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Abstract—Developing a license plate recognition system that 

can cope with unconstrained real-time scenarios is very 

challenging. Additional cues, such as the color and dimensions of 

the plate, and font of the text, can be useful in improving the 

system's accuracy. This paper presents a deep learning-based 

plate recognition system that can take advantage of the bilingual 

text in the license plates, as used in many countries, including 

Saudi Arabia. We train and test the model using a custom dataset 

generated from real-time traffic videos in Saudi Arabia. Using 

the English alphanumeric alone, the accuracy of our system was 

on par with the existing state-of-the-art algorithms. However, it 

increased significantly when the additional information from the 

detection of Arabic text was utilized. We propose a new 

algorithm to restore noise-affected missing or misidentified 

characters in the plate. We generated a new test dataset of license 

plates to test how the proposed system performs in challenging 

scenarios. The results show a clear advantage of the proposed 

system over several commercially available solutions, including 

Open ALPR, Plate Recognizer, and Sighthound. 

Keywords—Automatic License Plate Recognition (ALPR); 

Intelligent Transportation System (ITS); Optical Character 

Recognition (OCR); Deep Convolutional Neural Network; You 
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I. INTRODUCTION 

In recent times, smart cities have been a popular trend, 
resulting in the pacing of the development of several enabling 
technologies. One of them is robust automatic license plate 
recognition (ALPR) [1], which offers a computer vision based 
solution for intelligent transportation systems (ITS) [2]. In this 
regard, a passive mesh of cameras is generally installed at road 
intersections and other suitable locations to observe vehicle 
routing through urban environments [3]. ITS can improve 
safety and mobility and help law enforcement agencies monitor 
traffic effectively. There have been several systems proposed 
to detect and recognize license plates (LPs) for various 
applications like toll fees collection [4], monitoring for the 
speed of a car on the road [5], traffic volume estimation on [6], 
detection of illegal parking [7], highway surveillance [8], and 
border control [9]. However, most systems tackling any of 
these aspects often work well only when operated in a 
restricted environment where camera distance and angle are 
fixed [10].  In an unconstrained environment, factors like low 
image resolution, dynamic background, motion blur [11], and 
variable lighting conditions, can degrade the image quality. 
This makes recognizing LP characters in unconstrained 
environments a very challenging task. 

Some solutions that have been proposed to address these 
variabilities include Laplacian gradient-based partial character 
segmentation [12], Generative Adversarial Network (GAN) 
[13], super-resolution (SR) image reconstruction using 
maximum a posteriori (MAP) [14], SR reconstruction [15], and 
Recurrent Neural Network (RNN) [16]. Although these 
approaches can help restore the deteriorated or missed 
characters within LP, they do it at the expense of higher 
computational complexity due to the additional machine 
learning model used for the restoration task. Similarly, 
methods like multiscale adaptive thresholding [17] and matrix 
edge information based adaptive thresholding [18] depend on 
edge information. They can produce false positives due to 
weak edges, especially in the presence of high noise. 

We propose a simple and fast technique for detecting and 
recognizing the contents of LP in unconstrained environments. 
You Only Look Once Version 5 (YOLOv5) network is used 
for detection, while a custom-built convolutional neural 
network (CNN) recognizes the contents in the detected LP. We 
collected a custom dataset from real-time traffic in Saudi 
Arabia, where the number plates are bilingual, using Arabic 
text on top and English at the bottom. The unique feature of the 
proposed method compared to the existing works is that it tries 
to recognize alphanumerics in both languages and then 
combines both results to improve the overall accuracy of LP 
recognition. We propose a new algorithm, which can address 
several scenarios of unrecognized and wrongly recognized 
alphanumerics. It uses computationally simple and efficient 
techniques, implemented without using a separate deep 
learning model, and does not depend on the deteriorated 
character's edge information either to restore the noise-affected 
missed character. Our results show that the proposed model 
outperforms commercially available server-based ALPR 
systems of Sighthound [19], Plate Recognizer [20], and Open 
ALPR [21]. 

