
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 3, 2023 

712 | P a g e  

www.ijacsa.thesai.org 

Cloud Service Composition using Firefly 

Optimization Algorithm and Fuzzy Logic 

Wenzhi Wang, Zhanqiao Liu 

School of Distance Education, Jiaozuo University, Jiaozuo, 454000, China 

 

 
Abstract—Cloud computing involves the dynamic provision of 

virtualized and scalable resources over the Internet as services. 

Different types of services with the same functionality but 

different non-functionality features may be delivered in a cloud 

environment in response to customer requests, which may need 

to be combined to satisfy the customer's complex requirements. 

Recent research has focused on combining unique and loosely-

coupled services into a preferred system. An optimized composite 

service consists of formerly existing single and simple services 

combined to provide an optimal composite service, thereby 

improving the quality of service (QoS). In recent years, cloud 

computing has driven the rapid proliferation of multi-provision 

cloud service compositions, in which cloud service providers can 

provide multiple services simultaneously. Service composition 

fulfils a variety of user needs in a variety of scenarios. The 

composite request (service request) in a multi-cloud environment 

requires atomic services (service candidates) located in multiple 

clouds. Service composition combines atomic services from 

multiple clouds into a single service. Since cloud services are 

rapidly growing and their Quality of Service (QoS) is widely 

varying, finding the necessary services and composing them with 

quality assurances is an increasingly challenging technical task. 

This paper presents a method that uses the firefly optimization 

algorithm (FOA) and fuzzy logic to balance multiple QoS factors 

and satisfy service composition constraints. Experimental results 

prove that the proposed method outperforms previous ones in 

terms of response time, availability, and energy consumption. 

Keywords—Cloud computing; service composition; QoS; firefly 

algorithm; fuzzy logic 

I. INTRODUCTION 

Recent rapid growth in artificial intelligence [1, 2], 
machine learning [3], optical networks [4, 5], smart grids [6], 
cloud computing [7], 5G connectivity [8], Blockchain [9, 10], 
and Internet of Things (IoT) [11, 12] have resulted in an 
explosion of data in almost all fields of engineering and 
commerce. With cloud computing, large-scale applications can 
be deployed quickly and efficiently, affordably on a per-use 
basis [13]. Cloud computing relies on virtualization to share 
resources among customers [14]. Virtualization technology 
enables cloud data centres to dynamically share physical 
resources, allowing multiple applications to run on different 
platforms known as Virtual Machines (VMs) [15]. As a result 
of virtualization, cloud service providers can ensure the quality 
of service (QoS) distributed among different users while 
achieving maximum resource utilization and minimal power 
consumption [16]. Cloud environments deliver services 
tailored to users' requirements. Existing services are combined 
into composite services to provide users with value-added 
services. As cloud computing has proliferated, more providers 

are providing similar functional cloud services but with diverse 
nonfunctional characteristics [17]. Consequently, cloud service 
composition must consider QoS awareness in choosing 
appropriate services and combining them to meet users' 
expectations, known as QoS-aware cloud service composition 
[18]. Cloud services can potentially encapsulate many 
resources as new technologies develop, and combinatorial 
optimization problems can be transformed into QoS-aware 
cloud service composition problems [19]. 

Cloud services currently available to consumers offer 
similar functionality at varying QoS levels. Cloud services 
offer different levels of QoS for a given task, so ranking these 
services based on QoS makes it easier for users to choose cloud 
services [20]. There might be a service rated best under one 
QoS parameter yet rated worst under another. Various QoS 
parameters can be used to rank the performance of a service. 
Cloud service composition contexts prioritize QoS parameters 
differently [21]. In choosing a cloud service, all QoS 
parameters must be taken into account without overlooking the 
influence of a primary QoS factor. QoS-aware cloud service 
composition generally considers only one or two QoS factors 
and ignores balancing QoS parameters or satisfying 
connectivity constraints [22]. In this paper, we present a novel 
method based on firefly optimization (FOA) and fuzzy logic to 
balance multiple QoS parameters and satisfy the connectivity 
constraints of service composition. The rest of the paper 
appears as follows. The next section summarizes related works. 
The proposed strategy is discussed in detail in Section III. 
Section IV reports the simulation results. Section V concludes 
the paper with a discussion of future directions. Generally, this 
work contributes to: 

 A model maturity metric is introduced in this paper in 
order to provide a comprehensive evaluation of the 
simulation model lifecycle in cloud environments. 

 Based on the cooperation relationship between model 
services, this paper dynamically calculates the maturity 
score of the combined model. 

 A new algorithm based on FOA and fuzzy logic is 
proposed in this paper for the composition and 
optimization of cloud model services. 

II. RELATED WORK 

Kritikos and Plexousakis [23] presented an approach for 
composing cloud services that optimally satisfy various user 
requirements while simultaneously composing different cloud 
services. Cloud application design tools do not simultaneously 
support quality, deployment, security, placement, or cost 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 3, 2023 

713 | P a g e  

www.ijacsa.thesai.org 

requirements. In addition, the proposed approach considers a 
type of design choice currently not considered in the literature. 
Huo, Zhuang [24] propose a novel technique for cloud service 
composition that formalizes service composition as a nonlinear 
integer programming problem by incorporating a time 
attenuation function. Additionally, the discrete gbest-guided 
artificial bee colony algorithm is presented, representing the 
exploration of bee hives for food in search of the optimal 
service composition strategy. Based on experiments, it appears 
that the time attenuation function can improve the quality of 
services by making them more consistent with their 
characteristics at present. In comparison with other algorithms, 
especially for large-scale data, this algorithm provides the best 
possible solution in a short amount of time. 

