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Abstract—Cardiovascular diseases (CVDs) are a leading 

cause of death worldwide. Early detection and diagnosis of these 

diseases can greatly reduce complications and improve outcomes 

for high-risk individuals. One method for detecting CVDs is 

through the use of electrocardiogram (ECG) monitoring systems, 

which use various technologies such as the Internet of Things 

(IoT), mobile applications, wireless sensor networks (WSN), and 

wearable devices to acquire and analyze ECG data for early 

diagnosis. However, despite the prevalence of these systems in the 

literature, there is a need for further optimization and 

improvement of their classification accuracy. In an effort to 

address this challenge, a novel heterogeneous unsupervised 

learning model for real-time ECG classification was proposed. 

The main goal of this work was to reduce the error rate and 

improve the classification accuracy of the system. This study 

presents a framework for the classification of multi-class 

abnormalities in electrocardiograms (ECGs) using an ensemble 

feature extraction technique and unsupervised learning. The 

framework utilizes a real-time electrocardiogram-

cardiotocography (ECG-CTG) system to extract features from 

the ECG signal, and then employs an ensemble of feature 

extraction techniques to enhance the discrimination of the 

extracted features. The extracted features are then used in an 

unsupervised learning-based classification algorithm to classify 

the ECG signals into different classes of abnormalities. The 

proposed framework is evaluated on a dataset of ECG signals 

and the results show that it can effectively classify ECG signals 

with high accuracy and low computational complexity. 

Keywords—Ensemble; feature ranking; improved inter quartile 

range; outlier detection; heterogeneous optimized k-nearest 
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I. INTRODUCTION 

According to research data from the National Family 
Health Survey, people living in rural areas of India are 
disproportionately affected by cardiovascular diseases (CVDs) 
compared to those in urban areas. This is due to factors such 
as lower income and lack of access to healthcare 
infrastructure. To address this issue, there is growing interest 
in developing low-cost tools and techniques for detecting 
CVDs in a timely and accurate manner. The utilization of IoT 
and machine learning in healthcare presents a promising 

solution, enabling remote diagnosis of patients and identifying 
patterns in vast amounts of medical data. Nonetheless, there is 
still room for improvement in accurately diagnosing patients 
by classifying ECG signals. This research aims to address this 
issue by developing a reliable ECG monitoring system that 
utilizes IoT and signal classification to enhance diagnosis 
rates. The system utilizes an AD8232 biopotential sensor to 
capture real-time ECG data, which is then transmitted to an 
AWS IoT core through a NodeMCU ESP8266 gateway and 
MQTT protocol. In monitoring fetal well-being during 
pregnancy, fetal cardiotocogram (CTG) and fetal 
electrocardiogram (FECG) are two critical tools. CTG, a non-
invasive technique, measures fetal heart rate (FHR) and 
uterine contractions through the use of a tocodynamometer 
and an ultrasound transducer placed on the mother's abdomen. 
It is typically performed during the latter part of pregnancy to 
evaluate fetal well-being and detect abnormalities, such as 
fetuses at risk for distress, which can lead to poor outcomes 
such as stillbirth or neonatal death. On the other hand, FECG 
is an invasive technique that records the electrical activity of 
the fetal heart and is usually performed during the third 
trimester of pregnancy [1]. The process of fetal 
electrocardiogram (FECG) involves inserting a small electrode 
into the amniotic fluid surrounding the fetus, which records 
the electrical activity of the fetal heart to detect any 
abnormalities in the fetal heart rate (FHR). Compared to 
cardiotocogram (CTG), FECG is considered to be a more 
accurate method of assessing fetal well-being as it can detect 
subtle changes in the FHR that may not be visible on a CTG 
trace. Both CTG and FECG have their own advantages and 
limitations. While CTG is a non-invasive technique that is 
easy to perform and does not pose any risks to the mother or 
fetus, it is not as accurate as FECG in detecting fetal distress. 
FECG, on the other hand, is a more accurate method of 
assessing fetal well-being, but it is invasive and carries a small 
risk of infection or bleeding. 

In conclusion, CTG and FECG are two important tools 
used in the monitoring of fetal well-being during pregnancy. 
CTG is a non-invasive technique that is easy to perform and 
does not pose any risks to the mother or fetus, while FECG is 
a more accurate method of assessing fetal well-being, but it is 
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invasive and carries a small risk of infection or bleeding. Both 
techniques play an important role in the assessment of fetal 
well-being, and when used together, they can provide a more 
comprehensive picture of the fetus's health [2]. 