The rest of the paper is organized as follows. Section II 
gives an overview of the related work. Section III describes 
training dataset preparation steps, including extracting LP from 
the captured video streams and synthetically generating and 
augmenting more plates to add to the data. The steps of 
detecting LP, recognizing Arabic and English alphanumeric 
characters, and restoration of missed and wrongly recognized 
characters are discussed in Section IV. Experimental 
evaluation is reported in Section V, while some conclusions 
and future research directions are given in Section VI. 
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II. RELATED WORK 

Over the years, numerous designs based on different 
architecture and technologies have been proposed to solve the 
detection and recognition problems of ALPR. For the detection 
of LPs, some works use image processing-based solutions. 
Chen and Luo [22] proposed an LP localization method using 
an improved version of the Prewitt arithmetic operator. It 
extracts the exact location from vertical and horizontal 
projections. However, the method requires prior knowledge of 
all the characters' textures which become difficult to obtain 
while working in an unconstrained real-time environment. 
Vijeta et al. [12] used stroke pair candidate detection by using 
Laplacian and gradient information. They find pixels that 
represent the stroke width of characters on a given LP. 
However, this method usually fails while dealing with complex 
backgrounds in real time due to unsymmetrical features within 
the captured frames. 

YOLO models have been used to detect LPs in more recent 
works. Alghyaline [11] used a modified YOLOv3 model. Since 
the LP size is much smaller than the captured frame, they used 
only 15 layers instead of the original 75. It made the process 
fast but at the expense of low accuracy when detecting smaller 
characters within LPs. Ju-Yeong Sung [23] used YOLOv4, 
which can detect smaller objects, both LP and the characters 
within it, but at the expense of higher training costs.  Khan et 
al. [24] used the YOLOv5 model to detect LP and its 
characters in a real-time environment. The YOLOv5 model 
uses path aggregators to speed up the detection process in real 
time. It also uses the mosaic data augmentation technique, 
which helps detect very small objects in challenging 
environments. Moreover, it also uses auto-learning bounding 
box anchors, which help make bounding boxes around objects 
despite the challenging backgrounds within a frame. 

Some works use image processing-based techniques to 
reconstruct deteriorated or missed characters for the 
recognition task. Vijeta [12] proposed partial character 
reconstruction with the Tesseract optical character recognition 
(OCR) library, which uses the characteristics of stroke widths 
in the Laplacian and gradient domains. The method first 
enhances high-contrast information at the edges using 
symmetrical features of incomplete characters by suppressing 
background information. Then it uses stroke width properties 
to reconstruct the complete shape of the deteriorated 
characters. This method, however, proves to be not very 
effective for restoring completely deteriorated characters.  
Khoshki et al. [17]  proposed a multiscale adaptive 
thresholding method for ALPR, which is used to find the 
candidates matching the LP characters affected by noise. 
However, the effectivity of this method lessens under varying 
illumination conditions. Moreover, it is computationally 
intensive and requires significant time to process input images. 
Mokji et al. [18] proposed an algorithm that incorporates 
matrix edge information, which enhances foreground objects in 
relation to the neighborhood pixels. This method does not work 
well when the edges of objects are weak and disconnected. 
Moreover, in an extremely degraded image, strong interfering 
patterns can generate false edges. 

Some works used SR algorithms along with machine 
learning models.  Lin et al. [13] proposed an SR image 
reconstruction method using GAN, an unsupervised learning 
model. It preprocesses the affected input image and extracts 
image features using a residual dense network. The method 
then uses sampling to restore more information using a larger 
receptive field. A Markovian discriminator is used to 
accurately guide the generator to reconstruct high-quality 
restored images. Despite good results, the method increases the 
difficulty level of training such a highly complex model. 
Moreover, it shows edge artifacts as well. Zhan et al. [14] 
proposed a MAP-based SR image reconstruction approach. It 
helps to estimate distribution and model parameters that best 
explain an observed dataset. It then uses a Huber Markov 
random field (HMRF) along with an ALPR system to measure 
image smoothness. The technique improves the recognition 
rate by restoring and improving the quality of LP image. 
However, quality enhancement is limited to single-frame 
reconstruction instead of a sequence of video frames. 