Liu, Chu [25] use social learning optimization algorithm 
(SLOA) to resolve the QoS-aware cloud service composition 
problem. Improvements to differential evolutionary algorithms 
and SLOA are incorporated into micro-space and learning 
spaces. Performance comparison and experimental results 
demonstrate the efficacy of the SLOA. This work will improve 
search capabilities and convergence rates by extending the 
theory of the swarm intelligence optimization algorithm and 
exploring a novel swarm intelligence optimization model. The 
challenge of correlation-aware QoS in networks and cloud 
services is addressed by Huang, Li [26]. This problem is 
formulated as a multi-constraint optimal path problem, and a 
novel approach is proposed for solving it. The proposed 
algorithm is evaluated using extensive simulation. The 
proposed algorithm yields superior service composition 
solutions with improved QoS guarantees by taking into account 
the QoS correlations between the different service types. 

Karimi, Isazadeh [27] employed the genetic algorithm to 
optimize service level agreements globally. Service clustering 
was applied to reduce the search space, and association rules 
were applied to a composite service based on their histories to 
improve service composition efficiency. As compared with 
similar related works, the proposed method demonstrated 
higher efficiency. Low-cost access to a simplified, centralized 
platform or resource is provided by cloud computing. This type 
of computing allocates resources based on individual needs. 
However, resources need to be allocated efficiently to meet the 
expanding needs of cloud users. Service providers are 
responsible for distributing and sharing resources effectively, 
preventing resource waste. Furthermore, the user receives the 
appropriate service based on their request, with the cost of the 
resource being optimized. Singh, Juneja [28] present an 
algorithm for automated service composition based on agents, 
which addresses both service requests and automatic service 
composition. The algorithm searches for the best services and 
reduces the cost of on-demand virtual machines. 

Wang, Zhou [29] analyzed the relationship between energy 
consumption, network resource consumption, and QoS 
performance in a service composition process. An approach to 
green service composition is then presented. The system 
prioritizes composite services that run on the same physical 
server, virtual machine, or edge switch. Green service 
composition optimization minimizes energy and network 
resource consumption on physical servers and switches in 
cloud data centers. Based on experiments, the proposed 

approach reduces energy consumption by 20-50 percent and 
network resource consumption by 10-50 percent compared to 
other approaches. Jian, Li [30] presents an algorithm 
incorporating the two-order oscillating equation and the 
historical positions of birds. It enhances bird diversity, 
strengthens global search algorithms, and improves bird 
feeding and migration dynamics. Based on simulation results 
with and without local QoS restrictions, the algorithm 
minimizes overall QoS restriction execution times. The new 
eagle search procedure was developed by Jin, Lv [31] by 
integrating regular mutations with an improved whale 
optimization algorithm. In order to verify the performance of 
the new approach, a variety of benchmark functions and 
problems of cloud service composition are used. The proposed 
method outperforms the other methods, according to 
experiments. 

Studies presented above suggest a variety of solutions to 
the problem of service composition. The majority of 
researchers, however, use a simple additive weighting proposal 
in order to combine multiple aspects of QoS into a single-
objective function. Service composition is primarily a multi-
objective problem, in which multiple, often conflicting 
attributes of QoS must be optimized simultaneously. A number 
of proposals have been considered to address the problem of 
service composition from a multi-objective perspective, 
including a tri-objective service composition [32], a bi-
objective service composition [33], and a bi-objective service 
composition from an energy and global quality of service 
utility's perspective [14]. However, these studies only identify 
up to three representative objectives by assigning priorities to 
QoS factors or reducing a large proportion of QoS factors 
within two or three objectives. The literature rarely examines 
service composition scenarios with four or more objectives. 
The QoS criteria for many applications have expanded to 
include security, maintainability, reputation, energy 
consumption, carbon emissions, and ecological impact. With a 
range of trade-off options available, the decision-making 
process becomes more flexible. Service composition is strictly 
a multi-objective optimization problem if we treat all QoS 
attributes equally. 

III. PROPOSED METHOD 

This section will provide a new IoT-enabled cloud service 
composition method based on FOA and fuzzy logic systems. 
We aim to improve the QoS parameters, reduce energy 
consumption, extend the network's life, improve packet 
delivery rates, and decrease delays. Due to two advantages of 
automatic segmentation of the network and diversity in 
solutions, the FOA can perform better than other algorithms in 
finding the optimal solution to optimization problems. In the 
following, we have discussed the network model and problem 
assumptions, optimization models, objective function, and 
finally, the proposed method. 

A. The Problem Expression and Formulation 

Under one set of QoS parameters, a cloud service may be 
rated as the best, whereas under another set of QoS parameters, 
it may be rated as the worst. Various QoS parameters can be 
used to rank cloud service performance. Cloud services that 
rank highest under one QoS parameter, such as reliability, may 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 3, 2023 

714 | P a g e  

www.ijacsa.thesai.org 

rank lowest under another QoS parameter, such as response 
time. Therefore, QoS parameters are prioritized differently 
depending on the composition context. A cloud service that is 
optimal under one QoS parameter may fail if that cloud service 
is not optimal under another QoS parameter. Therefore, 
including any of these cloud services as candidate services in 
the composition will have an impact on the overall 
performance, since these cloud services perform poorly under 
parameters other than the primary QoS parameter. 

QoS-aware services composition problem is finding a set of 
candidate services with different functional features that 
comply with the determined limitations by the user and 
optimize an objective function. This problem is explained in 
this section. 

 A service composition request as a workflow that is 
modeled using a Directed Acyclic Graph (DAG), G= 
(V, E). 

                   That n is the number of tasks in 
the workflow. 

 E is the set of edges showing the priority of executing 
the works. 

 Each    for       is a set of candidate services in 
the workflow. 

         
     

      
  : That    

 
 for       is a 

candidate service. 

    is the number of existing candidate services for   . 

 Each candidate service    
 
 has a set of different QoS 

information. 