The collected data is preprocessed to remove outliers, and 
features are extracted using statistical and advanced filtering 
techniques. An ensemble learning model is then employed to 
optimize the prediction rate on the segmented classes. 
Regarding the research approach, different methods such as 
deductive or inductive, qualitative and quantitative can be 
used. Thoroughly studying the existing literature and research, 
the hypothesis formulation suggests a deductive research 
approach. The purpose of this study is to improve the overall 
lifetime of ECG measurement and its recognition and 
classification, and the qualitative approach is found to be the 
most appropriate [3]. In a later stage, ECG classification was 
performed and some abnormalities were detected. A test was 
conducted on 50 ECG signals with a duration of 2.5 seconds, 
and the application of certain techniques led to a significant 
improvement in baseline stability. ECG histograms showed 
minimal baseline drift during the recording phase after 
reducing baseline drift noise. To validate the estimation 
processes, 10 ECG signals with artificial baseline drift noise 
were created and analyzed using correlation and mean square 
error calculations. Farrell et al. [4] continue to explain the 
wavelet variance to wavelet packets in their work, in which 
they use the wavelet packets iterative CSS algorithm to locate 
variance change points. As a result, their method can be 
applied to a large variety of processes. The primary aim of this 
research is to address the disproportionately high rates of 
cardiovascular diseases (CVDs) in rural areas of India by 
developing a low-cost, IoT-enabled ECG monitoring system 
that uses signal classification to improve diagnosis rates. In 
recent years, several methods have been proposed in literature 
to enhance the recognition of premature ventricular 
contractions and other heart diseases from normal beats using 
electrocardiogram (ECG) signals. One such system proposed 
by [5] consists of three stages: denoising, feature extraction, 
and classification. The denoising stage deploys the Stationary 
Wavelet Transform to remove noise from the ECG signal, 
while the feature extraction stage combines morphological-
based features and timing interval-based features to extract 
relevant information from the signal. Finally, multiple 
classifiers such as Multi-layer perceptron neural networks 
(MLP), probabilistic neural networks (PNN), and support 
vector machines (SVM) are used to classify the ECG beats. 
Among these classifiers, SVM achieved the highest 
classification accuracy of 97% [6]. Another study [7] 
addresses the issue of baseline drift noise in ECG signal 
processing by employing the Discrete Wavelet Transform. 
This transform effectively demonstrates non-stationary signals 
such as ECG signals. The proposed method was tested using 
ECG signals from the MIT-BIH arrhythmia database and 
proved to be effective in eliminating 60Hz artifacts with 
minimal ECG signal distortion. Other methods have also been 
proposed in literature to reduce noise and improve the quality 
of ECG signals, including the use of multirate architecture 
with a linear phase lowpass filter, Butterworth and Chebyshev 
I filters, wavelet transform method and a neural network based 
on adaptive filters, artificial neural network for automated 

noise removal, IIR Zero phase filtering, FIR and IIR filters, 
particle swarm optimization and support vector machine 
classifier for wavelet-based representation of ECG beats, an 
algorithm using a discrete wavelet transform, extreme learning 
machine and support vector machine for classifying four 
different types of heart beats, automated medical diagnostic 
tool using the cross-spectral density approach and least square 
support vector machine classification algorithm, and a power 
spectral-based hybrid support vector machine-genetic 
algorithm to categorize five different types of ECG beats [8]. 

In addition to these methods, several studies have also 
proposed the use of neural networks and other machine 
learning techniques for ECG beat classification and heart 
disorder diagnosis. One such study used a neural network 
model with stacked generalization method, resulting in an 
error rate of 12.41%. Another study evaluated the performance 
of various classifiers, including Kth Nearest Neighbor Rule, 
neural networks, discriminant analysis, and fuzzy logic, using 
26 morphological parameters as the focus features. A third 
study proposed an Artificial Neural Network (ANN) based 
system for the diagnosis of cardiac arrhythmia using standard 
12-lead ECG signal recordings. In all of these studies, the 
MITBIH database was used to evaluate performance, and the 
results were found to be satisfactory [9]. 

In [10], a combination of a convolutional neural network 
(CNN) and a recurrent neural network (RNN) was proposed 
for ECG beat classification. The authors used the PTB 
Diagnostic ECG Database to train and test their model, 
achieving an overall accuracy of 99.2%. These studies 
demonstrate the effectiveness of using machine learning 
techniques for ECG beat classification and heart disorder 
diagnosis, and highlight the importance of continuing research 
in this field. 