Chen et al. [15] proposed an SR reconstruction algorithm. It 
uses the mechanism of attention along with a feature map to 
reconstruct multiscale SR images from original low-resolution 
images. It uses a combined feature map of multiple channels 
before applying a reconstruction module. It also uses 
interdependence to adaptively adjust the characteristics of the 
channel to restore details before generating high-resolution 
images at different scales. Despite reconstructing images, it 
increases weight parameters which eventually increases 
training time. Hui Li et al. [16]  extracted and recognized the 
sequential features from the whole LP using a recurrent neural 
network with long short-term memory. However, a large 
number of labeled LPs are required for training. Duan et al. 
[25] used inception structure, which utilizes computational 
resources effectively by image dimensionality reduction, in an 
end-to-end CNN. However, this can affect the recognition 
accuracy of noisy images taken in real-time scenarios.  Ergun 
et al. [26] used a statistical method in which refined characters 
are stretched/reduced to a given size and matched in a labeled 
database. This method has a limitation as it requires exact 
correspondence. Moreover, a slight deterioration of characters 
can affect the recognition accuracy. 

There are several commercial ALPR solutions also 
available. OpenALPR [21], PlateRecognizer [20], and 
Sighthound[19] are open-source systems that can recognize 
LPs in a given input frame. These systems can be accessed 
using their cloud API services that predominantly use OpenCV 
and Tesseract OCR libraries. Moreover, reconstruction 
algorithms are also part of these available systems, but they 
require incomplete strokes of digits or characters in a noiseless 
background for good performance. Otherwise, these APIs fail 
to restore the completely missing alphanumerics in noise 
effected license plates. 

III. THE PROPOSED METHOD 

The proposed system uses several steps, including 
extraction of frames from the videos of traffic, annotating the 
frames, augmenting the dataset, training the network, and 
testing its performance. The complete pipeline is shown in Fig. 
1, and its different modules are explained in this section. 
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Fig. 1. The pipeline of proposed multi-string ALPR system. 

A. Preparation of Dataset  

1) Data acquisition: Designs of the most commonly used 

LPs in Saudi Arabia are shown in Fig. 2. The standard size of 

these plates is 32 cm in width and 16 cm in height. The color 

schemes indicate the usage of vehicles. We captured many 

videos of live traffic, with a sufficient number of samples of 

each type. We examined each frame of these videos manually 

and extracted 2600 frames in total. The rest of the frames that 

had no vehicle or were very similar to one of the previously 

selected frames were discarded. The frames were stored as 

color images in PNG format at FHD resolution (1920×1080 

pixels). 

2) Synthetic Saudi Arabian LP Generation: No Saudi LP 

dataset is available in the literature with sufficient size (number 

of images) and variety of scenarios to support robust training of 

LP detection and recognition models. Moreover, dataset 

preparation is a very time-consuming process. Hence, we 

increased the size of our dataset by adding some synthetically 

generated license plates. For this, our algorithm first generates 

random but mutually mapping strings of officially used English 

and Arabic alphanumerics. These random texts are then 

appended on synthetically generated layouts. The synthetic 

layouts contain immutable elements such as the country name, 

the grid, and other official symbols on the right side of every 

plate.  The mapping coordinates are determined based on the 

positional analysis of different characters in the actual plates. A 

total of 200 synthetic images were generated this way and 

included in the dataset. Some examples are shown in Fig. 3. In 

a real-world scenario, the license plates may be dirty and less 

readable than the synthetically generated plates. Thus, to create 

more realistic data, noise is added. Afterward, all these plates 

are appended on some selective frames of actual data, as shown 

in Fig. 4. 

 
Fig. 2. Types of Saudi Arabian license plates [27]. 

 

Fig. 3. Examples of synthetically generated Saudi Arabian license plates. 

 
Fig. 4. Examples of appending synthetically generated plates in different 

video frames. 

B. Training Samples Generation 

All Saudi Arabian LPs have three alphabet and four digits 
in English and Arabic both. For training of the custom CNN 
model, samples for each English and Arabic Alphanumeric 
glyph are required. For this, an algorithm was designed to 
automate certain steps of this process, avoiding human 
intervention. YOLOv5 [28] model initially trained on the 
available custom dataset is used to detect LP in each frame 
along with all Arabic and English alphanumerics in it. 
Coordinates of the detected bounding boxes are used to extract 
the alphanumerics from the LP automatically. As the training 
of the network is improved, more samples can be extracted 
more accurately with minimal manual supervision. The process 
is depicted in Fig. 5. 

