
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

835 | P a g e

www.ijacsa.thesai.org

Multi-String Missing Characters Restoration for

Automatic License Plate Recognition System

Ishtiaq Rasool KHAN
1
, Syed Talha Abid ALI

2
, Asif SIDDIQ

3
, Seong-O SHIM

4

College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia
1, 4

Dept. Electrical Engineering, Pakistan Institute of Engineering and Technology, Multan, Pakistan
2, 3

Abstract—Developing a license plate recognition system that

can cope with unconstrained real-time scenarios is very

challenging. Additional cues, such as the color and dimensions of

the plate, and font of the text, can be useful in improving the

system's accuracy. This paper presents a deep learning-based

plate recognition system that can take advantage of the bilingual

text in the license plates, as used in many countries, including

Saudi Arabia. We train and test the model using a custom dataset

generated from real-time traffic videos in Saudi Arabia. Using

the English alphanumeric alone, the accuracy of our system was

on par with the existing state-of-the-art algorithms. However, it

increased significantly when the additional information from the

detection of Arabic text was utilized. We propose a new

algorithm to restore noise-affected missing or misidentified

characters in the plate. We generated a new test dataset of license

plates to test how the proposed system performs in challenging

scenarios. The results show a clear advantage of the proposed

system over several commercially available solutions, including

Open ALPR, Plate Recognizer, and Sighthound.

Keywords—Automatic License Plate Recognition (ALPR);

Intelligent Transportation System (ITS); Optical Character

Recognition (OCR); Deep Convolutional Neural Network; You

Only Look Once (YOLO)

I. INTRODUCTION

In recent times, smart cities have been a popular trend,
resulting in the pacing of the development of several enabling
technologies. One of them is robust automatic license plate
recognition (ALPR) [1], which offers a computer vision based
solution for intelligent transportation systems (ITS) [2]. In this
regard, a passive mesh of cameras is generally installed at road
intersections and other suitable locations to observe vehicle
routing through urban environments [3]. ITS can improve
safety and mobility and help law enforcement agencies monitor
traffic effectively. There have been several systems proposed
to detect and recognize license plates (LPs) for various
applications like toll fees collection [4], monitoring for the
speed of a car on the road [5], traffic volume estimation on [6],
detection of illegal parking [7], highway surveillance [8], and
border control [9]. However, most systems tackling any of
these aspects often work well only when operated in a
restricted environment where camera distance and angle are
fixed [10]. In an unconstrained environment, factors like low
image resolution, dynamic background, motion blur [11], and
variable lighting conditions, can degrade the image quality.
This makes recognizing LP characters in unconstrained
environments a very challenging task.

Some solutions that have been proposed to address these
variabilities include Laplacian gradient-based partial character
segmentation [12], Generative Adversarial Network (GAN)
[13], super-resolution (SR) image reconstruction using
maximum a posteriori (MAP) [14], SR reconstruction [15], and
Recurrent Neural Network (RNN) [16]. Although these
approaches can help restore the deteriorated or missed
characters within LP, they do it at the expense of higher
computational complexity due to the additional machine
learning model used for the restoration task. Similarly,
methods like multiscale adaptive thresholding [17] and matrix
edge information based adaptive thresholding [18] depend on
edge information. They can produce false positives due to
weak edges, especially in the presence of high noise.

We propose a simple and fast technique for detecting and
recognizing the contents of LP in unconstrained environments.
You Only Look Once Version 5 (YOLOv5) network is used
for detection, while a custom-built convolutional neural
network (CNN) recognizes the contents in the detected LP. We
collected a custom dataset from real-time traffic in Saudi
Arabia, where the number plates are bilingual, using Arabic
text on top and English at the bottom. The unique feature of the
proposed method compared to the existing works is that it tries
to recognize alphanumerics in both languages and then
combines both results to improve the overall accuracy of LP
recognition. We propose a new algorithm, which can address
several scenarios of unrecognized and wrongly recognized
alphanumerics. It uses computationally simple and efficient
techniques, implemented without using a separate deep
learning model, and does not depend on the deteriorated
character's edge information either to restore the noise-affected
missed character. Our results show that the proposed model
outperforms commercially available server-based ALPR
systems of Sighthound [19], Plate Recognizer [20], and Open
ALPR [21].