The author [11] developed a method of detecting the QRS 
of the fetus by combining a time-varying Finite Impulse 
Response (FIR) filter with a genetic algorithm. They found 
that the filter coefficients reduced the quadratic error and 
ensured convergence towards the optimal filter. To compare 
the effectiveness of the Genetic Algorithm (GA) with other 
filters such as Wiener, Recursive Least Mean Square (RLMS), 
and Normalized Least Mean Square (NLMS), a realization 
and comparison were performed using the same filter 
coefficients with real ECG signals acquired from the abdomen 
of the mother. The extraction accuracy was improved by 
changing the order of the filter and the NLMS algorithm gave 
good quality performances when compared to other filters. 
However, if the gain of adaptation was large, there was a risk 
of oscillations. The research [12] introduced a method of 
extracting Fetal Electrocardiogram (FECG) based on an 
adaptive linear neural network. The results showed that the 
adaptive linear neural network could be used to extract FECG 
from the maternal abdominal signal effectively. The 
improvement of the network structure made the network error 
more close to the maternal ECG (MECG), thus a clearer 
FECG could be acquired. A clearer FECG could be extracted 
by improving neural network parameters. The study [13] 
proposed a new methodology that combined Artificial Neural 
Network (ANN) and correlation approach. Nonlinear and 
time-varying features of the ECG signal had to be adapted 
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using an Artificial Neural Network. It required a desired 
output in order to learn, hence it used supervised Multilayer 
Perception (MLP) network. Likewise, to scale the MECG 
when subtracting it from the AECG, in order to get the FECG 
the correlation method was chosen as the correlation factor. 
The ANN and correlation combination gave an improved and 
efficient result in terms of accuracy for FECG extraction and 
R peak detection. The author in [14] presented a method for 
extracting FECG using Adaptive Neuro-Fuzzy Inference 
System (ANFIS). The method involves collecting ECG signals 
from two electrodes, one placed at the thoracic area 
(completely maternal) and the other at the abdominal area 
(composite of maternal and fetal ECG signal). Accurate 
placement of the electrodes is crucial for the application of 
this method. ANFIS was used for nonlinear alignment of the 
MECG signal with the components of MECG in the 
abdominal signal. Then, the maternal components of the 
abdominal signal were cancelled, and finally the FECG signal 
was extracted. The algorithm was tested using synthetic and 
real ECG data, and in both cases, good FECG extraction was 
achieved, even in the presence of full overlapping maternal 
and fetal signals. This improved the application of wavelet 
transform to FECG signals extracted by polynomial networks. 
Both synthetic and real-time data were pre-processed and 
post-processed using wavelet denoising algorithms. This 
method effectively removed baseline wandering, and the 
extraction performance was successful and improved. For real 
FECG, visual results also showed that wavelet denoising was 
useful. The research [15] proposed a new methodology that 
combined Artificial Neural Network (ANN) and Correlation 
(ANNC) approach. This method tried various learning 
constant values and momentum for FECG signal extraction 
from the abdominal signal and proved that changing the 
learning rate and momentum also affect the output of the 
network. This technique was found to be robust and 
effectively extract the FECG signal from the abdominal signal 
with an accuracy of 95% and performance of 93.75%. In 
summary, these studies demonstrate the effectiveness of using 
neural networks and deep learning techniques for ECG beat 
classification and diagnosis of heart disorders. These 
techniques have been shown to achieve high accuracy and are 
promising for use in clinical settings. 

A. Research Gap 

One potential research gap for the content on real-time 
ECG-CTG detection using machine learning is the lack of 
focus on the scalability and generalizability of the proposed 
techniques. Most of the studies cited in the content are focused 
on improving the accuracy of ECG classification using 
specific datasets or databases. However, there is a need to 
evaluate the performance of these techniques on a larger and 
more diverse set of data to determine their potential for wider 
adoption in clinical settings. Additionally, the content could 
benefit from more exploration of the challenges and 
limitations of applying machine learning techniques to ECG-
CTG detection, such as issues related to data quality, 
interpretability, and ethical considerations. Finally, there may 
be opportunities to investigate the integration of ECG-CTG 
detection with other healthcare technologies, such as 
telemedicine or wearable devices, to improve patient 
outcomes and reduce healthcare costs. 

The paper is structured as follows: In Section II, the 
related works of ECG+CTG models and their limitations are 
presented. Section III outlines the proposed solution for 
ECG+CTG using machine learning. Section IV provides 
details on the experimental results and analysis. Finally, in 
Section V, the paper is concluded. 

II. RELATED WORKS 

The detection and analysis of fetal electrocardiogram 
(FECG) signals is a crucial tool in evaluating the health and 
status of a fetus during labor. However, extracting the FECG 
signal alone from complex data contaminated by various types 
of noise such as maternal ECG, electromyogram, power line 
interference, and mother's respiration is challenging. In recent 
years, researchers have proposed various methods to improve 
the accuracy and reliability of monitoring the fetal heart rate 
during contractions. One such method is the combination of a 
time-varying Finite Impulse Response (FIR) filter with a 
genetic algorithm, developed by Talha and colleagues in 2010. 
The filter coefficients were found to reduce the quadratic error 
and ensure convergence towards the optimal filter. Realization 
and comparison were performed using the same filter 
coefficients with real ECG signals acquired from the abdomen 
of the mother. The extraction accuracy was improved by 
changing the order of the filter and the Normalized Least 
Mean Square (NLMS) algorithm gave good quality 
performances when compared to other filters, such as Wiener, 
Recursive Least Mean Square (RLMS), and Normalized Least 
Mean Square (NLMS). However, this method has lower 
efficiency in removing noise signals compared to other 
methods [16]. 

