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Abstract—Due to the flaws in shared memory, settings, and 

network access, distributed systems on a network always have 

been susceptible to cyber intrusions. Co-users on the same server 

give attackers the chance to monitor the activity of many other 

users and launch an attack when those users' security is at risk. 

Building completely secure network topologies immune from 

risks and assaults has traditionally been the goal. It is also hard 

to create an architecture that is 100 percent safe due to its open-

ended nature. The precise parameters and infrastructure design 

whereby the strike is instantiated are a constant which can 

always be detected regardless of the sort of attack. This work 

now have the chance to simulate any abnormality and 

subsequent attack possibilities using network parameter values 

thanks to the increased usage of algorithms for machine learning 

and data-gathering tools. This work proposes a Gaussian model 

to forecast the likelihood of an attack occurring depending on 

certain system parameters. This work model a univariate and a 

multivariate Gaussian model on the training dataset. This work 

makes use of various threshold values to predict whether the data 

point is an inlier or an outlier. This research examines accuracies 

for various threshold values. An important challenge in an 

anomaly detection situation is class imbalance. As long as this 

work just utilizes training data, a class imbalance is not a 

problem. Our data-driven results show that combining machine 

learning with Gaussian-based models might be a useful tool for 

analyzing network intrusions. Although more steps are being 

made to boost digital space security, machine learning algorithms 

may be utilized to examine any abnormal behavior that is left 

uncontrolled. 
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I. INTRODUCTION 

One of today's most demanding technologies is cloud 
computing. Cloud computing offers an infinite quantity of IT 
facilities to deliver amazing computing speed, but on the flip 
side, it has serious security problems with public clouds for 
multitenant cloud environments. Most government and 
commercial companies are compromising with the limited IT 
resources and performance from existing resources since they 
are not migrating their sensitive and private data over the 
public cloud due to security concerns. The aforementioned 
problems will be solved by finding a way to protect private 
space over public clouds. 

Multiple clients can use the services provided by multi-
tenant distributed systems. As a result, each client has access to 
the activity of the others. By being one of the clients of such a 
system and taking advantage of such surveillance, attackers can 
launch assaults against one or more other tenants of the system 
[1]. To stop any entity in the system from suffering damage, 
such an attack must be promptly detected [2]. The scourge of 
attacks in such distributed systems has been a hot topic among 
researchers despite improvements in cyber security measures. 
Although cyber security protections have improved, experts 
continue to focus on the problem of intrusions in such 
distributed multi-tenant systems. Multiple tenants can cohabit 
on the same network thanks to multi-tenant distributed systems 
(MTDS). The MTDS service provider does not inquire about 
the tenant's motivations when they request co-allocation. This 
situation presents a chance for renters with bad intentions to 
observe and collect confidential information about the target 
occupants. [4] Because the attacker tenant has access to 
sensitive information, the tenant may prepare an attack that has 
a greater likelihood of success. [3] 

There have already been several attempts to use a variety of 
techniques to identify the existence of intrusions in distributed 
applications. [5], [6] Earlier, the emphasis was on applying 
statistical techniques to compute specific function values, but 
more recently, cutting-edge approaches including deep learning 
have been applied. In this regard, artificial neural networks 
have been investigated. 

Although rule-based engines were used to identify assaults, 
they frequently fall short of spotting any newly discovered 
threats. Transfer learning may be helpful in this situation, but 
there is no guarantee that the variables of the source work and 
the destination job are identical, which has been a significant 
obstacle to its application. [7] 

This work suggests a Gaussian-based classifier strategy in 
this research for identifying the potential for intrusions in a 
multi-tenant distributed system to identify inliers and outliers. 
This work defines a threshold value. This work also looks at 
the accuracy of different threshold values. Authors are thankful 
to Patil and Ingale [8] for providing us with the dataset. 

Section II of paper includes literature survey of research 
work done in the area of network attack detection. It explores 
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Machine learning algorithms used to detect network attacks 
and to improve cyber security. Section III describes 
experimentation performed to create and collect dataset. As 
network attack is not a continuously or regularly occurring 
event hence lesser number of attacks are performed to create 
dataset. This dataset includes majority non attack instances and 
very few attack instances. This section includes statistical and 
graphical representation of collected dataset. Section IV 
explains creation of univariate and multivariate Gaussian 
models for anomaly detection and respective models 
performance analysis. Section V contains conclusion of 
research work done. 

