasks and the heterogeneity of 

available resources. According to simulation results, our proposed 

task scheduling method achieves higher levels of task satisfaction 

and success than existing methods. 

Keywords—Internet of things; task scheduling; edge 

computing; resource allocation 

I. INTRODUCTION 

The recent rapid development of artificial intelligence [1, 
2], machine learning [3], optical networks [4, 5], smart grids 
[6], cloud computing [7, 8], 5G connectivity [9], Blockchain, 
and Internet of Things (IoT) [10, 11] is leading to an 
exponential growth in data usage across a wide range of 
engineering and commerce disciplines. Over the last decade, 
the IoT has been recognized for its remarkable potential in 
computer science. It brings out an environment in which many 
intelligent objects with limited resources can interact with each 
other through different technologies [12]. The IoT tries to link 
the physical and virtual worlds by equipping physical devices 
with processing, networking, detection, and identification 
functions. The IoT objects are employed in different 
applications, such as vehicle networks, energy management, 
traffic control, medical treatment, and healthcare, aiming to 
gather information about the physical world [13, 14]. In this 
regard, to obtain valuable information and fulfil the assigned 
tasks, a massive amount of data is produced that brings 
challenging problems for efficient information processing, 
especially for the specific scenarios requiring real-time data 
handling. Considering edge computing capability in real-time 

processing, the computing IoT tasks can be offloaded to edge 
devices for implementation [15, 16]. 

Moreover, since the IoT services and applications are 
increasing daily, a practical approach to serving the growing 
needs in different application domains becomes vital [17, 18]. 
To address the mentioned problems, achieve high resource 
utilization, reduce communication costs, and improve the 
lifetime of IoT networks, task scheduling methods can have 
significant impacts [19, 20]. These methods aim to schedule 
the existing tasks in a suitable sequence to accomplish tasks 
under problem-specific constraints, such as communication 
costs among IoT objects, resource utilization, and the 
operational lifetime of sensor nodes [21]. 

Nowadays, Network Function Virtualization (NFV) is 
known as a superior technology in telecommunication 
networks. It refers to centralizing and virtualizing network 
functions that can be run in data centres on standard and 
commercial off-the-shelf (COTS) hardware instead of 
distributed and proprietary hardware [22]. Using NFV, network 
device purchases and related maintenance costs can be reduced 
effectively. As a logical consequence of NFV, Virtual Network 
Functions (VNFs) take advantage of middleware to virtualize 
network functions. The deployment of VNFs on commodity 
hardware reduces the need for dedicated hardware devices to 
perform individual network functions. Our main objective is to 
improve edge computing operational efficiency by 
implementing the agile VNF on-demand model and the deep 
reinforcement learning-based task scheduling method. The 
proposed method includes two main phases, virtualization of 
edge nodes and task scheduling based on the deep 
reinforcement learning method. In the first step, a layered edge 
framework is presented. In the second step, we employed deep 
reinforcement learning (DRL) to solve task scheduling 
problems considering the tasks' diversity and the heterogeneity 
of available resources. This article makes the following major 
contribution. 

 We analyze the optimization of time scheduling and the 
assignment of virtual machines in edge computing 
using model-free DRL-based task scheduling. VM 
availability, task characteristics, and queue dynamics 
are considered in the formulation of the problem as an 
MDP problem. 
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 In this case, the action is represented as a pair of VMs 
and tasks, whose dimension may be extremely large. In 
the MDP formulation, a new mechanism is designed to 
decouple the scheduling time step from the real-time 
step. With this mechanism, the action space remains 
linear with the product of the number of VMs and the 
queue size, and multiple tasks can be scheduled 
simultaneously. 

The rest of the paper in organized as follows. Related 
works are reviewed in Section II. The proposed task scheduling 
method is described in Section III. Section IV reports the 
simulation results. Finally, the conclusion is presented in 
Section V. 

II. RELATED WORK 

Al-Habob, Dobre [23] considers offloading multiple tasks 
concurrently to several mobile edge computing servers. 
Offloading latency and failure probability are minimized by 
scheduling interdependent subtasks for servers. Models based 
on conflict graphs and genetic algorithms are used to solve 
scheduling problems. Experimental findings demonstrate that 
these algorithms approach optimal solutions found by 
exhaustive searches. In addition, even though parallel 
offloading employs orthogonal channels, sequential offloading 
is more likely to fail than parallel offloading. In contrast, 
parallel offloading provides lower latency. Latency gaps 
between parallel and sequential schemes decrease as the 
dependency between sub-tasks increases. 