Another method proposed by [17] is a hybrid ECG 
arrhythmia classification approach, known as MRFO-SVM. 
This approach combines various ECG signal descriptors based 
on one-dimensional local binary patterns (LBP), wavelet, 
higher-order statistical (HOS), and morphological information 
for feature extraction. The approach utilizes a metaheuristic 
algorithm, known as Manta Ray Foraging Optimization 
(MRFO), for feature selection and classification processes. 
However, this approach could be further improved by 
integrating MRFO with other machine learning techniques 
such as convolutional neural networks (CNN) and deep neural 
networks (DNN) to enhance the detection of arrhythmia and 
heart rate abnormalities, as well as by hybridizing MRFO with 
other metaheuristic algorithms. The study [18] evaluated a 
segment-based stacking method of CNN and SVM to classify 
short single-lead ECG signals into four classes: Normal, AF, 
Others, and Noise. Landry et al. proposed a novel embedded 
QRS complex detection algorithm based on the ECG signal 
strength and its trend. Mourad et al. used wavelet transforms 
to detect QRS complexes, and Rahul et al. proposed a 
window-based FIR filter to eliminate high-frequency noise in 
ECG signals. Yang et al. proposed a 12-lead ECG arrhythmia 
classification method using a cascaded convolutional neural 
network (CCNN) and expert features. While these methods 
have shown promise, limitations and issues still exist, such as 
difficulty in detecting R-waves with slow variations and when 
preceded by waves with strong amplitudes, the need for high 
computational memory and time for large numbers of features 
and signals, and the need for further research to utilize the 
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QRS-complex for the detection of various cardiac 
arrhythmias, the detection of other waves in the cardiac cycle, 
and the possibility of low-cost hardware implementation for 
early detection of cardiovascular disorders. In recent years, 
several technologies have been employed to design and 
implement ECG monitoring systems for remote monitoring of 
cardiovascular diseases (CVDs). These include the Internet of 
Things (IoT), mobile applications, wireless sensor networks 
(WSN), and wearable devices. For example, Serhani et al. 
proposed an IoT-based CVD monitoring system that facilitates 
ECG data acquisition and continuous remote monitoring and 
analysis of patients, with the collected data transmitted to the 
cloud for further investigation by specialists for early 
diagnosis. Similarly, [19] developed a portable ECG 
monitoring system based on Arduino-Uno and an AD8232 
sensor to monitor the cardiac health condition of patients. This 
proposed a system that continuously monitors the temperature, 
pulse rate, and ECG of patients, generating an alert SMS to 
the caretaker's mobile if the values exceed normal limits. They 
developed a wireless real-time ECG monitoring system for the 
early detection of CVDs, while Mishra et al. proposed an IoT-
based smart healthcare system with an AD8232 heart rate 
sensor interfaced with Arduino UNO and connected to the 
cloud using an ESP8266 wireless LAN module for remote 
monitoring. They proposed an e-health monitoring system that 
measures body temperature, blood oxygen saturation, ECG 
signal, and heart rate, sending the data to an IoT cloud for 
remote analysis by a doctor. The study [12] implemented an 
IoT-based vital sign monitoring system using Raspberry Pi 3 
to monitor body temperature, pulse rate, and heartbeat using 
ECG, and Deep neural networks for the analysis and 
classification of normal and abnormal beats. Despite the 
prevalence of these studies in the literature, there are relatively 
few studies that have analyzed and classified signals to design 
a complete healthcare system. One of the major challenges in 
bio-signals processing is the high variability of bio-signals 
over time, due to biological processes within the body. This 
variability often complicates the selection of informative 
parameters and may yield inaccurate predictions. Outliers, or 
portions of the signal that deviate excessively from adjacent 
segments, are a typical phenomenon in bio-signals processing, 
and the elimination of their impact is crucial in the signal 
processing channel of ECG-based biometric systems. To 
address these challenges, researchers have employed various 
methods for outlier correction and classification of ECG 
signals. For example, Jun et al. compared the effectiveness of 
outlier correction methods for ECG signals in combination 
with various classification algorithms in biometric 
applications. Aqeel et al. developed an IoT-based ECG signal 
monitoring and classification system to diagnose the health 
status of patients, utilizing convolutional neural networks 
(CNN) and achieving an accuracy of 94.94%. The research 
[19] proposed a real-time ECG signal analysis and 
classification approach using discrete wavelet transform 
(DWT) and support vector machines (SVMs). DWT is used 
for pre-processing and feature extraction from the MIT-BIH 
dataset, and the SVM classifies six heartbeat types with an 
accuracy of 98.61%.Recently, researchers have demonstrated 
that ensemble systems can increase the performance of base 
classifiers. Ensemble learning is the process of integrating 

various base models to improve the overall performance of the 
system. Ensemble-based ECG classification methods have 
been proposed in various studies, achieving high accuracy and 
robustness in detecting and classifying ECG beats. 

III. PROPOSED MODEL 

The proposed model for ECG classification consists of 
three phases, which are designed to address key challenges in 
ECG classification and improve the accuracy and reliability of 
the classification results. 

In Phase 1, the model focuses on collecting high-quality 
CTG and FECG data in real-time. This is important because 
the accuracy of ECG classification models depends heavily on 
the quality of the input data, and any noise or artifacts in the 
data can significantly affect the classification results. By 
collecting data in real-time, the model ensures that the data is 
up-to-date and reflects the current state of the patient's heart 
function. 

In Phase 2, the model focuses on extracting relevant 
features from the ECG and CTG data and filtering out noise 
and artifacts. This is a critical step in ECG classification 
because it helps to reduce the complexity of the data and 
highlight the key characteristics that are important for 
classification. By using advanced feature extraction and 
filtering techniques, the model is able to identify and isolate 
key features that are relevant for classification, while 
minimizing the impact of noise and artifacts. 