 
Fig. 5. Generation of training samples. 
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Each extracted sample is saved in its respective folder. 
There are 54 classes in total, including ten numerical digits (0-
9) and 17 alphabets among (A-Z) that are officially used in 
LPs, and another 27 Arabic counterparts, containing ten digits 
(٩ – ٠) and 17 alphabets among (ى – ا). 

C. Data Augmentation 

Deep learning models require large datasets for increased 
accuracy. In comparison, our proprietary data is relatively 
limited, having 2800 frames in total, including 2600 frames 
extracted from the actual traffic videos and 200 generated 
synthetically. We split them into training and testing sets 
containing 2600 and 200 frames, respectively. The testing set 
includes challenging situations of deteriorated and completely 
missed alphanumeric characters in Arabic and English strings. 

To increase the training dataset and its variability, data 
augmentation techniques were used, including gray scaling, 
brightness variation, and rotation. As a result, we got 6500 
frames and 15000 alphanumeric characters in total. They vary 
considerably in size and cannot be used for training without 
preprocessing. We scale each of them 128x128 pixels. Through 
augmentation, we could increase the variability in the dataset, 
which helps in better training of networks, improving their 
accuracies, and avoiding overfitting. The numbers of frames 
and samples are shown in Table I. 

TABLE I. SUMMARY OF THE TRAINING DATASET 

Dataset Real Real + Augmented 

Frames 2600 6500 

Arabic + English Characters 9000 15000 

D. Data Annotation 

We used a graphical image annotation tool, LabelImg [29], 
to label the dataset. The coordinates of plates as well as the 
individual characters, are marked, as shown in Fig. 6. Since we 
are using YOLOv5 for detection, which accepts annotations in 
extensible markup language (XML) files, we save the 
annotations in this format. 

E. Detection of License Plates 

Due to their high efficiency, the detectors in the YOLO 
family are often used to work in real-time scenarios [30] [31] 
[32]. Since the release of its first version, many updates and 
new versions of YOLO have been developed. The most recent 
is YOLOv5 [28] [33], which outperforms its predecessors in 
terms of computational complexity and accuracy of detection. 
The structure of the YOLOv5 model, a relatively new family 
member, is shown in Fig. 7. 

YOLOv5 is pre-trained on a large dataset; therefore, we use 
transfer learning [34] using our proprietary dataset. Transfer 
learning is a well-known technique to fine-tune a previously 
trained neural network to perform a new task. In our case, 
YOLOv5 is trained to perform general object detection, and we 
tune it for LPs. This process prevents the need to complete 
network training from scratch, which would have required an 
extensive dataset. For training YOLOv5, our training dataset is 
split at a ratio of 70 to 30 as shown in Table II. 

 
Fig. 6. Annotation of the LP and Arabic and English alphanumeric in an LP 

using LabelImg software tool. 

TABLE II. DATASET SPLIT FOR DETECTION MODEL 

Dataset Split Percentage Number of Frames 

Training 70% 4550 

Validation 30% 1950 

For the training of YOLOv5, we use Google Collab 
notebook [28], which provides free access to powerful GPUs. 
The trained model takes an input frame at the dimensions of 
416x416x3 and detects LP in it. The detected LP is cropped 
automatically, resized to the same input dimensions of 
416x416x3, and fed again to the YOLOv5 model to detect its 
alphanumerics. Since the original frame had an FHD resolution 
of 1920 x 1080 pixels, the coordinates of the bounding boxes 
are upscaled to find the exact locations in the original frame. 
Some results of the extracted LPs are shown in Fig. 8 by 
marking the bounding boxes with red colored rectangles. 