The rest of the paper is organized as follows. Section II
gives an overview of the related work. Section III describes
training dataset preparation steps, including extracting LP from
the captured video streams and synthetically generating and
augmenting more plates to add to the data. The steps of
detecting LP, recognizing Arabic and English alphanumeric
characters, and restoration of missed and wrongly recognized
characters are discussed in Section IV. Experimental
evaluation is reported in Section V, while some conclusions
and future research directions are given in Section VI.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

836 | P a g e

www.ijacsa.thesai.org

II. RELATED WORK

Over the years, numerous designs based on different
architecture and technologies have been proposed to solve the
detection and recognition problems of ALPR. For the detection
of LPs, some works use image processing-based solutions.
Chen and Luo [22] proposed an LP localization method using
an improved version of the Prewitt arithmetic operator. It
extracts the exact location from vertical and horizontal
projections. However, the method requires prior knowledge of
all the characters' textures which become difficult to obtain
while working in an unconstrained real-time environment.
Vijeta et al. [12] used stroke pair candidate detection by using
Laplacian and gradient information. They find pixels that
represent the stroke width of characters on a given LP.
However, this method usually fails while dealing with complex
backgrounds in real time due to unsymmetrical features within
the captured frames.

YOLO models have been used to detect LPs in more recent
works. Alghyaline [11] used a modified YOLOv3 model. Since
the LP size is much smaller than the captured frame, they used
only 15 layers instead of the original 75. It made the process
fast but at the expense of low accuracy when detecting smaller
characters within LPs. Ju-Yeong Sung [23] used YOLOv4,
which can detect smaller objects, both LP and the characters
within it, but at the expense of higher training costs. Khan et
al. [24] used the YOLOv5 model to detect LP and its
characters in a real-time environment. The YOLOv5 model
uses path aggregators to speed up the detection process in real
time. It also uses the mosaic data augmentation technique,
which helps detect very small objects in challenging
environments. Moreover, it also uses auto-learning bounding
box anchors, which help make bounding boxes around objects
despite the challenging backgrounds within a frame.

Some works use image processing-based techniques to
reconstruct deteriorated or missed characters for the
recognition task. Vijeta [12] proposed partial character
reconstruction with the Tesseract optical character recognition
(OCR) library, which uses the characteristics of stroke widths
in the Laplacian and gradient domains. The method first
enhances high-contrast information at the edges using
symmetrical features of incomplete characters by suppressing
background information. Then it uses stroke width properties
to reconstruct the complete shape of the deteriorated
characters. This method, however, proves to be not very
effective for restoring completely deteriorated characters.
Khoshki et al. [17] proposed a multiscale adaptive
thresholding method for ALPR, which is used to find the
candidates matching the LP characters affected by noise.
However, the effectivity of this method lessens under varying
illumination conditions. Moreover, it is computationally
intensive and requires significant time to process input images.
Mokji et al. [18] proposed an algorithm that incorporates
matrix edge information, which enhances foreground objects in
relation to the neighborhood pixels. This method does not work
well when the edges of objects are weak and disconnected.
Moreover, in an extremely degraded image, strong interfering
patterns can generate false edges.

Some works used SR algorithms along with machine
learning models. Lin et al. [13] proposed an SR image
reconstruction method using GAN, an unsupervised learning
model. It preprocesses the affected input image and extracts
image features using a residual dense network. The method
then uses sampling to restore more information using a larger
receptive field. A Markovian discriminator is used to
accurately guide the generator to reconstruct high-quality
restored images. Despite good results, the method increases the
difficulty level of training such a highly complex model.
Moreover, it shows edge artifacts as well. Zhan et al. [14]
proposed a MAP-based SR image reconstruction approach. It
helps to estimate distribution and model parameters that best
explain an observed dataset. It then uses a Huber Markov
random field (HMRF) along with an ALPR system to measure
image smoothness. The technique improves the recognition
rate by restoring and improving the quality of LP image.
However, quality enhancement is limited to single-frame
reconstruction instead of a sequence of video frames.

Chen et al. [15] proposed an SR reconstruction algorithm. It
uses the mechanism of attention along with a feature map to
reconstruct multiscale SR images from original low-resolution
images. It uses a combined feature map of multiple channels
before applying a reconstruction module. It also uses
interdependence to adaptively adjust the characteristics of the
channel to restore details before generating high-resolution
images at different scales. Despite reconstructing images, it
increases weight parameters which eventually increases
training time. Hui Li et al. [16] extracted and recognized the
sequential features from the whole LP using a recurrent neural
network with long short-term memory. However, a large
number of labeled LPs are required for training. Duan et al.
[25] used inception structure, which utilizes computational
resources effectively by image dimensionality reduction, in an
end-to-end CNN. However, this can affect the recognition
accuracy of noisy images taken in real-time scenarios. Ergun
et al. [26] used a statistical method in which refined characters
are stretched/reduced to a given size and matched in a labeled
database. This method has a limitation as it requires exact
correspondence. Moreover, a slight deterioration of characters
can affect the recognition accuracy.