Chen, Guo [24] examine the business processes of edge 
cloud task scheduling. The authors propose an algorithm to 
optimize resource-constrained task scheduling using the 
construction of profit matrices, classification, and clustering 
preprocessing. Tasks with similar characteristics are grouped 
and categorized using clustering preprocessing. On the basis of 
the constructed profit matrix, a resource-constrained task 
scheduling strategy is derived. In the second step, edge cloud 
components such as virtual machines, user requests, tasks, and 
resources are constructed using Petri nets. As a final step, the 
suggested mechanism is evaluated through several 
experiments. According to simulations, the algorithm 
maximizes profit while managing tasks efficiently, reliably, 
and with a high load balance. 

A mathematical formulation of the fog node task 
scheduling problem is presented by Azizi, Shojafar [25] to 
reduce fog node energy consumption while maintaining IoT 
QoS requirements. The goal of their model was to reduce 
deadline violation time. The authors proposed two partially 
greedy algorithms, semi-greedy with priority awareness and 
multi-start semi-greedy with priority awareness, to map IoT 
tasks to fog nodes efficiently. The proposed approaches were 
evaluated in terms of system lifespan, latency, energy, and the 
IoT task completion rate. In comparison with existing 
algorithms, tests indicate that the introduced algorithms 
improve task deadline compliance and reduce the total time 
spent violating deadlines. 

Kanbar and Faraj [26] developed the Region Aware 
Dynamic Scheduling (RADISH) model, which consists of five 
consecutive processes. To reduce latency in scheduling, they 

implemented a bi-class neural network based on task nature to 
classify incoming tasks based on their nature, taking into 
account login credentials, emails, passwords, types of services, 
and quality of service parameters. In the second process, the 
improved moth flame optimization is used to schedule 
classified tasks considering workload, deadline, priority, and 
energy. Third, load balancing is accomplished by clustering 
potential fields. With the aim of balancing server load and 
improving efficiency, three repository systems have been 
implemented. The final step involves introducing the Hopcroft-
Karp algorithm that takes into account the VM state and 
minimizes allocation times and enhances the quality of service. 

Hybrid Flamingo Search with a Genetic Algorithm 
(HFSGA) is implemented by Hussain and Begh [27] to 
optimize task scheduling for cost minimization. HFSGA and 
other well-known optimization algorithms are compared on 
seven essential benchmark optimization functions. 
Furthermore, Friedman Rank Tests are conducted to ascertain 
the results' significance. Implementing the model produces 
better results regarding task completion percentages, 
makespan, and costs. This work shows better results than 
existing algorithms such as round-robin, genetic, PSO, and 
ACO. 

In order to secure the allocation of tasks on cloud and fog 
nodes, Najafizadeh, Salajegheh [28] proposed a multi-objective 
simulated annealing algorithm. A compromise solution is 
found by applying the goal-programming approach. In 
addition, a new goal called client-driven access level and 
schedule is created in regard to distributing tasks among fog 
and cloud nodes. The proposed algorithm was found to be 50% 
more efficient regarding deadlines, 88% more efficient 
regarding control levels, and 10% more efficient regarding 
service delays in comparison to moth-flame optimization, tabu 
search, and PSO algorithms. 

Task scheduling in edge computing requires the 
consideration of two special problems: time scheduling and 
resource allocation. The task execution order is determined by 
time scheduling, while resource allocation is responsible for 
allocating tasks to suitable virtual machines (VMs) for 
execution. In the field of edge computing, a number of 
scheduling issues have been explored [29-33]. However, the 
majority of existing works focus on resource allocation, while 
time scheduling has received little attention. Tan, Han [34] 
proposed a general model to minimize task response times 
when tasks are offloaded to edge servers. Zhang, Du [35] 
proposed a scheduling algorithm based on Lyapunov 
optimization in order to minimize the communication delay 
and the computing delay. Chen, Thomas [36] developed a dual-
scheduling framework to accommodate the unstable capacity 
of servers and task arrival rates in heterogeneous vehicular 
edge computing. In [37], a mixed integer nonlinear 
programming (MINLP) algorithm was employed for data-
parallel offloading and scheduling of computationally-intensive 
data-parallel tasks in order to minimize the average completion 
time. According to [38], tasks with the lowest delay are 
scheduled first using the shortest-job-first (SJF) scheduling 
method. 
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Alameddine, Sharafeddine [39] explored the use of device-
to-device collaboration for task offloading by taking into 
consideration the mobility of humans in order to optimize the 
task assignment and power management. The issue of energy-
efficient task scheduling for IoT edge computing has been 
addressed in [20] by a heuristic algorithm. In these methods, 
ideal mathematical models are used and optimization is 
achieved through mixed-integer nonlinear programming 
(MINLP) or heuristic algorithms. In spite of the fact that these 
model-oriented algorithms can produce excellent results, they 
are not well suited to dynamic environments in which task 
arrival rates and popularity are unknown in advance. It is also 
important to note that the model-based task scheduling 
algorithms are largely concerned with optimizing one-step 
instead of pursuing long-term objectives. In these algorithms, 
the availability of resources is assumed to be fixed during the 
scheduling period. 