II. RELATED WORK 

Network attack detection has historically made heavy use 
of signature-based detection. This approach uses an analysis of 
an attack's "signature," or distinctive qualities, to foretell 
potential hazards in the future [9]. Methods to discover the best 
attack signatures were suggested by Hilker et al. [10]. Han et 
al. [11] advocated crafting network traffic using several 
attributes. The system cannot identify any new attacks that 
were previously undiscovered owing to a lack of knowledge 
about them, which is a significant problem with this technique. 
Additionally, each new effort to locate signatures requires 
human labor in addition to time. 

Additionally, there have been initiatives to employ machine 
learning algorithms in this field. Algorithms based on 
supervised learning have traditionally been used to identify 
network attacks. [12] For assault detection, Zseby et al. 
favoured the use of selecting features and subsequent mapping 
[13]. Evolutionary algorithms were used by Rafique et al. [14] 
to evaluate the effectiveness of classifying malware. The 
chance of assault is extremely low, it should be highlighted, 
therefore a model may get away with forecasting all data as 
non-negative and yet show good accuracy, making the entire 
process exceedingly costly. 

Prior strategies likewise emphasized the application of 
boosting techniques and feature reduction in transfer learning. 
TrAdaBoost was introduced by Dai et al. [15] and reweights 
the data from the positive and negative classes to give the 
uncommon examples that indicate attacks more weight in the 
outcome. TCA-transfer component analysis was used by Pan et 
al. to feature project the domains closer to one another in the 
common space [16]. HeMap is a technique created by Shi et al. 
[17] that projects features using linear transformations. Patil 
and Ingale [8] tackled the class imbalance problem and used an 
ensemble based meta classifier to detect anomaly. 

The detection of assaults has also been done using model-
based methods. This strategy falls under the category of 
transfer learning and makes the crucial assumption that the 
source task and the target task share at least some parameters 
or model priors. Bekerman demonstrated how transfer learning 
may help increase the resilience of malware detection in 
uncharted situations. [17]. 

A noteworthy finding in all of these prior methods was that 
the stark class disparity seen in network assaults was hardly 
discussed. Additionally, due to this imbalance, effectiveness of 
other measures should also be discussed in order to shed light 

on the results that were produced. We model a Gaussian model 
on the training dataset. The advantage of this method is that 
class imbalance does not cause any hindrance. 

Research community is contributing towards improving 
cyber security and security of multi-tenant distributed systems. 
Despite being all these efforts, attackers are successfully able 
to place compromised or virtual machine having anomaly to 
reside with target virtual machine. This leads to increase in the 
probability of having successful attack on a target virtual 
machine. Detection of new types of attack possible because of 
co-residence, co-location and co-tenant of attacker virtual 
machine with a target virtual machine is still remains a 
challenge to researchers. Univariate and Multivariate Gaussian 
models are created to detect network attacks. Performance 
analysis of individual models created is performed. 

III. DATASET PREPARATION 

A. Dataset Collection 

Dataset has been collected by Patil and Ingale [8] by using 
Netdata, a programme for real-time performance monitoring 
that creates system logs. The logs have been collected across 
28 files. This work combines all the files into a single dataset 
for easy handling. The dataset consists of 4986 inliers instances 
and 60 outlier instances with 63 columns. All the columns 
names are noted in Table I. 

B. Dataset Preparation 

Contributors dropped the column „anomaly score‟ as it is 
generated by the software. Authors also separate „label‟ from 
the remaining dataset. Authors also drop the columns whose 
standard deviation is less than 0.3 but also store the original 
dataset. Contributors are left with 36 columns in the remaining 
dataset. This work plot some of the important columns as a 
categorical plot except anomaly score from Fig. 1 to 12. 
Authors don‟t have to worry about class imbalance because 
model on the training dataset while training is done. 

TABLE I. COLUMN NAMES 

Sr. No. Column name 

1 app_cpu_sys_netdata 

2 app_cpu_sys_apps.plugin 

3 app_cpu_sys_tc-qos-helper 

4 app_cpu_sys_go.d.plugin 

5 app_cpu_sys_logs 

6 app_cpu_sys_ssh 

7 app_cpu_sys_system 

8 app_cpu_sys_kernel 

9 app_cpu_sys_other 

10 app_cpu_usr_netdata 

11 app_cpu_usr_apps.plugin 

12 app_cpu_usr_tc-qos-helper 

13 app_cpu_usr_go.d.plugin 

14 app_cpu_usr_logs 

15 app_cpu_usr_ssh 

16 app_cpu_usr_system 

17 app_cpu_usr_kernel 

18 app_cpu_usr_other 

19 app_mem_netdata 

20 app_mem_apps.plugin 

21 app_mem_tc-qos-helper 

22 app_mem_go.d.plugin 

23 app_mem_ssh 
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24 app_mem_cron 