                     That    for       
shows a QoS feature of cloud services. 

Considering the above cases, the goal of the QoS-aware 
service composition problem is near optimal so that: 

      

{
  
 

  
 

      

∑                                             

 

   

∏              

 

   

                        

 

 

 

(1) 

 

Composition and service selection problem in all 
computational platforms like cloud environment and IoT is 
appropriate to meet a user or system requirements that should 
provide QoS requirements in addition to the user's needs. A 
fitting function in a service composition problem, like any 
optimization problem, is used to determine whether the 
selected service is valuable. This function's output determines 
the efficiency of the selected services for composition. 

Generally, the most important factor for the development 
and scalability of IoT is considering energy consumption 
limitations. Hence, energy saving is one of the important 
challenges in these networks because energy sources in IoT 

nodes are limited, and changing the energy sources of the 
nodes on large scales is practically impossible. Based on the 
mentioned notes, energy consumption is critical for the 
candidate services' host nodes. Thus, each candidate service 
must propose its required energy to the service provider 
module to select one of the most energy-efficient nodes for 
service composition. Two variables are used in the proposed 
energy model for the model definition. The first one is the 
amount of remaining energy and the second one is the amount 
of consumed energy of the node, which is the amount of 
consumed energy when executing the user's request. Based on 
the model,          is the remaining energy of the candidate 

service host (    ), and   (    ) is the consumed energy when 

running the candidate's request (    ). Hence, the amount of 

remaining energy of the host is calculated using 3: 

  (    )     (    )            (2) 

where    (    ) is the level of energy in the IoT node 

equipped with the battery, which is the host of      service, and 

          is the minimum threshold energy of IoT so that if a 

node's energy is less than the threshold, the node cannot work 
in the network and dies. 

Since the energy model in this thesis is based on service-
oriented calculations, the consumed energy by the service 
candidate when running      is estimated using equation (3). 

We assume that the energy consumption of the candidate 
service      is constant because the services are run on the 

same IoT platform and use the same resources to answer the 
service. Moreover, they consume the same amount of energy 
when data transmission and reception. 

  (    )     (    )   (    ) (3) 

where   (    ) is the consumed energy, and  (    ) is the 

run time of the candidate service (    ). Finally, the consumed 

energy of the      candidate service is defined as an EP and 

calculated by Eq. (4). The profile is estimated based on the 
ratio of the      candidate service consumed energy to its 

remaining energy. 

  (    )  
  (    )

  (    )
 (4) 

Based on Eq. (3) to (4), the lower amount of   (    ) in a 

node means that the node is optimal for      service at time   . 

Finally, the EP of service composition is computed using Eq. 
(5). Hence, the consumed energy of the service composition 

path    is as follows: 

      ∑            

 

   

 (5) 

where   is the set of IoT nodes with a battery. The nodes 
with lower energy than the threshold energy is removed from 
the set. 

 Response Time: the required time duration for a request 
transmission and its response reception. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 3, 2023 

715 | P a g e  

www.ijacsa.thesai.org 

 Availability: the number of successful calls to the total 
number of calls ratio. 

 Successability: the number of responses to the number 
of request messages ratio. 

 Reliability: the number of faulty messages to the total 
number of messages ratio. 

 Latency: the duration of a request process by a server. 

In the selection and composition of IoT services, the 
composing services can be composed and meet the users' 
needs. Hence, calculating the composed QoS features 
summation is important, and each serial, parallel, switch, and 
loop pattern uses its formulas. The requested works and the 
proposed services are considered a graph for service 
composition. Thus, the following equations are used for the 
QoS parameter values calculation in the composing services. 
Eq. (6) calculated the response time parameter, and Eq. (7) to 
(11) are used to calculate delay, energy, reliability, availability, 
and successability parameters in the composing services, 
respectively. 

                  ∑    

 

   
    

(6) 

            ∑   

 

   
    

(7) 

                       ∑    

 

   
    

(8) 

                ∏      
 

   
 

(9) 

                  ∏      
 

   
 

(10) 

                   ∏      
 

   
 

(11) 

Generally, the fitting function (objective function) is used 
to determine the value of each solution generated by the 
optimization problems. This function output determines how 
much a solution can be useful for meeting the user's or the 
system's requirements. The fitting function is defined by Eq. 
(12). 

                                
 

     

    
 

    
    

 

    
   

        

(12) 

where   ,   ,   ,   ,   , and    are the positive 
weights showing the importance of each QoS parameter 
determined by the user. Eq. (13) and (14) are used for 
normalizing the parameters' output in the objective function. 
Eq. (13) is for the minimizer parameters, and (14) is for the 
maximizer parameters. 

      {

    
       

    
      

 
         

      
 

                                
      

 

 

(13) 

      {

          
 

    
      

 
         

      
 

                                
      

 

 

(14) 

where       is the ith parameter value of QoS related to 

the CS selected service,        is the normalized value, and 

    
  and     

  are the maximum and minimum of the ith 
parameter among all the services. 

B. The Proposed Method’s Steps 

This section has two subsections. The first subsection 
includes general information about the firefly algorithm and 
Fuzzy logic, and the proposed method steps are explained in 
the second subsection. The FOA algorithm was inspired by 
how fireflies attract mates by producing flashlights. The FOA 
uses three idealized features of the firefly's flashing light to 
produce an optimal solution. Fireflies are unisex and attract 
other fireflies irrespective of their gender. 

Further, when two fireflies are distant from each other, their 
attractiveness decreases, which is directly proportional to their 
brightness. Finally, the firefly flashing light is incorporated into 
the optimization process as an objective function [34, 35]. 
Fuzzy logic is an approach to variable processing that allows 
multiple possible truth values to be processed through the same 
variable. Fuzzy logic attempts to solve problems with an open, 
imprecise spectrum of data and heuristics that makes it possible 
to obtain an array of accurate conclusions. The fuzzy logic 
architecture consists of the following components: 

 Rule base: This contains the rules and membership 
functions that regulate or control decision-making in the 
fuzzy logic system. It also contains the IF-THEN 
conditions for conditional programming and controlling 
the system. 