III. PROPOSED TASK SCHEDULING METHOD 

In our proposed mechanism, each gateway node serves as a 
connection point for several IoT nodes connected to the 
gateway node based on their shortest distance. Our main aim is 
to propose an edge computing service model based on 
gateways to maximize IoT resource utilization, accelerate the 
processing of users’ service requests, and enhance edge 
computing efficiency. The proposed model involves user 
requests passing through the edge gateway, which determines 
whether to process tasks. To decrease data processing time, the 
controller forwards service requests to the cloud if the edge 
gateway is unable to process them. The edge computing 
service model contains three main components, lightweight 
VNF configuration, scheduler, and resource estimation. 
According to the proposed model, when a request for a service 
is received, it is checked whether or not an adequate amount of 
computing resources is available to fulfil such demand. In this 
regard, one of the following events may occur. Depending on 
the outcome of the task scheduling algorithm, the edge 
gateway processes the requests through the scheduler and 
queues them in the system. On the other hand, requests are 
transferred directly to the cloud if the edge gateway lacks the 
resources.  

Improving edge gateway operational efficiency is the main 
aim of task scheduling methods. Since the service requests are 
different from each other, a task scheduling algorithm 
determines how to meet the demands of each request. A 
scheduling method reduces time spent on tackling high-
demand tasks as a primary objective. Our main objective is 
implementing on-demand models for agile VNFs and deep 
reinforcement learning-based task scheduling methods to 
enhance edge computing efficiency. The proposed method 
includes two main phases, virtualization of edge nodes and task 
scheduling based on the deep reinforcement learning method. 

In order to simplify the task scheduling process, we will 
only focus on computational resources. In order to make 
scheduling decisions, the scheduler monitors the status 
information of incoming tasks and virtual machines (VMs), 
including the task sizes, the expected completion time, the 
computing speed (in million instructions per second (MIPS)), 
and the waiting time. The scheduler determines when to 

schedule (e.g., the scheduling order and the start time for each 
task) and where to schedule (e.g., which VM is assigned to 
each task) based on the observations. In order to schedule the 
tasks, they are divided into two sets: a waiting set and a 
backlog queue. A task in the waiting set occupies a waiting slot 
that can be observed fully, whereas the scheduler can only 
observe the number of tasks in the backlog queue. In each 
scheduling time step, the scheduler selects at most one task 
from the waiting slot for scheduling. In this study, we examine 
the scheduling of tasks in edge computing when only one edge 
server is deployed. It is the objective to maximize the long-
term task satisfaction of all tasks, which is achieved by: 

   ∑ ∑     
       

 

   

 

(1) 

where gi,j is the task satisfaction of the task i scheduled to 
VM j.  

A. First Phase: Virtualization of Edge Nodes 

This step proposes a virtualized edge framework to support 
Cloud-to-Things applications at all layers. The virtualization 
process involves three stages: virtualizing objects, network 
functions, and services. The implementation of object 
virtualization allows physical sensors to gain IP capability 
without compromising their unique functionalities. In order to 
represent heterogeneous physical entities, we need to create a 
unified software Virtual Object (VO) on edge nodes. An 
abstract VO is capable of interacting over the Internet with 
various hosts. 

Additionally, it can act as a close neighbour to physical 
objects through wireless or wired connections available at the 
edge. VOs provide semantic descriptions of actual objects. 
Although physical objects have heterogeneous functions, they 
generally have limited memory and components such as 
communication modules, sensing modules, and power supply 
units. These components can be expanded and installed on 
edge devices for real physical objects as virtual software 
instances. 