F. Custom Network for Recognition of Arabic and English 

Alphanumerics 

The architecture of the proposed CNN for the recognition 
phase is shown in Fig. 9. The input of this network is the 
bounding box detected by the YOLOv5 in the previous step. 
The proposed CNN's first layer is a convolution layer with 
dimensions of 224x224x3; the output of YOLOv5 is resized to 
match it. A maxpool layer after each convolution layer uses 
2x2 pixels for pooling. The convolution layers have different 
filter sizes (64, 128, 256, 512), and the convolution kernel size 
is 3x3. There are two fully connected (FC) layers, in the end, to 
keep the model end-to-end trainable. "Same Padding" is used 
to handle the convolution near the boundaries of the image, and 
the stride size is 1. Adam optimizer alpha is used for its 
desirable characteristics in non-convex optimization problems 
[35]. 

Alternating convolutional and non-linear activation layers 
extract rich features of given alphanumerics. The activation 
function of Rectified Linear Unit (ReLU) with a stride size of 1 
pixel for convolutional layers and 2 pixels for the maxpool 
layers is used. Each of the output FC layers contains 1000 
neurons. The final decision is made by using SoftMax about 
the recognition (classification) of alphanumeric characters. 
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Fig. 7. CSP structure for YOLOv5 model. 

 

Fig. 8. YOLOv5 detection of license plates. 

 

Fig. 9. The complete achitecture of the proposed pipeline. 
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We use 15000 alphanumeric characters, including those 
taken from original plates and others obtained by 
augmentation. These are split into training, validation, and 
testing sets, as given in Table III. 

TABLE III. DATASET SPLIT OF ARABIC AND ENGLISH ALPHANUMERIC 

CHARACTERS 

Dataset Split Percentage Number of Samples 

Training 70% 4550 

Validation 20% 1950 

Testing 10% 1500 

G. Post Processing 

The dataset used for testing includes some challenging 
scenarios. In some instances, characters are badly affected by 
noise, or the plate has a poor condition. Some examples are 
shown in Fig. 10. 

The reconstruction techniques in the existing literature, as 
discussed earlier, can be used to restore missing and noise-
affected individual characters either in English or Arabic 
string. However, using a separate trained restoration model will 
increase the whole system's computational cost. We propose a 
fast and simple solution based on the fact that there is 
redundant information available in the form of Arabic and 
English text, and correct recognition of the individual 
alphanumerics in either of them can lead to overall correct 
recognition of the LP. 

The first step for restoration is to find the location of 
missing characters in Arabic and English text, and we use a 
median thresholding based approach for this. It measures the 
position of each alphanumeric bounding box in both strings 
relative to the extreme left of the LP and calculates the 
difference between the successive bounding boxes. If a 
character is missing, the difference between its left and right 
detected neighboring boxes would be large. Due to the 
different shapes of characters, the distance between each pair 
of neighbors is not the same; however, a missing character 
makes it much large. We calculate the median value of the 
distance between detected neighboring boxes and set a 
threshold of 1.5 times the median distance to detect the missing 
characters. If the distance is more than 2.5 times the median 
distance, we assume two characters are missing. However, to 
explain the algorithm, we assume that only one character is 
missing between two successfully detected characters. For this 
case, different steps involved in the restoration process are 
explained in Fig. 11. 

The next step is to restore the missing digit or letter on the 
spots identified by the median thresholding algorithms above. 
The exact location of the missing character is assumed to be in 
the middle of the neighboring characters as shown in Fig. 12. 

 

Fig. 10. Badly noise affected license plates. 

 

Fig. 11. Working of median threshold-based algorithm for locating missing 

characters. 

 

Fig. 12. Finding position of the missing character. 

This way, we get seven bounding boxes in each string, 
regardless the character is detected or missing. The empty 
boxes are filled by the corresponding vertically mapping 
characters in the other string. Except for a rare scenario where 
the same character is missing in both English and Arabic 
strings, the algorithm can successfully recognize the plate quite 
accurately, as shown in the experimental results in the next 
section. 

1) Handling conflicts between two strings: Arabic and 

English alphanumerics have one-to-one matches. To have 

recognition results with greater precision, we pick the 

alphanumeric, which is recognized with a higher confidence 

level by CNN. The string obtained this way is a mix of Arabic 

and English characters as shown in Table IV. We convert the 

entire string to the desired language, which is English in our 

case as shown in the table. 