There are several commercial ALPR solutions also
available. OpenALPR [21], PlateRecognizer [20], and
Sighthound[19] are open-source systems that can recognize
LPs in a given input frame. These systems can be accessed
using their cloud API services that predominantly use OpenCV
and Tesseract OCR libraries. Moreover, reconstruction
algorithms are also part of these available systems, but they
require incomplete strokes of digits or characters in a noiseless
background for good performance. Otherwise, these APIs fail
to restore the completely missing alphanumerics in noise
effected license plates.

III. THE PROPOSED METHOD

The proposed system uses several steps, including
extraction of frames from the videos of traffic, annotating the
frames, augmenting the dataset, training the network, and
testing its performance. The complete pipeline is shown in Fig.
1, and its different modules are explained in this section.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

837 | P a g e

www.ijacsa.thesai.org

Fig. 1. The pipeline of proposed multi-string ALPR system.

A. Preparation of Dataset

1) Data acquisition: Designs of the most commonly used

LPs in Saudi Arabia are shown in Fig. 2. The standard size of

these plates is 32 cm in width and 16 cm in height. The color

schemes indicate the usage of vehicles. We captured many

videos of live traffic, with a sufficient number of samples of

each type. We examined each frame of these videos manually

and extracted 2600 frames in total. The rest of the frames that

had no vehicle or were very similar to one of the previously

selected frames were discarded. The frames were stored as

color images in PNG format at FHD resolution (1920×1080

pixels).

2) Synthetic Saudi Arabian LP Generation: No Saudi LP

dataset is available in the literature with sufficient size (number

of images) and variety of scenarios to support robust training of

LP detection and recognition models. Moreover, dataset

preparation is a very time-consuming process. Hence, we

increased the size of our dataset by adding some synthetically

generated license plates. For this, our algorithm first generates

random but mutually mapping strings of officially used English

and Arabic alphanumerics. These random texts are then

appended on synthetically generated layouts. The synthetic

layouts contain immutable elements such as the country name,

the grid, and other official symbols on the right side of every

plate. The mapping coordinates are determined based on the

positional analysis of different characters in the actual plates. A

total of 200 synthetic images were generated this way and

included in the dataset. Some examples are shown in Fig. 3. In

a real-world scenario, the license plates may be dirty and less

readable than the synthetically generated plates. Thus, to create

more realistic data, noise is added. Afterward, all these plates

are appended on some selective frames of actual data, as shown

in Fig. 4.

Fig. 2. Types of Saudi Arabian license plates [27].

Fig. 3. Examples of synthetically generated Saudi Arabian license plates.

Fig. 4. Examples of appending synthetically generated plates in different

video frames.

B. Training Samples Generation

All Saudi Arabian LPs have three alphabet and four digits
in English and Arabic both. For training of the custom CNN
model, samples for each English and Arabic Alphanumeric
glyph are required. For this, an algorithm was designed to
automate certain steps of this process, avoiding human
intervention. YOLOv5 [28] model initially trained on the
available custom dataset is used to detect LP in each frame
along with all Arabic and English alphanumerics in it.
Coordinates of the detected bounding boxes are used to extract
the alphanumerics from the LP automatically. As the training
of the network is improved, more samples can be extracted
more accurately with minimal manual supervision. The process
is depicted in Fig. 5.

Fig. 5. Generation of training samples.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

838 | P a g e

www.ijacsa.thesai.org

Each extracted sample is saved in its respective folder.
There are 54 classes in total, including ten numerical digits (0-
9) and 17 alphabets among (A-Z) that are officially used in
LPs, and another 27 Arabic counterparts, containing ten digits
(٩ – ٠) and 17 alphabets among (ى – ا).

C. Data Augmentation

Deep learning models require large datasets for increased
accuracy. In comparison, our proprietary data is relatively
limited, having 2800 frames in total, including 2600 frames
extracted from the actual traffic videos and 200 generated
synthetically. We split them into training and testing sets
containing 2600 and 200 frames, respectively. The testing set
includes challenging situations of deteriorated and completely
missed alphanumeric characters in Arabic and English strings.