25 app_mem_system 

26 app_mem_other 

27 app_mem_X 

28 app_soc_ssh 

29 app_soc_system 

30 app_soc_other 

31 app_soc_X 

32 sda_writes 

33 ops_sda_writes 

34 utilization 

35 packets_received 

36 packets_sent 

37 packets_delivered 

38 socket_used 

39 udp_packets_received 

40 udp_packets_sent 

41 avail 

42 Dirty 

43 Writeback 

44 sys_cpu_softirq 

45 sys_cpu_user 

46 sys_cpu_system 

47 sys_cpu_iowait 

48 switches 

49 interrupts 

50 io_out 

51 ip_received 

52 ip_sent 

53 net_received 

54 net_sent 

55 pgio_out 

56 Running 

57 Free 

58 Used 

59 Cached 

60 Buffers 

61 Uptime 

62 Label 

63 anomaly_score 

 

Fig. 1. Categorical plot of app_cpu_apps.plugin_x. 

 

Fig. 2. Categorical plot of app_cpu_apps.plugin_y. 

 

Fig. 3. Categorical plot of app_cpu_go.plugin_x. 

 

Fig. 4. Categorical plot of app_cpu_go.plugin_y. 
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Fig. 5. Categorical plot of app_cpu_kernel_x. 

 

Fig. 6. Categorical plot of app_cpu_kernel_y. 

 

Fig. 7. Categorical plot of app_cpu_sys_apps.plugin. 

 

Fig. 8. Categorical plot of app_cpu_usr_go.d.plugin. 

 

Fig. 9. Categorical plot of app_cpu_netdata_x. 

 

Fig. 10. Categorical plot of app_cpu_kernel_y. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 3, 2023 

707 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 11. Categorical plot of free. 

 

Fig. 12. Categorical plot of uptime. 

Authors then standardize the dataset as there is need to 
perform PCA on it. PCA is applied by a keeping 98% variance. 
After applying PCA, Dataset have 38 columns in the original 
dataset and 18 columns in the dataset on which columns were 
removed having standard deviation less than 0.3. This work 
plots the first two components of the new dataset on a 2D axis 
as shown in Fig. 13. Authors also perform PCA on the original 
dataset. 

 

Fig. 13. First two components of the dataset after PCA. 

This work, as shown in Fig. 14, plots the first three 
components of the new dataset on 3D axes. Here authors can 
clearly see a separation between inliers and outliers. 

 

Fig. 14. First three components of the dataset after PCA. 

Now authors have two datasets, one with all columns and 
another with columns left after removing columns with a 
standard deviation less than 0.3. Authors apply PCA to both 
datasets. This work split both datasets into three sets, train, test, 
and cross-validation set. The training set consists of 4000 
inliers. The testing set consists of 586 inliers and 30 outliers. 
The cross-validation set consists of 400 inliers and 30 outliers. 

IV. GAUSSIAN MODEL FOR ANOMALY DETECTION 

A. Univariate Gaussian Model 

Gaussian distribution is a continuous probability density 
function for a real-valued random variable in statistics. It is 
given by Eq. (1). 

               (     )   
 

 √  
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Where f(x) is the probability density function, µ is the 
mean and σ is the standard deviation. 

This work calculates the mean and standard deviation of 
each column of both datasets and model a Gaussian 
distribution on all columns. The final probability is calculated 
by taking the product of the probabilities of all columns. 
Negative logarithms of probabilities are plotted as histograms 
as shown in Fig. 15 to 19.   Fig. 15 shows probabilities of train 
inliers. Fig. 16 shows probabilities of test set. Fig. 17 shows 
probabilities of test set with columns having standard deviation 
less than 0.3 removed. Fig. 18 shows probabilities of cross 
validation set. Fig. 19 shows probabilities of cross validation 
set with columns having standard deviation less than 0.3 
removed. 

 

Fig. 15. Probabilities of train inliers. 
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Fig. 16. Probabilities of test set. 

 

Fig. 17. Probabilities of test set with columns having standard deviation less 

than 0.3 removed. 

 

Fig. 18. Probabilities of cross validation set. 