In Phase 3, the model uses a cluster-based ensemble 
classification approach to classify the ECG data. This 
approach combines the results of multiple classification 
models to improve the accuracy and reliability of the 
classification results. By using a cluster-based approach, the 
model is able to group similar ECG signals together and 
classify them based on their shared characteristics. This 
approach can improve the accuracy of classification by 
reducing the impact of individual classification errors and 
increasing the overall robustness of the model. The proposed 
model is implemented in three phases shown in Fig. 1. 

 Phase 1: Realtime CTG and FECG data collection. 

 Phase 2: ECG+CTG Feature extraction measures and 
filtering. 

 Phase 3: Proposed cluster based ensemble 
classification. 

As depicted in Fig. 1, the data is initially collected from a 
real-time ECG sensor. The data from each sensor is then sent 
to AWS cloud storage for further analysis. The machine 
learning model employs a filtering technique and feature 
extraction measures to preprocess the data. In this particular 
study, an enhanced kernel feature ranking measure was 
implemented to enhance the feature selection process for 
clustering. A novel clustering approach was also utilized to 
identify key classes for classification. To improve 
performance, an ensemble learning framework was employed 
to reduce the error rate and increase the true positive rate. As 
depicted in Fig. 1, the data is initially collected from a real-
time ECG sensor. The data from each sensor is then sent to 
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AWS cloud storage for further analysis. The machine learning 
model employs a filtering technique and feature extraction 
measures to preprocess the data. In this particular study, an 
enhanced kernel feature ranking measure was implemented to 
enhance the feature selection process for clustering. A novel 
clustering approach was also utilized to identify key classes 
for classification. To improve performance, an ensemble 
learning framework was employed to reduce the error rate and 
increase the true positive rate. 

1) Phase 1: Realtime CTG and FECG  data collection: 

CTG is a non-invasive test that uses ultrasound to measure the 

fetal heart rate and uterine contractions, while FECG is an 

invasive test that uses electrodes to measure the electrical 

activity of the fetal heart. Both tests are used to detect any 

potential problems that may arise during pregnancy, such as 

fetal distress or abnormal fetal heart rate patterns.Real-time 

data acquisition for CTG and FECG is essential for data 

processing. This involves the collection and analysis of data in 

real-time, as opposed to after the fact. Real-time data 

acquisition allows for the early detection of any potential 

problems, which can lead to prompt intervention and better 

outcomes for both the mother and the fetus.One of the most 

important aspects of real-time data acquisition for CTG and 

FECG is the use of advanced technology. High-quality 

ultrasound machines, specialized software, and sophisticated 

electrodes are used to collect and analyze data. This 

technology is able to detect even the slightest changes in the 

fetal heart rate and contractions, which can indicate potential 

problems. In addition to advanced technology, real-time data 

acquisition for CTG and FECG also requires trained 

professionals to operate the equipment and interpret the 

results. Obstetricians and gynecologists, as well as specialized 

nurses and technologists, are responsible for monitoring the 

data and interpreting the results. They must be able to 

recognize any abnormal patterns or changes in the data, and 

take appropriate action to address any potential problems. 

Data processing is also an important aspect of real-time data 

acquisition for CTG and FECG. This involves the analysis of 

the data collected by the equipment, and the identification of 

any patterns or trends that may indicate potential problems. 

Data processing is typically done using specialized software, 

which can analyze the data in real-time and identify any 

potential issues. 

Overall, real-time data acquisition for CTG and FECG is 
essential for ensuring the health and well-being of both the 
mother and the fetus during pregnancy. Advanced technology, 
trained professionals, and data processing are all crucial 
elements of this process, and must be carefully managed to 
ensure the best possible outcomes. 

 
Fig. 1. Proposed framework. 
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2) Phase 2: Feature extraction measures and filtering: 

QRS peak detection is an important step in the analysis of 

electrocardiogram (ECG) signals as it helps to identify the 

locations of the Q, R, and S waves, which are indicative of the 

electrical activity of the heart. The following are the steps of a 

typical QRS peak detection algorithm:  

Filtering: The ECG signal is passed through a bandpass 
filter to remove any noise and high-frequency artifacts. The 
cutoff frequencies of the filter are typically between 5 and 15 
Hz, as the QRS complex is known to occur within this 
frequency range. 

Differentiation: The filtered ECG signal is then 
differentiated using a differentiation operator, such as a finite 
difference or a Sobel operator, to enhance the high-frequency 
components of the QRS complex. 

Squaring: The differentiated ECG signal is squared to 
further enhance the QRS complex and suppress the noise. 

Moving Window Integration: The squared ECG signal is 
then passed through a moving window integrator, such as a 
rectangular window or a Gaussian window, to smooth the 
signal and eliminate any remaining noise. 

Thresholding: A threshold is set to detect the QRS peaks. 
The threshold is typically set at a level that is slightly above 
the baseline noise level. Any sample that exceeds this 
threshold is considered a QRS peak. 

The above described steps are mathematical derivation: 

Filtering: 

The filtered ECG signal is obtained by convolving the 
original ECG signal with a bandpass filter function h(t) which 
is defined as : 

h(t)= (1/T) * rect((t-T/2)/T) * (sin(2πfct)/(πfct))  (1) 

where rect(x) = 1 for |x|<0.5 and 0 otherwise, 

Differentiation: 

The differentiated ECG signal is obtained by applying the 
differential operator d/dt to the filtered ECG signal. 