To increase the training dataset and its variability, data
augmentation techniques were used, including gray scaling,
brightness variation, and rotation. As a result, we got 6500
frames and 15000 alphanumeric characters in total. They vary
considerably in size and cannot be used for training without
preprocessing. We scale each of them 128x128 pixels. Through
augmentation, we could increase the variability in the dataset,
which helps in better training of networks, improving their
accuracies, and avoiding overfitting. The numbers of frames
and samples are shown in Table I.

TABLE I. SUMMARY OF THE TRAINING DATASET

Dataset Real Real + Augmented

Frames 2600 6500

Arabic + English Characters 9000 15000

D. Data Annotation

We used a graphical image annotation tool, LabelImg [29],
to label the dataset. The coordinates of plates as well as the
individual characters, are marked, as shown in Fig. 6. Since we
are using YOLOv5 for detection, which accepts annotations in
extensible markup language (XML) files, we save the
annotations in this format.

E. Detection of License Plates

Due to their high efficiency, the detectors in the YOLO
family are often used to work in real-time scenarios [30] [31]
[32]. Since the release of its first version, many updates and
new versions of YOLO have been developed. The most recent
is YOLOv5 [28] [33], which outperforms its predecessors in
terms of computational complexity and accuracy of detection.
The structure of the YOLOv5 model, a relatively new family
member, is shown in Fig. 7.

YOLOv5 is pre-trained on a large dataset; therefore, we use
transfer learning [34] using our proprietary dataset. Transfer
learning is a well-known technique to fine-tune a previously
trained neural network to perform a new task. In our case,
YOLOv5 is trained to perform general object detection, and we
tune it for LPs. This process prevents the need to complete
network training from scratch, which would have required an
extensive dataset. For training YOLOv5, our training dataset is
split at a ratio of 70 to 30 as shown in Table II.

Fig. 6. Annotation of the LP and Arabic and English alphanumeric in an LP

using LabelImg software tool.

TABLE II. DATASET SPLIT FOR DETECTION MODEL

Dataset Split Percentage Number of Frames

Training 70% 4550

Validation 30% 1950

For the training of YOLOv5, we use Google Collab
notebook [28], which provides free access to powerful GPUs.
The trained model takes an input frame at the dimensions of
416x416x3 and detects LP in it. The detected LP is cropped
automatically, resized to the same input dimensions of
416x416x3, and fed again to the YOLOv5 model to detect its
alphanumerics. Since the original frame had an FHD resolution
of 1920 x 1080 pixels, the coordinates of the bounding boxes
are upscaled to find the exact locations in the original frame.
Some results of the extracted LPs are shown in Fig. 8 by
marking the bounding boxes with red colored rectangles.

F. Custom Network for Recognition of Arabic and English

Alphanumerics

The architecture of the proposed CNN for the recognition
phase is shown in Fig. 9. The input of this network is the
bounding box detected by the YOLOv5 in the previous step.
The proposed CNN's first layer is a convolution layer with
dimensions of 224x224x3; the output of YOLOv5 is resized to
match it. A maxpool layer after each convolution layer uses
2x2 pixels for pooling. The convolution layers have different
filter sizes (64, 128, 256, 512), and the convolution kernel size
is 3x3. There are two fully connected (FC) layers, in the end, to
keep the model end-to-end trainable. "Same Padding" is used
to handle the convolution near the boundaries of the image, and
the stride size is 1. Adam optimizer alpha is used for its
desirable characteristics in non-convex optimization problems
[35].

Alternating convolutional and non-linear activation layers
extract rich features of given alphanumerics. The activation
function of Rectified Linear Unit (ReLU) with a stride size of 1
pixel for convolutional layers and 2 pixels for the maxpool
layers is used. Each of the output FC layers contains 1000
neurons. The final decision is made by using SoftMax about
the recognition (classification) of alphanumeric characters.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

839 | P a g e

www.ijacsa.thesai.org

Fig. 7. CSP structure for YOLOv5 model.

Fig. 8. YOLOv5 detection of license plates.

Fig. 9. The complete achitecture of the proposed pipeline.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

840 | P a g e

www.ijacsa.thesai.org

We use 15000 alphanumeric characters, including those
taken from original plates and others obtained by
augmentation. These are split into training, validation, and
testing sets, as given in Table III.