 

Fig. 19. Probabilities of cross validation set with columns having standard 

deviation less than 0.3 removed. 

Authors set a threshold probability value to classify the test 
and cross-validation set. Different thresholds are set and 
accuracy is observed. Table II and III show accuracies for the 
original dataset. 

TABLE II. VARIATION OF ACCURACY WITH DIFFERENT THRESHOLD 

VALUES FOR TRAIN AND TEST INLIER SET 

Threshold Train accuracy Test inlier accuracy 

1e-10 0 0 

1e-15 63.625 64.16 

1e-20 89.725 89.078 

1e-25 95.925 96.075 

1e-30 97.825 97.78 

1e-35 98.625 98.12 

1e-40 99.05 98.63 

1e-45 99.175 98.63 

TABLE III. VARIATION OF ACCURACY WITH DIFFERENT THRESHOLD 

VALUES FOR TEST OUTLIER, CROSS-VAL INLIER AND OUTLIER SET 

Threshold 
Test outlier 

accuracy 

Cross Val 

inlier 

accuracy 

Cross Val 

outlier 

accuracy 

1e-10 100 0 100 

1e-15 100 66.25 100 

1e-20 100 91.75 100 

1e-25 100 96.75 96.66 

1e-30 96.66 98.0 93.33 

1e-35 96.66 98.5 90.0 

1e-40 93.33 99.25 90.0 

1e-45 93.33 99.25 90.0 

Table IV and V shows accuracies for the dataset whose 
columns were removed which had a standard deviation of less 
than 0.3. 

TABLE IV. VARIATION OF ACCURACY WITH DIFFERENT THRESHOLD 

VALUES FOR TRAIN INLIERS, TEST INLIERS AND TEST OUTLIERS SET 

Threshold 
Train 

accuracy 

Test inlier 

accuracy 

Test outlier 

accuracy 

1e-10 82.475 83.95 100 

1e-15 98.475 98.805 96.66 

1e-20 99.4 99.65 93.33 

1e-25 99.575 99.65 93.33 

1e-30 99.6 99.65 99.65 

1e-35 99.675 99.658 90.0 

1e-40 99.725 99.82 90.0 

1e-45 99.725 99.82 90.0 
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TABLE V. VARIATION OF ACCURACY WITH DIFFERENT THRESHOLD 

VALUES FOR CROSS-VAL INLIERS AND OUTLIERS 

Threshold 
Cross Val inlier 

accuracy 
Cross Val outlier accuracy 

1e-10 86.25 96.66 

1e-15 98.25 96.66 

1e-20 99.5 90 

1e-25 100 86.66 

1e-30 100.0 86.66 

1e-35 100.0 83.33 

1e-40 100.0 80.0 

1e-45 100.0 76.66 

B. Multivariate Gaussian Model 

The multivariate normal distribution, multivariate Gaussian 
distribution, or joint normal distribution are expansions of the 
one-dimensional normal distribution to higher dimensions in 
probability theory and statistics. It models the probability in 
one shot instead of calculating individual probabilities and 
multiplying them. Multivariate Gaussian distribution is given 
by the Eq. (2). 

 (     )  
 

(  )
 
 

| | 
 

    { 
 

 
(    )   (     ) }(2) 

Where µ is the length-d row vector of means of all 
columns, ∑ is the covariance matrix of shape d x d. d is the 
number of features. 

Authors calculate the mean and covariance matrices of both 
datasets to model a multivariate Gaussian distribution. Authors 
set a threshold value and classify the dataset between inlier and 
outlier and calculate accuracies for various threshold values. 
Negative logarithms of probabilities are plotted as a histogram 
as shown in Fig. 20 to 24. Fig. 20 shows probabilities of train 
inliers. Fig. 21 shows probabilities of test inliers and test 
outliers. Fig. 22 shows probabilities of test inliers and test 
outliers with columns having standard deviation less than 0.3 
removed. Fig. 23 shows probabilities of cross-val inliers and 
cross-val outliers. Fig. 24 shows probabilities of cross-val 
inliers and cross-val outliers with columns having standard 
deviation less than 0.3 removed. 

 

Fig. 20. Probabilities of train inliers. 

 

Fig. 21. Probabilities of test inliers and test outliers. 

 

Fig. 22. Probabilities of test inliers and test outliers with columns having 

standard deviation less than 0.3 removed. 

 

Fig. 23. Probabilities of cross-val inliers and cross-val outliers. 