Squaring: 

The squared ECG signal is obtained by squaring the 
differentiated ECG signal. 

Moving Window Integration: 

The smoothed ECG signal is obtained by convolving the 
squared ECG signal with a moving window function w(t). 

Thresholding: 

The threshold value is set to a level slightly above the 
baseline noise level. Any sample that exceeds this threshold is 
considered a QRS peak. 

3) Phase 3: Proposed Cluster based Ensemble 

classification framework: The Probabilistic Expectation-

Maximization (PEM) algorithm is a popular method for 

clustering data, including ECG signal data. The algorithm 

consists of two main steps: the Expectation step (E-step) and 

the Maximization step (M-step). The steps are repeated until 

convergence, at which point the algorithm has found the 

maximum likelihood estimates for the parameters of the 

underlying mixture model. 

E-step: In this step, the algorithm estimates the probability 
that each data point belongs to each of the clusters, given the 
current estimates of the parameters of the mixture model. This 
is done by computing the likelihood of each data point, given 
the current cluster means and covariances, and multiplying 
this by the prior probability of each cluster. The resulting 
probabilities are used to update the responsibilities for each 
data point and cluster. 

Mathematically, the E-step is represented by the following 
equation: 

r_{n,k} = P(z_n = k | x_n, mu, Sigma) = frac{P(x_n | z_n = k, 

mu, Sigma) * P(z_n = k)}{P(x_n)}       (2) 

where x_n is the nth data point, z_n is the cluster 
assignment for the nth data point, mu is the mean of the kth 
cluster, Sigma is the covariance matrix of the kth cluster, and 
r_{n,k} is the responsibility of the kth cluster for the nth data 
point. 

M-step: In this step, the algorithm updates the parameters 
of the mixture model (i.e., the means, covariances, and prior 
probabilities) based on the current responsibilities of the data 
points. The new parameters are chosen to maximize the 
expected log-likelihood of the data, given the current 
responsibilities. 

Mathematically, the M-step is represented by the following 
equations: 

mu_k = frac{1}{N_k} sum_{n=1}^{N} r_{n,k} x_n 

Sigma_k = frac{1}{N_k} sum_{n=1}^{N} r_{n,k} (x_n - 

mu_k)(x_n - mu_k)^T 

P(z_n = k) = frac{N_k}{N}           (3) 

where mu_k is the mean of the kth cluster, Sigma_k is the 
covariance matrix of the kth cluster, P(z_n = k) is the prior 
probability of the kth cluster, and N_k is the total 
responsibility of the kth cluster. 

The algorithm continues to alternate between the E-step 
and the M-step until convergence is reached. This can be 
determined by checking whether the log-likelihood of the data 
has stopped increasing or if the parameters have not changed 
significantly between iterations. 

This is the basic algorithm for EM clustering, which is 
useful for identifying patterns and structure in ECG signal 
data. However, it is worth noting that there are various 
modifications and extensions of the EM algorithm, such as the 
Gaussian Mixture Model (GMM) and the soft EM algorithm 
that can be applied to ECG signal data to improve the 
performance of the clustering. 
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A. Proposed Ensemble Classification Learning Model 

The Support Vector Machine (SVM) algorithm is a 
supervised learning algorithm that can be used for 
classification and regression tasks. One of the key features of 
SVM is the use of kernel functions, which allows the 
algorithm to perform nonlinear classification by mapping the 
input data into a higher dimensional space. 

The mathematical derivation for a nonlinear kernel 
function SVM applied to ECG signal data is as follows: 

The input data, which consists of a set of ECG signals, is 
first mapped into a higher dimensional feature space using a 
nonlinear kernel function, K(x,y). Commonly used nonlinear 
kernel functions include the Radial Basis Function (RBF) 
kernel, the Polynomial kernel, and the Sigmoid kernel. 

The equation for the RBF kernel function is: K(x,y) = 
exp(-γ||x-y||^2) 

The equation for the Polynomial kernel function is: K(x,y) 
= (x.y + c)^d 

The equation for the Sigmoid kernel function is: K(x,y) = 

tanh(γx.y + c)                       (4) 

The optimal hyperplane is then found by maximizing the 
margin, which is defined as the distance between the closest 
data points of each class, known as support vectors, and the 
hyperplane. 

The equation for the optimal hyperplane is: wx + b = 0 

The decision boundary is given by the equation: f(x) = 
sign(wx + b). 

The SVM algorithm then uses this decision boundary to 
classify new data points as belonging to one of the classes. 

The parameters of the kernel function (such as gamma and 
the constant term) can be optimized using techniques such as 
cross-validation to improve the performance of the algorithm. 

Finally, the ensemble classification algorithm is performed 
by combining the decision of multiple base classifiers (SVM, 
Neural network, optimized Naive Bayesian, and optimized 
decision tree) using techniques such as majority voting or 
weighted voting to produce a final prediction. 

The optimized decision tree algorithm is a method for 
building a decision tree model with improved accuracy and 
reduced overfitting. The following are the steps for building 
an optimized decision tree for ECG signal data, along with 
mathematical derivations: 

Data preprocessing: The first step is to preprocess the ECG 
signal data by removing any missing or irrelevant data and 
scaling the features to a common range. 