As illustrated in Fig. 1(a), two critical streams of object 
virtualization are taken into account to illustrate VO-hosting 
solutions: hardware-level and OS-level virtualization. VOs are 
compatible with established operating systems. Edge players, 
such as providers, developers, and end users, can develop 
dedicated hosting platforms with advanced features, such as 
memory, hardware interface, and CPU, in order to achieve 
better performance. Fig. 1(b) provides more details about the 
sensor virtualization framework. Both virtual sensor 
instructions and physical sensor data are stored in the "Sync 
Flag". Version numbers are used to synchronize actual and 
virtual objects. "Energy Manager" indicates the battery life of 
physical sensors and turns them on. Compared to physical 
sensors, virtual sensors are composed of V-communication, V-
processing, and V-sensing components. In the left column, 
"Actuator Flag" contains the instructions given to the physical 
sensor, and "Sensor Flag" holds the sensor's collected data. V-
processing is the equivalent of physical sensor processing. A 
predefined local or network storage device can be used as an 
external memory. 
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Fig. 1. Object virtualization scheme. 

To manage virtual and physical nodes as well as VNFs in 
the proposed method, an Object Virtualization Manager 
(OVM) is required. As depicted in Fig. 2, the OVM manages 
and orchestrates physical and virtual entities. Initially, the 
OVM deploys and programs the corresponding VOs, monitors 
and coordinates their operation, discovers and registers them, 
and creates and terminates them. In this regard, the OVM 
stores the configuration files of VOs editable by remote or 
local users. In order to perform automatic self-configuration for 
service deployment, the OVM downloads the configuration 

profiles of registered VOs. A VO will be migrated to a more 
resourceful container if its container is overloaded. VNFs, as 
software instances, contain several portions of VMs that run 
network functions on standard hardware. In order to 
decompose the VNF into reusable components, which can be 
designed as executable microservices and optimized, upgraded, 
and configured independently, network functions typically 
involve several approaches, including verification, computing, 
media access control, coding, and signaling. These components 
combine to form VNFs in micro containers. 
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Fig. 2. Virtualization of edge computing framework for IoT environment. 

B. Second Phase: Task Scheduling based on Deep 

Reinforcement Learning 

Scheduling tasks in edge computing involves two main 
concerns, allocation of resources and schedule. Resource 
allocation involves assigning tasks to the appropriate virtual 
machines, and time scheduling determines the order of task 
execution. To maximize the quality of experience, our task 
scheduling strategy considers the expected delay requirement 
for heterogeneous virtual machine resources. The level of task 
satisfaction acts as a reward in the deep reinforcement learning 
algorithm. Network edge servers handle computationally-

intensive tasks owing to the difficulty of performing them on 
local devices. The edge servers are configured with various 
virtual machines that differ in terms of computational capacity 
and execution time. The scheduler is responsible for 
monitoring the status of virtual machines and incoming tasks. 
The waiting time, the speed of computing, the expected 
completion time, and task size are significant factors in 
scheduling decision-making. Observations confirm that the 
scheduler decides the scheduling order and the start time of 
each task, determining suitable virtual machines. Fig. 3 shows 
the general layout of the proposed task-scheduling framework. 

SVMs 

NFVMs 
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Fig. 3. Proposed task scheduling framework. 

IV. EXPERIMENTAL RESULTS 

A numerical evaluation of the proposed task scheduling 
mechanism is presented in this section. Pytorch running on 
Python 3 produced all simulation results. A comparison was 
made between the proposed mechanism and two baselines. We 
implemented the task scheduling policy using a four-layer 
DNN structure. Each hidden layer encompasses 64 neurons 
with a rectified linear unit (ReLU) as an activation function. 
The output layer consists of (M+1)×O neurons, where M refers 
to the number of VMs and O denotes the maximum tasks in the 
waiting slot. In training, we set the discount factor to 0.99, 
which indicates that the current decision is affected by future 
steps. The learning rate is set to 10−4, and gradient descent is 
performed using the Adam optimizer. The paper focuses on 
scheduling tasks in the edge system by considering only 
computational resources. VM resources and task characteristics 
are the only environment parameters considered in calculating 

residual computation delay. IoT devices generate tasks and 
send them to the base station for transmission. The edge server 
receives these tasks periodically. Latency is expected to range 
from 5 to 10 seconds, with transmission delays ranging from 1 
to 5 seconds. Task sizes range from 500 to 4000 MI. Virtual 
machines have a processing capacity ranging from 1000 to 
2000 MIPS. Waiting slots are set to O=5 and backlog queues to 
|b|=5. 