 Fuzzifier: This component transforms raw inputs into 
fuzzy sets. The fuzzy sets proceed to the control system, 
where they undergo further processing. 

 Inference engine: This tool establishes the ideal rules 
for a specific input. It then applies these rules to the 
input data to generate a fuzzy output. 

 Defuzzifier: This component transforms the fuzzy sets 
into an explicit output (in the form of crisp inputs). 
Defuzzification is the final stage of a fuzzy logic 
system. 

The proposed method uses the fuzzy logic system and 
firefly optimization algorithm for optimal service composition. 
Since the firefly algorithm has a low speed for local search, 
Fuzzy logic is used to ease finding the optimal composition in 
terms of the problem objectives. The firefly algorithm can find 
and compose more optimal services in less time by applying 
fuzzy values for each QoS parameter. The basis of the work is 
as follows: first, a firefly is assigned to each service. Then the 
fireflies create paths based on their movement pattern and 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 3, 2023 

716 | P a g e  

www.ijacsa.thesai.org 

Luciferin value to find the optimal service composition. 
Finally, the best services are used for composition by 
evaluating the route found by the fireflies. The Fuzzy values 
for each service in the Luciferin function are saved for each 
firefly. The fireflies find the best composition by applying the 
Fuzzy values with the neighbour nodes' Luciferin. 

1) First step: generating primary population: The primary 

population is generated in this step using random distribution. 

The IoT nodes generated based on the geographical positions 

are distributed in the objective area. After the distribution of 

nodes, the parameters' initial values, like energy, Luciferin 

value, and the nodes transmission's radius, are assigned to the 

parameters. Moreover, data related to each QoS parameter are 

read from the dataset and put in the parameters. 

2) Second step: QoS parameters fuzzification: The 

proposed method's first step includes fuzzifying each IoT 

service QoS information. This information includes response 

time, availability, successability, reliability, energy, and delay. 

These values are the Fuzzy system inputs in this step, in which 

a Fuzzy value is generated based on the Fuzzy rules for all 

inputs to evaluate and select the services based on the value. 

This Fuzzy value is defined as Low, High, Medium, Very 

Low, and Very High. Then the system analyzes the 

information based on the inputs and the written rules in the 

knowledge base of the fuzzy system and generates the final 

value after defuzzification. These values then transfer to the 

firefly algorithm as inputs. 

The fuzzy rules are written considering different states of 
the input parameters and finally are saved in the database. Then 
using a Fuzzy Inference System (FIS), an output value is 
generated based on different input states. The Fuzzy rules are 
written using nested If-Then. The proposed Fuzzy system used 
25 rules shown in Table I. Fig. 1 to 5 illustrate the membership 
functions of the FIS input and output parameters. In the Fuzzy 
rules table, RT is the response time, D is the delay, En is 
energy, Av is availability, and Fitness is the output parameter. 

After generating different fuzzy values based on the fuzzy 
rules and input parameters, defuzzification is performed on 
each fuzzy value. Membership functions of the fuzzy system 
output variables are presented in Fig. 3 to 11. 

3) Third step: using the firefly algorithm to select the best 

services for the composition: Each firefly in this algorithm is 

an answer to the problem. All answers have fitting values 

calculated by the fuzzy system that should be optimized. The 

first step is creating a list of the proposed services to do the 

existing tasks in the workflow. Each workflow proposed by 

the user has n tasks. There is a determined number of services 

to perform each task, and m is the maximum number of the 

proposed selected services for each task. At first, an n*1 array 

of random numbers with size m are generated to initialize the 

algorithm. The array shows the number of existing services in 

the accumulator that can perform the workflow tasks. In the 

next step, the matrix is generated to save the list of the 

services that can perform the tasks in the workflow. The 

number of proposed services listed to do the workflow's tasks 

is generated in the next step. Each presented workflow by the 

user has m tasks, and there is a determined number of services 

to do each of the services. The optimization process started 

with some random solutions. The primary solution is selected 

among the proposed services for each task. In the firefly 

algorithm, the primary solution is a service composition, an 

n*1 array with n tasks in the workflow. The stored number in 

index i of the array shows the ID of the candidate service that 

executes the Ti task. The following steps are performed to 

select and compose the most proper services based on the 

firefly algorithm steps: 

 In the first step, some primary population is generated 
and distributed randomly. Initialization of Luciferin is 
applied to each firefly, and the primary solutions are 
generated. These solutions are valued based on the 
fitting function value. 

 In the second step, the considered proposed QoS 
parameters as inputs of the problem are fuzzified based 
on the proposed Fuzzy system. Their values in each 
round of the algorithm are inserted and updated in the 
Luciferin matrix as the next step fitting value (the 
neighbour nodes). Since the parameter values change in 
each round of the algorithm, the proposed fuzzy system 
is executed based on the Fuzzy rules in each round, and 
new values are generated. 

 In the third step, the firefly algorithm generates new 
solutions based on the movement steps. A population of 
fireflies creates new solutions in the proposed 
algorithm. The generated solutions of each iteration go 
to the next iteration for more optimal solutions. A 
firefly position shows a solution for the composing 
service problem that the primary position of the fireflies 
is random. Each firefly generated new solutions in each 
algorithm iteration based on the fitting value using Eq. 
(15). The solutions are updated based on their quality. If 
the new solutions are better than the existing ones, they 
are replaced. 