TABLE III. DATASET SPLIT OF ARABIC AND ENGLISH ALPHANUMERIC

CHARACTERS

Dataset Split Percentage Number of Samples

Training 70% 4550

Validation 20% 1950

Testing 10% 1500

G. Post Processing

The dataset used for testing includes some challenging
scenarios. In some instances, characters are badly affected by
noise, or the plate has a poor condition. Some examples are
shown in Fig. 10.

The reconstruction techniques in the existing literature, as
discussed earlier, can be used to restore missing and noise-
affected individual characters either in English or Arabic
string. However, using a separate trained restoration model will
increase the whole system's computational cost. We propose a
fast and simple solution based on the fact that there is
redundant information available in the form of Arabic and
English text, and correct recognition of the individual
alphanumerics in either of them can lead to overall correct
recognition of the LP.

The first step for restoration is to find the location of
missing characters in Arabic and English text, and we use a
median thresholding based approach for this. It measures the
position of each alphanumeric bounding box in both strings
relative to the extreme left of the LP and calculates the
difference between the successive bounding boxes. If a
character is missing, the difference between its left and right
detected neighboring boxes would be large. Due to the
different shapes of characters, the distance between each pair
of neighbors is not the same; however, a missing character
makes it much large. We calculate the median value of the
distance between detected neighboring boxes and set a
threshold of 1.5 times the median distance to detect the missing
characters. If the distance is more than 2.5 times the median
distance, we assume two characters are missing. However, to
explain the algorithm, we assume that only one character is
missing between two successfully detected characters. For this
case, different steps involved in the restoration process are
explained in Fig. 11.

The next step is to restore the missing digit or letter on the
spots identified by the median thresholding algorithms above.
The exact location of the missing character is assumed to be in
the middle of the neighboring characters as shown in Fig. 12.

Fig. 10. Badly noise affected license plates.

Fig. 11. Working of median threshold-based algorithm for locating missing

characters.

Fig. 12. Finding position of the missing character.

This way, we get seven bounding boxes in each string,
regardless the character is detected or missing. The empty
boxes are filled by the corresponding vertically mapping
characters in the other string. Except for a rare scenario where
the same character is missing in both English and Arabic
strings, the algorithm can successfully recognize the plate quite
accurately, as shown in the experimental results in the next
section.

1) Handling conflicts between two strings: Arabic and

English alphanumerics have one-to-one matches. To have

recognition results with greater precision, we pick the

alphanumeric, which is recognized with a higher confidence

level by CNN. The string obtained this way is a mix of Arabic

and English characters as shown in Table IV. We convert the

entire string to the desired language, which is English in our

case as shown in the table.

TABLE IV. EXAMPLES OF IMPROVED RECOGNITION RESULTS OF THE

PROPOSED ALGORITHM

License

Plates

Mixed

Strings
١٠٣٨TKA 1٨٠٦XHJ 21٨٢XDD

Converted

Strings
1038TKA 1806XHJ 2182XDD

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

841 | P a g e

www.ijacsa.thesai.org

2) Handling misrecognition due to bolts on the lp: Among

many challenging scenarios we encountered in our dataset, one

worth mentioning is the wrong recognition of alphanumerics

due to the bolts used to attach the plate to the car. There are

two bolts used on the top-right and top-left regions of the plate.

The location of the right bolt is such that if there is the Arabic

character "Alif" (Equivalent of English character A) in the

rightmost position, it is read as English "9", as shown in Fig.

13. This is, however, easy to correct, knowing that the

rightmost alphanumeric cannot be a digit and it must be a

character. So, if a nine is detected at this position, there is a

good chance it should be "Alif". If the English string does not

detect anything at the rightmost location, we take it as "Alif" or

"A". However, if the English string detects something

different, we include that in the final result.

Correcting the left bolt is not that straightforward, which
happens to be between the first two characters in the Arabic
text. If a "9" is detected as the second digit from the left, it
could be actually "9" or "1". We examined several cases and
found that the head of true "9" has a hollow space, whereas the
head formed by the bolt is solid black. We have shown both
cases side by side in Fig. 14. Our algorithm crops the head
when a "9" is detected at the second place from the left and
examines it further. A simple count of black pixels in the
binarised image of the head can reveal if it was all filled with
back pixels or had a hollow white space.

Fig. 13. Bolt Overlapping onto Arabic corresponding character of A.

Fig. 14. One misread as nine, shown on the left, and a true 9 in Arabic shown

on the right.