TABLE IV. EXAMPLES OF IMPROVED RECOGNITION RESULTS OF THE 

PROPOSED ALGORITHM 

License 

Plates 
   

Mixed 

Strings 
١٠٣٨TKA 1٨٠٦XHJ 21٨٢XDD 

Converted 

Strings 
1038TKA 1806XHJ 2182XDD 
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2) Handling misrecognition due to bolts on the lp: Among 

many challenging scenarios we encountered in our dataset, one 

worth mentioning is the wrong recognition of alphanumerics 

due to the bolts used to attach the plate to the car. There are 

two bolts used on the top-right and top-left regions of the plate. 

The location of the right bolt is such that if there is the Arabic 

character "Alif" (Equivalent of English character A) in the 

rightmost position, it is read as English "9", as shown in Fig. 

13. This is, however, easy to correct, knowing that the 

rightmost alphanumeric cannot be a digit and it must be a 

character. So, if a nine is detected at this position, there is a 

good chance it should be "Alif". If the English string does not 

detect anything at the rightmost location, we take it as "Alif" or 

"A". However, if the English string detects something 

different, we include that in the final result. 

Correcting the left bolt is not that straightforward, which 
happens to be between the first two characters in the Arabic 
text. If a "9" is detected as the second digit from the left, it 
could be actually "9" or "1". We examined several cases and 
found that the head of true "9" has a hollow space, whereas the 
head formed  by the bolt is solid black. We have shown both 
cases side by side in Fig. 14. Our algorithm crops the head 
when a "9" is detected at the second place from the left and 
examines it further. A simple count of black pixels in the 
binarised image of the head can reveal if it was all filled with 
back pixels or had a hollow white space. 

 
Fig. 13. Bolt Overlapping onto Arabic corresponding character of A. 

 
Fig. 14. One misread as nine, shown on the left, and a true 9 in Arabic shown 

on the right. 

IV. EXPERIMENTAL EVALUATION 

Training and validation are done using the official 
notebook repository of YOLOv5, which provides a powerful 
GPU for fast processing. The YOLOv5 model has 476 layers. 
The batch size and epoch values were set to 35 and 100, 
respectively. The accuracy of detection can be determined by 
the overlap between the annotated (ground truth) mask and 
detected plates. The ratio is called Intersection Over Union 
(IOU). We considered different values of IOU and the optimal 

detection results are achieved at IOU>0.5. The rectangles 
predicted by the YOLOv5 model below this value are 
discarded. 

For training the proposed CNN model, a computer with 
moderate specifications – GPU GeForce GTX 1080 GPU, 8 
GB memory – running on the Linux operating system of 
Ubuntu 20.04.3 LTS was used. The learning rate was set to 
0.001. 

The proposed system achieved significantly higher 
accuracy when both Arabic and English alphanumerics of the 
LPs were used as discussed above, compared to the accuracy of 
either string recognized individually. We tested a few 
commercially available tools as well. On good quality images, 
all of them achieved high accuracy. However, on challenging 
cases consisting of real traffic scenarios in different conditions, 
commercially available tools performed very poorly, and our 
proposed model outperformed them by a clear margin. We 
show some results in Tables V to VII. In the shown LP text, the 
red color shows a wrongly recognized character, the black 
color shows a correctly read character, and the blue color 
shows a successfully restored character. 

 
Fig. 15. Accuracy of English and Arabic strings recognition and the 

combined results for each LP in our test dataset. 

A. Plates with Extremely Poor Visibility 

This test dataset consists of cases where visibility of 
alphanumeric in the LP plate was poor due to shadows or glare. 
Many of the alphanumerics were wrongly recognized, but 
when we considered both resultant strings, the actual LP text 
was successfully restored. Some examples are shown in Table 
V A and V B. Note that all three commercial software failed in 
all these cases, whereas the proposed successfully recognized 
all plates. 