  =     .       
 (15) 

After that, all fireflies generate their solutions. A 
probability is used for selecting the most appropriate solution 
for each firefly, given by Eq. (16). After calculating the 
selection probability of each node as the next step, one of the 
nodes is selected randomly. 

       
           

∑                   

 
(16) 

In the above equation,       is the amount of luciferin of 
each firefly that is calculated using Eq.  (17). 

                             (17) 

In the Eq. (17),      ,         and       are respectively 
the new value of luciferin, the previous value of luciferin, and 
the fitness of the location of worm i in iteration t of the 
algorithm, respectively, and ρ and γ are fixed numbers for 
modeling Gradual decline and fitness effect on luciferin.  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 3, 2023 

717 | P a g e  

www.ijacsa.thesai.org 

The step-by-step movement of the fireflies continues until 
selecting the most suitable service for composition. After 
selection, the generated solution evaluation is performed so 
that the average distance of the selected solution is calculated 
rather than other solutions. Then the fitting function value is 

computed for new solutions. If the new solution is better than 
the existing solution in the memory, the firefly memory is 
updated using the new solution. Then the parameters are 
updated. The proposed method flowchart is illustrated in Fig. 
6.

TABLE I.  PROPOSED FUZZY RULES 

The fuzzy rules 

If (RT is VL) and (D is VL) and (En is VL) and (Av is VH) then (Fitness is VH) 

If (RT is VL) and (D is VL) and (En is L) and (Av is VH) then (Fitness is H) 

If (RT is VL) and (D is VL) and (En is L) and (Av is H) then (Fitness is H) 

If (RT is VL) and (D is VL) and (En is VL) and (Av is H) then (Fitness is VH) 

If (RT is VL) and (D is VL) and (En is VL) and (Av is M) then (Fitness is H) 

If (RT is VL) and (D is VL) and (En is VL) and (Av is L) then (Fitness is L) 

If (RT is VL) and (D is VL) and (En is VL) and (Av is VL) then (Fitness is VL) 

If (RT is L) and (D is L) and (En is L) and (Av is VH) then (Fitness is VH) 

If (RT is L) and (D is L) and (En is L) and (Av is H) then (Fitness is H) 

If (RT is L) and (D is L) and (En is L) and (Av is M) then (Fitness is H) 

If (RT is L) and (D is L) and (En is L) and (Av is L) then (Fitness is L) 

If (RT is L) and (D is L) and (En is L) and (Av is VL) then (Fitness is VL) 

If (RT is M) and (D is M) and (En is M) and (Av is VH) then (Fitness is M) 

If (RT is M) and (D is M) and (En is M) and (Av is H) then (Fitness is M) 

If (RT is M) and (D is M) and (En is M) and (Av is M) then (Fitness is M) 

If (RT is M) and (D is M) and (En is M) and (Av is L) then (Fitness is L) 

If (RT is M) and (D is M) and (En is M) and (Av is VL) then (Fitness is VL) 

If (RT is H) and (D is H) and (En is H) and (Av is VH) then (Fitness is M) 

If (RT is H) and (D is H) and (En is H) and (Av is H) then (Fitness is H) 

If (RT is H) and (D is H) and (En is H) and (Av is M) then (Fitness is L) 

If (RT is H) and (D is H) and (En is H) and (Av is L) then (Fitness is VL) 

If (RT is H) and (D is H) and (En is H) and (Av is VL) then (Fitness is VL) 

If (RT is VH) and (D is VH) and (En is VH) and (Av is VH) then (Fitness is VL) 

If (RT is VH) and (D is VH) and (En is VH) and (Av is H) then (Fitness is VL) 

If (RT is VH) and (D is VH) and (En is VH) and (Av is M) then (Fitness is L) 

If (RT is VH) and (D is VH) and (En is VH) and (Av is L) then (Fitness is M) 

If (RT is VH) and (D is VH) and (En is VH) and (Av is VL) then (Fitness is VL) 

 

Fig. 1. Membership function for response time parameter. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 3, 2023 

718 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 2. Membership function for delay parameter. 

 
Fig. 3. Membership function for energy parameter. 

 
Fig. 4. Membership function for accessibility rate parameter. 

 
Fig. 5. Membership function for fuzzy system output. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 3, 2023 

719 | P a g e  

www.ijacsa.thesai.org 

Start 

Parameters Initialization

Create initial population

Evaluate initial solutions 

Input parameters Fuzzifier 

Fuzzy rules Define 

Defuzzifier and assign fuzzy value for services 

Create new solution with each firefly 

Evaluate new solutions 

Update luciferin value 

Firefly algorithm 

terminate condition?

Proposed algorithm 

terminate condition?

End 

Yes

Yes

No

No

 
Fig. 6. Proposed method flowchart. 

IV. EVALUATION AND SIMULATION 

Matlab is used for the simulation of the proposed method. 
All these experiments are performed on an HP computer with a 
Core i5 2.0 GHz CPU and 4 GB main memory. The utilized 
dataset in the proposed method is a dataset provided by Al-

Masri et al., called Quality of Web Service (QWS), and 
provides a base for the services researchers. The QWS dataset 
includes a set of 2507 web services and measures their QoS. 
These data are presented in Table II. The parameters are 
considered objective parameters. Firefly algorithm parameters 
also are presented in Table III. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 3, 2023 

720 | P a g e  

www.ijacsa.thesai.org 

A. The Simulation Results’  Study 

The proposed method's results are compared with [36], 
[37], and [38] in this section and presented in different tables 
and figures. Moreover, two experiments are explained in the 
following to study the proposed method's convergence to 
optimal solutions and stability test. 