IV. EXPERIMENTAL EVALUATION

Training and validation are done using the official
notebook repository of YOLOv5, which provides a powerful
GPU for fast processing. The YOLOv5 model has 476 layers.
The batch size and epoch values were set to 35 and 100,
respectively. The accuracy of detection can be determined by
the overlap between the annotated (ground truth) mask and
detected plates. The ratio is called Intersection Over Union
(IOU). We considered different values of IOU and the optimal

detection results are achieved at IOU>0.5. The rectangles
predicted by the YOLOv5 model below this value are
discarded.

For training the proposed CNN model, a computer with
moderate specifications – GPU GeForce GTX 1080 GPU, 8
GB memory – running on the Linux operating system of
Ubuntu 20.04.3 LTS was used. The learning rate was set to
0.001.

The proposed system achieved significantly higher
accuracy when both Arabic and English alphanumerics of the
LPs were used as discussed above, compared to the accuracy of
either string recognized individually. We tested a few
commercially available tools as well. On good quality images,
all of them achieved high accuracy. However, on challenging
cases consisting of real traffic scenarios in different conditions,
commercially available tools performed very poorly, and our
proposed model outperformed them by a clear margin. We
show some results in Tables V to VII. In the shown LP text, the
red color shows a wrongly recognized character, the black
color shows a correctly read character, and the blue color
shows a successfully restored character.

Fig. 15. Accuracy of English and Arabic strings recognition and the

combined results for each LP in our test dataset.

A. Plates with Extremely Poor Visibility

This test dataset consists of cases where visibility of
alphanumeric in the LP plate was poor due to shadows or glare.
Many of the alphanumerics were wrongly recognized, but
when we considered both resultant strings, the actual LP text
was successfully restored. Some examples are shown in Table
V A and V B. Note that all three commercial software failed in
all these cases, whereas the proposed successfully recognized
all plates.

TABLE V. A. RESULTS OF EXTREMELY POOR VISIBILITY CASES

Model

Sighthound 7172LA 8302KEJ 3636NHB 4810VVA

OpenALPR 71727LA 6302KEJ 3636NHB 4810VA

Plate

Recognizer
7172ZGJ 6302KEJ 3636NHB 4310VA

Proposed 7170DLA 5802KEJ 8636NHB 4210NVA

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

842 | P a g e

www.ijacsa.thesai.org

TABLE V. B. MORE RESULTS OF EXTREMELY POOR VISIBILITY CASES

Model

Sighthound 5941G1 7779KXJ 3864B

OpenALPR 594LG1 7778KXJ 386B

Plate Recognizer 584LG1 7779XXJ 8664JB

Proposed 5943LGJ 7779XXJ 8864ZJB

B. Deteriorated Alphanumeric Characters

Our dataset contains some cases where alphanumerics are
degraded partially or fully causing missing a few
alphanumerics at the recognition stage. We show some such
cases in Table VI. Again, the proposed system outperforms the
commercial systems. The missing characters are marked by an
asterisk in red color.

C. Mud Affected Plates

There are certain LPs badly affected due to aging or
covered by mud, and plate detection becomes challenging in
such cases. We show some examples in Table VII. Our system
not only detects these plates but also recognizes the text. Only
in the last plate, which is challenging even for the human eye,
our system made one mistake out of seven characters. The
other methods could not even detect that plate.

It would be interesting to see the performance of our
system on English and Arabic parts of the LPs separately and
combined. Fig. 15 shows the accuracy in all three scenarios for
each of the 200 plates in the test dataset. Note that one plate
has seven alphanumerics. If all of them are correctly
recognized, we consider the accuracy to be 1. If 6 of them are
recognized correctly, the accuracy is 6/7, and so on. It can be
seen in the figure that the combined results, except for a few
cases, could recognize all the characters correctly.

We also present the results of the individual alphanumeric
recognition in Table VIII. The first column shows the method
used for recognition. In 200 plates in our test dataset, there are
1400 characters in total. The second column shows how many
of these were recognized correctly. The third column shows the
number of cases when all seven alphanumerics in the plate
were correctly recognized. This also gives the system accuracy
in perfectly recognizing plates, which is shown in the last
column as a percentage. The rest of the columns further break
down the cases when less than seven alphanumerics were
recognized correctly. It can be seen that the proposed system
identified 194 plates out of 200 perfectly while making one
mistake in five plates and two mistakes in one plate. The other
methods performed much poorly in comparison. The closest
competitor Sighthound could recognize only 110 plates.