Feature selection: Next, a feature selection method such as 
mutual information or wrapper methods can be used to select 
the most relevant features for the decision tree model. 

Splitting criterion: The decision tree algorithm builds the 
tree by repeatedly splitting the data based on the feature that 
maximizes the reduction in impurity. A common splitting 
criterion is the Gini impurity, which is calculated as: 

Gini = 1 - Σ(p_i)^2 

where p_i is the proportion of data points belonging to 
class i in a given node. 

Pruning: To prevent overfitting, the decision tree can be 
pruned by removing branches with low information gain or by 
setting a minimum number of samples required to split a node. 

Model evaluation: The final step is to evaluate the 
performance of the decision tree model using metrics such as 
accuracy, precision, recall, and F1-score. 

Hyperparameter tuning: The final step is to optimize the 
model by tuning the hyperparameters such as maximum depth, 
minimum samples per leaf, and minimum samples per split. 

Ensemble: Once the decision tree is optimized, it can be 
combined with other classifiers like SVM, Neural network, 
optimized Naive bayesian etc to form an ensemble classifier 
which will lead to an improved overall performance of the 
model. 

The joint probability estimation based naive bayes 
algorithm for ECG signal data involves the following steps: 

Data preprocessing: The ECG signal data is preprocessed 
to remove any noise or artifacts present in the signal. This can 
be done using techniques such as filtering, resampling, and 
baseline correction. 

Feature extraction: The ECG signal data is then divided 
into segments and features are extracted from each segment. 
These features can include information such as the R-peak 
amplitude, QRS duration, and P-wave duration. 

Joint probability estimation: The joint probability of the 
features and the class labels is estimated using the extracted 
features. This can be done using techniques such as maximum 
likelihood estimation or the method of moments. 

Naive bayes classifier: The naive bayes classifier is then 
trained on the estimated joint probabilities. This classifier 
assumes that the features are independent given the class label. 

Classification: Once the classifier is trained, it can be used 
to classify new segments of ECG signal data by computing the 
posterior probabilities for each class label and selecting the 
label with the highest probability. 

Mathematical derivation: 

Let's suppose we have D = {(x1,y1),(x2,y2),...,(xn,yn)} as 
the training data set, where xi is the feature vector of i-th 
segment and yi is the corresponding class label. 

The joint probability of feature vector xi and class label yi 
can be defined as 

P(x,y) = P(x|y)P(y) 

The naive bayes classifier assumes that the features are 
independent given the class label, so we can write 

P(x|y) = Πi=1n P(xi|y) 

The class label with the highest probability will be the 
predicted class label 
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P(y|x) = P(x|y)P(y) / P(x) = P(x|y)P(y) / Σy' P(x|y')P(y') (5) 

where y' is a class label 

The optimized decision tree algorithm will have similar 
steps but with a different mathematical derivation for the 
decision tree. 

IV. EXPERIMETNAL RESULTS 

Experimental results are evaluated on real-time ECG+CTG 
signal data in order to predict the abnormality of the patient. 

CTG Data: 

Fetal heart rate (FHR): This is the number of times the 
fetus' heart beats per minute. It is typically measured using 
ultrasound or a cardiotocograph (CTG) machine. 

Fetal heart rate variability (FHRV): This is the variation in 
the time interval between successive fetal heartbeats. It can be 
measured using ultrasound or a CTG machine. 

Uterine contractions: These are the rhythmic, involuntary 
contractions of the uterus that occur during labor. They can be 
measured using a tocodynamometer. 

FHR acceleration: This is an increase in the FHR above 
the baseline that lasts for at least 15 seconds. It can be 
measured using ultrasound or a CTG machine. 

FECG Data: 

Fetal ECG: This is the electrical activity of the fetus' heart. 
It can be measured using electrodes placed on the mother's 
abdomen. 

Fetal heart rate: Same as above 

Fetal QRS complex: This is the combination of the Q, R, 
and S waves of the fetal ECG. It can be used to assess the fetal 
cardiac function. 

Fetal QT interval: This is the duration of the QT interval of 
the fetal ECG. It can be used to assess the fetal cardiac 
function. 

The result represents the test classification recall of the 
proposed model on the selected features subset using 
ensemble learning framework. From the results it is noted that 
the proposed ranked based classification has better recall than 
conventional approaches on realtime data1 as shown in Fig. 2. 

The result represents the test classification accuracy of the 
proposed model on the selected features subset using 
ensemble learning framework. From the results it is noted that 
the proposed ranked based classification has better accuracy 
than conventional approaches on SSDS data as shown in Fig. 
3. 

The result represents the test classification precision of the 
proposed model on the selected features subset using 
ensemble learning framework. From the results it is noted that 
the proposed ranked based classification has better precision 
than conventional approaches on SSDS data as shown in Fig. 
4. 

 
Fig. 2. Comparative analysis of recall for ECG+CTG based classification 

models. 

 
Fig. 3. Comparative analysis of accuracy for ECG+CTG based classification 

models. 

 
Fig. 4. Comparative analysis of precison for ECG+CTG based classification 

models. 