In the first experiment, the resulting data of [36] are used to 
evaluate the proposed method in this thesis. The proposed 
method in [36] is based on a multi-objective genetic algorithm 
to investigate the service composition of IoT that is evaluated 
with the different number of tasks and candidate services for 
the tasks. Hence, our proposed method is evaluated in this 
experiment with ten tasks and 10, 30, and 50 candidate 
services. Fig. 7 shows the proposed method's execution time 
and comparison with the multi-objective genetic algorithm 
[36]. Based on the results, the proposed method's execution 
time is less than the genetic algorithm to find appropriate 
services for composition. Because the proposed method can 
find the most suitable network node for the services selection 
and composition that provides QoS requirements by tracing the 
most optimal IoT nodes. The routing method and selecting the 
most suitable resource (IoT node) with proper services for the 
user's requests will be explained in detail with mathematical 
equations in the third chapter. 

In the second experiment, the resulting data of [37] are used 
to evaluate the proposed method in this thesis. The proposed 
method in [37] is based on the Markov chain and ant colony 

optimization algorithm for IoT services composition. The 
authors of [37] evaluate their method with the different number 
of requests. Hence, our proposed method (firefly-fuzzy logic) 
is simulated and evaluated with the different number of 
requests in this experiment. 

Fig. 8 to 11 show the availability rate, response time, 
reliability rate, and consumed energy of the proposed method, 
respectively, which are compared with the method in [37]. 
Based on the results in Fig. 8, the proposed method (firefly-
fuzzy logic) has a higher accessibility rate than the Markov-ant 
colony because of tracing the network nodes based on energy 
and distance. Moreover, selecting the most suitable route 
between the network's nodes (network's resources) is based on 
the movement pattern of the fuzzy firefly. According to Fig. 9, 
the response time of the proposed method is less than the 
method in [37]. Fig. 10 to 11 also show better performance of 
the proposed method than the method in [37] in terms of 
reliability. 

In the third experiment, the resulting data of [39] are used 
to evaluate the proposed method in this thesis. The proposed 
method in [39] is based on the Concurrent Requests Integration 
Optimization (CRIO) mechanism and Gray Wolf (GWO) for 
IoT services composition. Fig. 12 shows the consumed energy 
by the proposed method. The results in Fig. 12 show that the 
proposed method has a lower energy consumption than the 
CRIO-GWO. 

TABLE II.  QWS PARAMETERS DEFINITION 

Parameters Definition 

Response Time The required time duration for a request transmission and its response reception. 

Availability The number of successful calls to the total number of calls ratio. 

Energy The amount of the consumed energy of the host nodes of the candidate services. 

Successability The number of responses to the number of request messages ratio. 

Reliability The number of faulty messages to the total number of messages ratio. 

Latency The duration of a request process by a server 

TABLE III.  SIMULATION VARIABLES 

Parameters Definition Value measurement Unit 

N Number of nodes 100-600 - 

MaxIT Maximum algorithm iteration 100-1000 - 

L Data packet length 1024 bit 

         Initial energy 0.5 – 10 joule 

   Firefly algorithm constant [0 – 1] - 

   Firefly algorithm constant 1 - 

γ Firefly algorithm constant 0.1 – 10 - 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 3, 2023 

721 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 7. Response time vs. the number of candidate services. 

 
Fig. 8. Accessibility rate vs. the number of requests. 

 

Fig. 9. Response time vs. the number of requests. 

6.01 

24.14 

45.96 

3.98 

19.52 

41.26 

0

10

20

30

40

50

10 30 50R
es

p
o

n
ce

 t
im

e 
(s

e
co

n
d

s)
 

Candidate services 

Multi-objective Genetic Proposed Method

0
.3

7
8

 

0
.3

2
9

 

0
.3

1
4

 

0
.3

0
1

 

0
.2

8
6

 

0
.2

5
9

 

0
.2

4
1

 

0
.1

9
8

 

0
.1

4
1

 

0
.4

5
6

 

0
.3

8
6

 

0
.3

6
4

 

0
.3

5
1

 

0
.3

2
6

 

0
.3

1
6

 

0
.2

8
6

 

0
.2

6
4

 

0
.2

3
9

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

500 1500 2500 3500 4500 5500 6500 8500 9500

A
cc

es
si

b
il

ty
 R

a
te

 (
%

) 

Number of requests 

Markov - Ant Method Proposed Method

0
.2

5
 

0
.3

7
 

0
.4

9
 

0
.5

8
3

 

0
.6

7
 

0
.7

9
3

 

0
.8

8
9

 1
.2

 1
.3

8
 

1
.5

4
 

0
.2

1
5

 

0
.3

6
2

 

0
.3

9
1

 

0
.4

6
7

 

0
.5

9
7

 

0
.6

2
5

 

0
.7

1
9

 0
.9

8
3

 

1
.1

2
8

 1
.3

9
8

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

re
sp

o
n

se
 t

im
e 

(m
il

is
e
co

n
d

) 

Number of requests 

Markov - Ant Method Proposed Method



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 3, 2023 

722 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 10. Reliability rate vs. the number of requests. 

 
Fig. 11. Energy consumption vs. the number of requests. 

 

Fig. 12. Energy consumption vs. the number of nodes. 