TABLE VI. RESULTS OF DETERIORATED ALPHANUMERICS

Model

Sighthound *7806HJ *038TKA *875ZXA 6*69HBA

OpenALPR *806ZHJ **38TKA *375ZXA 6769HBA

Plate

Recognizer
*806AHJ *588TKA *375ZXA 6*69HBA

Proposed 1806XHJ 1038TKA 1975ZXA 6769HBA

TABLE VII. RESULTS OF MUD AFFECTED PLATES

Model

Sighthound LP Not Detected LP Not Detected LP Not Detected

OpenALPR LP Not Detected LP Not Detected LP Not Detected

Plate Recognizer LP Not Detected P9666VB LP Not Detected

Proposed 1390BDA 2966GTB 79B8*UA

TABLE VIII. OVERALL RECOGNITION RESULTS USING CHALLENGING DATASET OF 200 LPS

Method
Correctly recognized characters

(out of 200x7=1400)

Character recognition

accuracy

Correctly recognized

plates (out of 200)

Plate recognition

accuracy

Proposed (English Only) 1106 79% 83 41.5%

Proposed (Arabic Only) 1303 93.1% 120 60%

Proposed (Combined) 1393 99.5% 194 97%

OpenALPR 910 65% 55 27.5%

Plate Recognizer 1030 73.6% 78 39.5%

Sighthound 1015 72.5 110 55%

V. CONCLUSION

This paper proposed a CNN model that can recognize
English and Arabic text in the license plates used in Saudi
Arabia. The two were combined using a proposed algorithm to
correctly restore missing or wrongly read alphanumerics in
either of the strings. These methods successfully recognized
the license plates where commercially available solutions
OpenALPR, Plate Recognizer, and Sighthound failed. The
proposed system is computationally efficient and works in real-
world unconstrained situations.

ACKNOWLEDGMENT

The authors extend their appreciation to the Deputyship for
Research & Innovation, Ministry of Education in Saudi Arabia
for funding this research work through the project number
MoE-IF-G-20-12.

REFERENCES

[1] V. R. Greati, V. C. T. Ribeiro, I. M. D. da Silva, and A. de Medeiros
Martins, "A Brazilian license plate recognition method for applications
in smart cities," in 2017 IEEE First Summer School on Smart Cities
(S3C), 2017, pp. 43-48.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

843 | P a g e

www.ijacsa.thesai.org

[2] A. K. Haghighat, V. Ravichandra-Mouli, P. Chakraborty, Y. Esfandiari,
S. Arabi, and A. Sharma, "Applications of deep learning in intelligent
transportation systems," Journal of Big Data Analytics in Transportation,
vol. 2, no. 2, pp. 115-145, 2020.

[3] T. Björklund, A. Fiandrotti, M. Annarumma, G. Francini, and E. Magli,
"Robust license plate recognition using neural networks trained on
synthetic images," Pattern Recognition, vol. 93, pp. 134-146, 2019.

[4] R. Laroca et al., "A robust real-time automatic license plate recognition
based on the YOLO detector," in 2018 International Joint Conference on
Neural Networks (IJCNN), 2018, pp. 1-10.

[5] M. Spanu et al., "Smart Cities Mobility Monitoring through Automatic
License Plate Recognition and Vehicle Discrimination," in 2021 IEEE
International Symposium on Broadband Multimedia Systems and
Broadcasting (BMSB), 2021, pp. 1-6.

[6] J. Li, H. Van Zuylen, Y. Deng, and Y. Zhou, "Urban travel time data
cleaning and analysis for Automatic Number Plate Recognition,"
Transportation Research Procedia, vol. 47, pp. 712-719, 2020.

[7] Z. Li et al., "License Plate Detection and Recognition Technology for
Complex Real Scenarios," in International Conference on Intelligent
Computing, 2020, pp. 241-256.

[8] J. Shashirangana, H. Padmasiri, D. Meedeniya, and C. Perera,
"Automated license plate recognition: a survey on methods and
techniques," IEEE Access, vol. 9, pp. 11203-11225, 2020.

[9] Y. Jamtsho, P. Riyamongkol, and R. Waranusast, "Real-time Bhutanese
license plate localization using YOLO," ICT Express, vol. 6, no. 2, pp.
121-124, 2020.

[10] S. Montazzolli and C. Jung, "Real-time brazilian license plate detection
and recognition using deep convolutional neural networks," in 2017 30th
SIBGRAPI conference on graphics, patterns and images (SIBGRAPI),
2017, pp. 55-62.