The effects of task popularity skewness, task arrival rate, 
and virtual machine count on task satisfaction and success ratio 
were studied. Fig. 4 and Fig. 5 illustrate the excremental 
outcomes. As illustrated in Fig. 4, the number of virtual 
machines and the task arrival rate are associated with the 
cumulative degree of task satisfaction. With the popularity 
skewness set at 0.3, the task arrival rate ranges from 3 to 7, and 
the number of virtual machines increases from 3 to 5. 
According to Fig. 5, the cumulative task satisfaction degree 
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decreases as the task arrival rate increases. A higher arrival rate 
means that more tasks are waiting for scheduling in the edge 
system simultaneously, which lengthens their waiting time. As 
the number of VMs increases, the average task satisfaction 
degree also increases. Tasks can be scheduled across multiple 
virtual machines, resulting in shorter waiting times. Fig. 5 
shows the skewness of task popularity versus task satisfaction 
degree. Task popularity skewness ranges from 0.1 to 0.9 with 
three virtual machines. A higher cumulative task satisfaction is 
associated with greater skewness in task popularity. Each type 
of task has a different popularity skewness. As task popularity 
skewness increases, smaller tasks become more popular while 
larger tasks become less popular, thus reducing the overall 
waiting time. 

 
Fig. 4. Task satisfaction degree vs. task arrival rate. 

 
Fig. 5. Task satisfaction degree vs. popularity skewness. 

Shortest Job First (SJF) [38] and First Come First Service 
(FCFS) [37] algorithms are chosen as benchmarks for 
evaluating the performance of the proposed task scheduling 
mechanism. SJF and FCFS assign the scheduled task to virtual 
machines with the highest instant reward. This leads to the 
scheduling of tasks in a greedy manner. These benchmarks can 
therefore be categorized into greedy-FCFS and greedy-SFJ. A 
comparison was made between our proposed method and these 
benchmarks in terms of task success rate and task satisfaction 

rate. Total task satisfaction is affected by the average task 
satisfaction degree, which makes it possible to evaluate the 
algorithm's overall quality. The task is considered complete 
when the response time is less than the expected delay. 
According to Eq. (1), the task success ratio can be obtained by 
dividing the number of satisfied tasks by the number of tasks in 
total. 

   
  

∑       

 
(1) 

Fig. 6 and Fig. 7 show how performance is affected by 
varying task arrival rates. In all algorithms, the average task 
success ratio and level of task satisfaction decrease as task 
arrival rates rise. Our method is significantly more efficient 
than the greedy-FCFS and greedy-SJF scheduling algorithms. 
In particular, the suggested method can increase average task 
satisfaction degrees by around 50% and 25% over greedy-
FCFS and greedy-SJF. As FCFS schedules earlier-arriving 
tasks first, subsequent tasks may be delayed when the earlier-
arriving tasks demand a lot of CPU power. For long tasks, 
greedy SFJ prioritizes shorter tasks over longer ones. The 
expected delay demand is not taken into account by greedy-
FCFS or greedy-SJF algorithms. 

 
Fig. 6. Task satisfaction degree vs. task arrival rate. 

 

Fig. 7. Task success rate vs. task arrival rate. 
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Fig. 8 and Fig. 9 compare our task scheduling mechanism 
with the baselines in terms of task popularity. A higher 
skewness factor results in a higher degree of task satisfaction 
and a higher success ratio. The proposed algorithm can 
significantly improve task satisfaction, as shown in Fig. 8. The 
gap widens with increasing popularity factor values compared 
to greedy-SJF and greedy-FCFS algorithms. The greedy-SJF 
algorithm suffers from performance degradation due to a larger 
proportion of small tasks being assigned as popularity 
increases. The higher skewness factor allows for more accurate 
predictions of task lengths, leading to more efficient 
scheduling. This leads to better results for popularity-based 
algorithms compared to greedy-SJF and greedy-FCFS 
algorithms. The improved task satisfaction and success ratio 
observed in Fig. 8 are a direct result of this improved 
scheduling efficiency. 

 
Fig. 8. Task satisfaction degree vs. populariry skewness. 

 
Fig. 9. Task success rate vs. popularity skewness. 

V. CONCLUSION 

With the rapid growth of IoT applications, edge and IoT 
devices have expanded their services in recent years. Fog 
computing offers a latency sensitivity advantage over cloud 
computing for IoT-enabled smart applications. Task scheduling 
effectively reduces application computation time and latency 

while improving quality of service. This paper's proposed task 
scheduling framework comprises two main phases: 
virtualization of edge nodes and task scheduling based on deep 
reinforcement learning. The first phase offers a layered edge 
framework. In the second phase, we applied DRL to schedule 
tasks taking into account the diversity of tasks and the 
heterogeneity of available resources. Simulations indicate that 
our proposed task scheduling method leads to greater levels of 
task satisfaction and success than existing approaches. 
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