0
.5

9
3

 

0
.5

8
7

 

0
.5

8
5

 

0
.5

6
9

 

0
.5

5
4

 

0
.5

4
3

 

0
.5

3
 

0
.5

1
4

 

0
.4

8
 

0
.6

5
 

0
.6

1
2

 

0
.6

1
8

 

0
.6

0
8

 

0
.5

8
1

 

0
.5

7
 

0
.5

5
6

 

0
.5

3
9

 

0
.5

2
7

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

500 1500 2500 3500 4500 5500 6500 8500 9500

re
li

a
b

il
it

y
 r

a
te

 (
%

) 

Number of requests 

Markov - Ant Method Proposed Method

2
7

5
 1
2

2
4

.1
8

 

1
5

8
0

.3
5

 

2
1

3
6

.6
1

 

3
2

7
1

.2
3

 

4
1

4
1

.1
6

 

5
4

1
9

.3
8

 

7
4

3
0

.8
3

 

8
5

5
9

.1
4

 

1
9

0
.2

6
4

 

1
0

2
9

.5
2

 

1
4

7
8

.2
6

5
 

1
9

3
5

.6
5

7
 

2
7

7
1

.0
2

 

2
9

8
9

.2
3

7
 

4
2

1
9

.2
5

 

5
9

0
2

.2
6

 

6
1

2
1

.3
5

2
 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

500 1500 2500 3500 4500 5500 6500 8500 9500

E
n

er
g
y
 c

o
n

su
m

p
ti

o
n

 (
k

w
) 

Number of requests 

Markov - Ant Method Proposed Method

5
2

5
.6

4
1

 

5
5

1
.2

8
2

 

5
9

7
.4

3
5

 

6
5

6
.4

1
 

7
0

0
.1

4
 

4
9

8
.2

5
1

 

5
1

0
.2

1
5

 

5
3

9
.5

6
2

 

5
9

8
.2

6
1

 

6
1

2
.3

2
5

 

0

100

200

300

400

500

600

700

800

30 40 50 60 70

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
n

j)
 

The number of nodes 

CRIO-GWO Method Proposed Method



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 3, 2023 

723 | P a g e  

www.ijacsa.thesai.org 

V. CONCLUSION 

In general, cloud computing refers to the provision of 
dynamically scalable and virtualized resources over the 
Internet as services. Depending on the user's needs, a variety of 
cloud-based services may be delivered, which are often 
composited to meet those requirements. To combine and 
consolidate cloud services, service composition is emerging as 
a universal technology. By combining previously existing 
services, this idea aims to reduce costs and improve efficiency 
through a new cloud service. An IoT-enabled cloud service 
composition method using the fuzzy logic system and FOA is 
proposed in this paper. Energy, reliability, delay, and 
availability are the objective parameters in the proposed 
method. There are three main steps involved in this method in 
order to provide the proper nodes for the composition of cloud 
services. First, the requirements to start the algorithm are 
provided, like initialization of parameters and the dataset 
values normalization. Second, fuzzyification is performed on 
the parameters after determining the input parameters. Third, 
the firefly algorithm selects the most suitable nodes (resources) 
for service composition. Finally, in the fourth section of this 
paper, the proposed method is simulated using Matlab. A 
comparison of the proposed method with previous ones 
showed that the proposed method performed better in terms of 
response time, availability, and energy consumption. The 
dynamic nature of the cloud may be considered in our future 
work. A cloud's processing capabilities are limited, and the 
number of atomic services may change over time. Future 
research should focus on how to compose atomic services. In 
addition to addressing the energy consumption issue, we hope 
to maintain other metrics in the scheduling, including 
reliability, stability, trust degree, etc. 

REFERENCES 

[1] Vahedifard, F., et al., Artificial intelligence for radiomics; diagnostic 
biomarkers for neuro-oncology. World Journal of Advanced Research 
and Reviews, 2022. 14(3): p. 304-310. 

[2] Saeidi, S.A., et al. A novel neuromorphic processors realization of 
spiking deep reinforcement learning for portfolio management. in 2022 
Design, Automation & Test in Europe Conference & Exhibition 
(DATE). 2022. IEEE. 

[3] Akhavan, J. and S. Manoochehri. Sensory data fusion using machine 
learning methods for in-situ defect registration in additive 
manufacturing: a review. in 2022 IEEE International IOT, Electronics 
and Mechatronics Conference (IEMTRONICS). 2022. IEEE. 

[4] Khosravi, F., et al. Implementation of an Elastic Reconfigurable Optical 
Add/Drop Multiplexer based on Subcarriers for Application in Optical 
Multichannel Networks. in 2022 International Conference on 
Electronics, Information, and Communication (ICEIC). 2022. IEEE. 

[5] Khosravi, F., et al., Improving the performance of three level code 
division multiplexing using the optimization of signal level spacing. 
Optik, 2014. 125(18): p. 5037-5040. 

[6] Haghshenas, S.H., M.A. Hasnat, and M. Naeini, A Temporal Graph 
Neural Network for Cyber Attack Detection and Localization in Smart 
Grids. arXiv preprint arXiv:2212.03390, 2022. 

[7] Taami, T., S. Krug, and M. O’Nils. Experimental characterization of 
latency in distributed iot systems with cloud fog offloading. in 2019 15th 
IEEE International Workshop on Factory Communication Systems 
(WFCS). 2019. IEEE. 

[8] He, P., et al., Towards green smart cities using Internet of Things and 
optimization algorithms: A systematic and bibliometric review. 
Sustainable Computing: Informatics and Systems, 2022. 36: p. 100822. 

[9] Meisami, S., M. Beheshti-Atashgah, and M.R. Aref, Using Blockchain 
to Achieve Decentralized Privacy In IoT Healthcare. arXiv preprint 
arXiv:2109.14812, 2021. 

[10] Mehbodniya, A., et al., Modified Lamport Merkle Digital Signature 
blockchain framework for authentication of internet of things healthcare 
data. Expert Systems, 2022. 39(10): p. e12978. 

[11] Pourghebleh, B., et al., A roadmap towards energy‐efficient data fusion 
methods in the Internet of Things. Concurrency and Computation: 
Practice and Experience, 2022: p. e6959. 

[12] Kumar, A., et al., Smart power consumption management and alert 
system using IoT on big data. Sustainable Energy Technologies and 
Assessments, 2022: p. 102555. 

[13] Pourghebleh, B., et al., The importance of nature-inspired meta-heuristic 
algorithms for solving virtual machine consolidation problem in cloud 
environments. Cluster Computing, 2021: p. 1-24. 