 

Fig. 24. Probabilities of cross-val inliers and cross-val outliers with columns 

having standard deviation less than 0.3 removed. 

Table VI and VII show accuracies for the original dataset. 
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TABLE VI. VARIATION OF ACCURACY WITH DIFFERENT THRESHOLD 

VALUES FOR TRAIN INLIERS, TEST INLIERS, AND TEST OUTLIERS SET 

Threshold 
Train 

accuracy 

Test inlier 

accuracy 

Test outlier 

accuracy 

1e-10 0.0 0.0 100.0 

1e-15 29.2 30.88 100.0 

1e-20 83.1 84.47 100.0 

1e-25 93.075 94.02 100.0 

1e-30 96.325 97.26 100.0 

1e-35 97.575 97.78 93.33 

1e-40 98.5 98.80 90.0 

1e-45 98.8 99.146 90.0 

TABLE VII. VARIATION OF ACCURACY WITH DIFFERENT THRESHOLD 

VALUES FOR CROSS-VAL INLIERS AND CROSS-VAL OUTLIERS SET 

Threshold 
Cross Val inlier 

accuracy 
Cross Val outlier accuracy 

1e-10 0.0 100.0 

1e-15 30.0 100.0 

1e-20 82.5 100.0 

1e-25 94.0 100.0 

1e-30 96.0 100.0 

1e-35 97.5 96.66 

1e-40 98.25 96.66 

1e-45 98.75 96.66 

Table VIII and IX show accuracies for the dataset whose 
columns were removed which had a standard deviation of less 
than 0.3. 

TABLE VIII. VARIATION OF ACCURACY WITH DIFFERENT THRESHOLD 

VALUES FOR TRAIN INLIERS, TEST INLIERS, AND TEST OUTLIERS 

Threshold 
Train 

accuracy 

Test inlier 

accuracy 

Test outlier 

accuracy 

1e-10 16.675 16.21 100.0 

1e-15 94.125 93.68 100.0 

1e-20 97.2 97.95 96.66 

1e-25 98.625 99.48 93.33 

1e-30 99.125 100.0 93.33 

1e-35 99.325 100.0 93.33 

1e-40 99.4 100.0 93.33 

1e-45 99.45 100.0 93.33 

TABLE IX. VARIATION OF ACCURACY WITH DIFFERENT THRESHOLD 

VALUES FOR CROSS-VAL INLIERS AND CROSS-VAL OUTLIERS 

Threshold 
Cross Val inlier 

accuracy 
Cross Val outlier accuracy 

1e-10 18.0 100.0 

1e-15 93.25 100.0 

Threshold 
Cross Val inlier 

accuracy 
Cross Val outlier accuracy 

1e-20 97.25 96.66 

1e-25 98.0 93.33 

1e-30 98.75 93.33 

1e-35 99.25 90.0 

1e-40 99.5 90.0 

1e-45 99.5 90.0 

V. CONCLUSION 

This work states that univariate and multivariate Gaussian 
models for anomaly detection are successfully created. Data 
imbalance is not an issue here because these models fit on the 
train set and this work uses a threshold to predict inliers and 
outliers. This work examines the trend between various 
threshold values and accuracies. The proposed method, a 
Gaussian model to forecast the likelihood of an attack 
occurring based on certain system parameters uses a univariate 
and a multivariate Gaussian model on the training dataset and 
examines accuracies for various threshold values. It also 
addresses the challenge of class imbalance in anomaly 
detection situations. This method presents the successful 
creation of univariate and multivariate Gaussian models for 
anomaly detection. The data imbalance is not an issue in these 
models because they fit on the train set and use a threshold to 
predict inliers and outliers. The study also examines the 
relationship between various threshold values and accuracies. 
For univariate Gaussian model variation of accuracy with 
different threshold values ranges up to 99.175 percent and for 
train accuracy up to 98.6 percent for test inlier accuracy and up 
to 100 percent for test outlier accuracy. For multivariate 
Gaussian model variation of accuracy with different threshold 
values ranges up to 99.45 for train accuracy, up to 100 for test 
inlier accuracy and up to 100 for test outlier accuracy with 
validation. 

Future work is about using deep learning techniques such 
as auto encoders. Machine learning is revealing a plethora of 
potential for cybersecurity aficionados to explore as more and 
more data is gathered, specifically with the data that they 
already own. When this work talks about escalating warfare in 
the internet age, timely automated identification of any threats 
or suspicious conduct can avoid a number of mistakes from 
occurring. 
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