[11] S. Alghyaline, "Real-time Jordanian license plate recognition using deep
learning," Journal of King Saud University-Computer Information
Sciences, 2020.

[12] V. Khare et al., "A novel character segmentation-reconstruction
approach for license plate recognition," Expert Systems with
Applications, vol. 131, pp. 219-239, 2019.

[13] M. Lin, L. Liu, F. Wang, J. Li, and J. Pan, "License Plate Image
Reconstruction Based on Generative Adversarial Networks," Remote
Sensing, vol. 13, no. 15, p. 3018, 2021.

[14] Z. Li, G. Han, S. Xiao, and X. Chen, "MAP-based single-frame super-
resolution image reconstruction for license plate recognition," in 2009
International Conference on Computational Intelligence and Software
Engineering, 2009, pp. 1-5.

[15] Y. Chen et al., "Image super-resolution reconstruction based on feature
map attention mechanism," Applied Intelligence, pp. 1-14, 2021.

[16] H. Li and C. Shen, "Reading car license plates using deep convolutional
neural networks and LSTMs," arXiv preprint arXiv:.05610, 2016.

[17] R. M. Khoshki and S. Ganesan, "Multiscale adaptive nick thresholding
method for alpr system," Entropy, vol. 4, no. 10, 2015.

[18] M. M. Mokji and S. A. Bakar, "Adaptive thresholding based on co-
occurrence matrix edge information," in First Asia International
Conference on Modelling & Simulation (AMS'07), 2007, pp. 444-450.

[19] SightHound. (September 2, 2020). Commercially available tool.
Available: https://www.sighthound.com/.

[20] PlateRecognizer. (November 21, 2020). Commercially Available Tool.
Available: https://platerecognizer.com/.

[21] OpenALPR. (December 22, 2020). Commercially Available Tool.
Available: https://github.com/openalpr/openalpr.

[22] R. Chen and Y. Luo, "An improved license plate location method based
on edge detection," Physics Procedia, vol. 24, pp. 1350-1356, 2012.

[23] J.-Y. Sung and S.-B. Yu, "Real-time Automatic License Plate
Recognition System using YOLOv4," in 2020 IEEE International
Conference on Consumer Electronics-Asia (ICCE-Asia), 2020, pp. 1-3.

[24] I. R. Khan, S. T. A. Ali, A. Siddiq, M. M. Khan, M. U. Ilyas, S,
Alshomrani, S. Rahardja, "Automatic License Plate Recognition in Real-
World Traffic Videos Captured in Unconstrained Environment by a
Mobile Camera," Electronics, vol. 11, no. 9, pp. 1408, 2022.

[25] I. Kilic and G. Aydin, "Turkish vehicle license plate recognition using
deep learning," in 2018 International Conference on Artificial
Intelligence and Data Processing (IDAP), 2018, pp. 1-5.

[26] S. E. Ozbay Ergun, "Automatic vehicle identification by plate
recognition," World Academy of Science, Engineering Technology, vol.
9, no. 41, pp. 222-225, 2005.

[27] Steve. (October 20, 2019). Types of License Plates in Saudi Arabia.
Available: https://lifeinsaudiarabia.net/types-of-number-plates-in-saudi-
arabia/.

[28] G. Jocher. (July, 2019). YOLOV5, An Open-Source Detection Model
Repository Available: https://github.com/ultralytics/yolov5.

[29] T.Lin. (March 29, 2018). LabelImg, Annotation Tool. Available:
https://github.com/tzutalin/labelImg.

[30] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look
once: Unified, real-time object detection," in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779-
788.

[31] M. Tan, R. Pang, and Q. V. Le, "Efficientdet: Scalable and efficient
object detection," in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 10781-10790.

[32] C.-Y. Wang, H.-Y. M. Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and I.-
H. Yeh, "CSPNet: A new backbone that can enhance learning capability
of CNN," in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition workshops, 2020, pp. 390-391.

[33] ProgrammerSought. (July, 2020). YOLOV5 learning summary.

[34] J. Wen-ping and J. Zhen-cun, "Research on early fire detection of Yolo
V5 based on multiple transfer learning," Fire Science Technology, vol.
40, no. 1, p. 109, 2021.

[35] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, "A survey of the
recent architectures of deep convolutional neural networks," Artificial
Intelligence Review, vol. 53, no. 8, pp. 5455-5516, 2020.