[14] Ataie, I., et al. D 2 FO: Distributed Dynamic Offloading Mechanism for 
Time-Sensitive Tasks in Fog-Cloud IoT-based Systems. in 2022 IEEE 
International Performance, Computing, and Communications 
Conference (IPCCC). 2022. IEEE. 

[15] Bermejo, B., C. Juiz, and C. Guerrero, Virtualization and consolidation: 
a systematic review of the past 10 years of research on energy and 
performance. The Journal of Supercomputing, 2019. 75(2): p. 808-836. 

[16] Sefati, S., M. Mousavinasab, and R. Zareh Farkhady, Load balancing in 
cloud computing environment using the Grey wolf optimization 
algorithm based on the reliability: performance evaluation. The Journal 
of Supercomputing, 2022. 78(1): p. 18-42. 

[17] Najafizadeh, A., et al., Multi-objective Task Scheduling in cloud-fog 
computing using goal programming approach. Cluster Computing, 2022. 
25(1): p. 141-165. 

[18] Hayyolalam, V., et al., Single‐objective service composition methods in 
cloud manufacturing systems: Recent techniques, classification, and 
future trends. Concurrency and Computation: Practice and Experience, 
2022. 34(5): p. e6698. 

[19] Hayyolalam, V., et al., Exploring the state-of-the-art service composition 
approaches in cloud manufacturing systems to enhance upcoming 
techniques. The International Journal of Advanced Manufacturing 
Technology, 2019. 105(1-4): p. 471-498. 

[20] Praveenchandar, J. and A. Tamilarasi, Dynamic resource allocation with 
optimized task scheduling and improved power management in cloud 
computing. Journal of Ambient Intelligence and Humanized Computing, 
2021. 12(3): p. 4147-4159. 

[21] Dorsala, M.R., V. Sastry, and S. Chapram, Blockchain-based solutions 
for cloud computing: A survey. Journal of Network and Computer 
Applications, 2021. 196: p. 103246. 

[22] Gabi, D., et al., Cloud customers service selection scheme based on 
improved conventional cat swarm optimization. Neural Computing and 
Applications, 2020: p. 1-22. 

[23] Kritikos, K. and D. Plexousakis. Multi-cloud application design through 
cloud service composition. in 2015 IEEE 8th international conference on 
cloud computing. 2015. IEEE. 

[24] Huo, Y., et al., Discrete gbest-guided artificial bee colony algorithm for 
cloud service composition. Applied Intelligence, 2015. 42(4): p. 661-
678. 

[25] Liu, Z.-Z., et al., Social learning optimization (SLO) algorithm paradigm 
and its application in QoS-aware cloud service composition. Information 
Sciences, 2016. 326: p. 315-333. 

[26] Huang, J., et al. QoS correlation-aware service composition for unified 
network-cloud service provisioning. in 2016 IEEE Global 
Communications Conference (GLOBECOM). 2016. IEEE. 

[27] Karimi, M.B., A. Isazadeh, and A.M. Rahmani, QoS-aware service 
composition in cloud computing using data mining techniques and 
genetic algorithm. The Journal of Supercomputing, 2017. 73(4): p. 1387-
1415. 

[28] Singh, A., D. Juneja, and M. Malhotra, A novel agent based autonomous 
and service composition framework for cost optimization of resource 
provisioning in cloud computing. Journal of King Saud University-
Computer and Information Sciences, 2017. 29(1): p. 19-28. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 3, 2023 

724 | P a g e  

www.ijacsa.thesai.org 

[29] Wang, S., et al., Towards green service composition approach in the 
cloud. IEEE Transactions on Services Computing, 2018. 14(4): p. 1238-
1250. 

[30] Jian, C., M. Li, and X. Kuang, Edge cloud computing service 
composition based on modified bird swarm optimization in the internet 
of things. Cluster Computing, 2019. 22(4): p. 8079-8087. 

[31] Jin, H., et al., Eagle strategy using uniform mutation and modified whale 
optimization algorithm for QoS-aware cloud service composition. 
Applied Soft Computing, 2022. 114: p. 108053. 

[32] Tao, F., et al., Correlation-aware resource service composition and 
optimal-selection in manufacturing grid. European Journal of 
Operational Research, 2010. 201(1): p. 129-143. 

[33] Zhang, Y., et al., Long/short-term utility aware optimal selection of 
manufacturing service composition toward industrial internet platforms. 
IEEE Transactions on Industrial Informatics, 2019. 15(6): p. 3712-3722. 

[34] Perumal, B. and A. Murugaiyan, A firefly colony and its fuzzy approach 
for server consolidation and virtual machine placement in cloud 
datacenters. Advances in Fuzzy Systems, 2016. 2016. 

[35] Singh, U. and R. Salgotra, Synthesis of linear antenna arrays using 
enhanced firefly algorithm. Arabian Journal for Science and 
Engineering, 2019. 44(3): p. 1961-1976. 

[36] Kashyap, N., A.C. Kumari, and R. Chhikara, Multi-objective 
Optimization using NSGA II for service composition in IoT. Procedia 
Computer Science, 2020. 167: p. 1928-1933. 

[37] Sefati, S. and N.J. Navimipour, A qos-aware service composition 
mechanism in the internet of things using a hidden-markov-model-based 
optimization algorithm. IEEE Internet of Things Journal, 2021. 8(20): p. 
15620-15627. 

[38] Alsaryrah, O., I. Mashal, and T.-Y. Chung, Bi-objective optimization for 
energy aware Internet of Things service composition. IEEE Access, 
2018. 6: p. 26809-26819. 

[39] Sun, M., et al., Energy-efficient IoT service composition for concurrent 
timed applications. Future Generation Computer Systems, 2019. 100: p. 
1017-1030. 

 