TABLE V. A. RESULTS OF EXTREMELY POOR VISIBILITY CASES 

Model 

    

Sighthound 7172LA 8302KEJ 3636NHB 4810VVA 

OpenALPR 71727LA 6302KEJ 3636NHB 4810VA 

Plate 

Recognizer 
7172ZGJ 6302KEJ 3636NHB 4310VA 

Proposed 7170DLA 5802KEJ 8636NHB 4210NVA 
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TABLE V.    B. MORE RESULTS OF EXTREMELY POOR VISIBILITY CASES 

Model 

   

Sighthound 5941G1 7779KXJ 3864B 

OpenALPR 594LG1 7778KXJ 386B 

Plate Recognizer 584LG1 7779XXJ 8664JB 

Proposed 5943LGJ 7779XXJ 8864ZJB 

B. Deteriorated Alphanumeric Characters 

Our dataset contains some cases where alphanumerics are 
degraded partially or fully causing missing a few 
alphanumerics at the recognition stage. We show some such 
cases in Table VI. Again, the proposed system outperforms the 
commercial systems. The missing characters are marked by an 
asterisk in red color. 

C. Mud Affected Plates 

There are certain LPs badly affected due to aging or 
covered by mud, and plate detection becomes challenging in 
such cases. We show some examples in Table VII. Our system 
not only detects these plates but also recognizes the text. Only 
in the last plate, which is challenging even for the human eye, 
our system made one mistake out of seven characters. The 
other methods could not even detect that plate. 

It would be interesting to see the performance of our 
system on English and Arabic parts of the LPs separately and 
combined. Fig. 15 shows the accuracy in all three scenarios for 
each of the 200 plates in the test dataset. Note that one plate 
has seven alphanumerics. If all of them are correctly 
recognized, we consider the accuracy to be 1. If 6 of them are 
recognized correctly, the accuracy is 6/7, and so on. It can be 
seen in the figure that the combined results, except for a few 
cases, could recognize all the characters correctly. 

We also present the results of the individual alphanumeric 
recognition in Table VIII. The first column shows the method 
used for recognition. In 200 plates in our test dataset, there are 
1400 characters in total. The second column shows how many 
of these were recognized correctly. The third column shows the 
number of cases when all seven alphanumerics in the plate 
were correctly recognized. This also gives the system accuracy 
in perfectly recognizing plates, which is shown in the last 
column as a percentage. The rest of the columns further break 
down the cases when less than seven alphanumerics were 
recognized correctly. It can be seen that the proposed system 
identified 194 plates out of 200 perfectly while making one 
mistake in five plates and two mistakes in one plate. The other 
methods performed much poorly in comparison. The closest 
competitor Sighthound could recognize only 110 plates. 

TABLE VI. RESULTS OF DETERIORATED ALPHANUMERICS 

Model 
    

Sighthound *7806HJ *038TKA *875ZXA 6*69HBA 

OpenALPR *806ZHJ **38TKA *375ZXA 6769HBA 

Plate 

Recognizer 
*806AHJ *588TKA *375ZXA 6*69HBA 

Proposed 1806XHJ 1038TKA 1975ZXA 6769HBA 

TABLE VII. RESULTS OF MUD AFFECTED PLATES 

Model 
   

Sighthound LP Not Detected LP Not Detected LP Not Detected 

OpenALPR LP Not Detected LP Not Detected LP Not Detected 

Plate Recognizer LP Not Detected P9666VB LP Not Detected 

Proposed 1390BDA 2966GTB 79B8*UA 

TABLE VIII. OVERALL RECOGNITION RESULTS USING CHALLENGING DATASET OF 200 LPS 

Method 
Correctly recognized characters 

(out of 200x7=1400) 

Character recognition 

accuracy 

Correctly recognized 

plates (out of 200) 

Plate recognition 

accuracy 

Proposed (English Only) 1106 79% 83 41.5% 

Proposed (Arabic Only) 1303 93.1% 120 60% 

Proposed (Combined) 1393 99.5% 194 97% 

OpenALPR 910 65% 55 27.5% 

Plate Recognizer 1030 73.6% 78 39.5% 

Sighthound 1015 72.5 110 55% 

V. CONCLUSION 

This paper proposed a CNN model that can recognize 
English and Arabic text in the license plates used in Saudi 
Arabia. The two were combined using a proposed algorithm to 
correctly restore missing or wrongly read alphanumerics in 
either of the strings. These methods successfully recognized 
the license plates where commercially available solutions 
OpenALPR, Plate Recognizer, and Sighthound failed. The 
proposed system is computationally efficient and works in real-
world unconstrained situations. 
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