The result represents the test classification F-measure of 
the proposed model on the selected features subset using 
ensemble learning framework. From the results it is noted that 
the proposed ranked based classification has better F-measure 
than conventional approaches on SSDS data as shown in Fig. 
5. 
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Fig. 5. Comparative analysis of recall for ECG+CTG based classification 

models. 

TABLE I.  COMPARATIVE ANALYSIS OF PROPOSED MODEL TO 

CONVENTIONAL MODELS ON DATASET2 

Accu

racy 

Sample

s 

LR+SVM+

BOOST 

LR+KNN+

BOOST 

RF+KNN

+BOOST 

ProposedE

nsemble 

 

TestDat

a-1 
0.959 0.947 0.955 0.989 

 

TestDat

a-2 
0.956 0.945 0.963 0.991 

 

TestDat

a-3 
0.956 0.943 0.965 0.99 

 

TestDat

a-4 
0.96 0.948 0.962 0.991 

 

TestDat

a-5 
0.954 0.946 0.952 0.989 

 

TestDat

a-6 
0.954 0.947 0.952 0.99 

 

TestDat

a-7 
0.957 0.941 0.957 0.99 

 

TestDat

a-8 
0.959 0.94 0.955 0.989 

 

TestDat

a-9 
0.958 0.943 0.963 0.991 

 

TestDat

a-10 
0.959 0.947 0.959 0.989 

Recal

l 

Sample

s 

LR+SVM+

BOOST 

LR+KNN+

BOOST 

RF+KNN

+BOOST 

ProposedE

nsemble 

 

TestDat

a-1 
0.952 0.942 0.956 0.991 

 

TestDat

a-2 
0.958 0.949 0.952 0.99 

 

TestDat

a-3 
0.951 0.948 0.957 0.99 

 

TestDat

a-4 
0.956 0.942 0.956 0.99 

 

TestDat

a-5 
0.952 0.945 0.961 0.99 

 

TestDat

a-6 
0.951 0.942 0.965 0.991 

 

TestDat

a-7 
0.959 0.945 0.964 0.99 

 

TestDat

a-8 
0.958 0.95 0.961 0.99 

 

TestDat

a-9 
0.951 0.942 0.962 0.99 

 
TestDat 0.956 0.943 0.957 0.99 

a-10 

Precis

ion 
Samples 

LR+SVM+

BOOST 

LR+KNN+

BOOST 

RF+KNN

+BOOST 

ProposedE

nsemble 

 

TestDat

a-1 
0.956 0.949 0.953 0.991 

 

TestDat

a-2 
0.959 0.948 0.954 0.99 

 

TestDat

a-3 
0.959 0.948 0.966 0.99 

 

TestDat

a-4 
0.952 0.94 0.958 0.989 

 

TestDat

a-5 
0.954 0.947 0.958 0.99 

 

TestDat

a-6 
0.958 0.947 0.963 0.99 

 

TestDat

a-7 
0.959 0.947 0.958 0.99 

 

TestDat

a-8 
0.951 0.945 0.953 0.99 

 

TestDat

a-9 
0.954 0.941 0.962 0.99 

 

TestDat

a-10 
0.955 0.949 0.95 0.99 

F-

meas

ure 

Samples 
LR+SVM+

BOOST 

LR+KNN+

BOOST 

RF+KNN

+BOOST 

ProposedE

nsemble 

 

TestDat

a-1 
0.954 0.945 0.956 0.99 

 

TestDat

a-2 
0.956 0.942 0.954 0.99 

 

TestDat

a-3 
0.959 0.949 0.952 0.99 

 

TestDat

a-4 
0.954 0.949 0.955 0.991 

 

TestDat

a-5 
0.959 0.946 0.961 0.991 

 

TestDat

a-6 
0.952 0.949 0.959 0.991 

 

TestDat

a-7 
0.955 0.944 0.96 0.991 

 

TestDat

a-8 
0.959 0.946 0.951 0.99 

 

TestDat

a-9 
0.952 0.95 0.956 0.99 

 

TestDat

a-10 
0.952 0.949 0.952 0.99 

AUC Samples 
LR+SVM+

BOOST 

LR+KNN+

BOOST 

RF+KNN

+BOOST 

ProposedE

nsemble 

 

TestDat

a-1 
0.959 0.943 0.963 0.991 

 

TestDat

a-2 
0.954 0.941 0.953 0.99 

 

TestDat

a-3 
0.958 0.946 0.965 0.989 

 

TestDat

a-4 
0.952 0.946 0.952 0.991 

 

TestDat

a-5 
0.958 0.949 0.955 0.989 

 

TestDat

a-6 
0.955 0.947 0.956 0.99 

 
TestDat 0.954 0.95 0.956 0.989 
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a-7 

 

TestDat

a-8 
0.952 0.945 0.965 0.989 

 

TestDat

a-9 
0.956 0.941 0.954 0.991 

 

TestDat

a-10 
0.951 0.941 0.957 0.99 

Table I, represents the result analysis of different machine 
learning models for ECG classification, evaluated on ten 
different datasets (TestData-1 to TestData-10). The 
performance metrics evaluated include Accuracy, Recall, 
Precision, F-measure, and AUC, and the models compared 
include LR+SVM+BOOST, LR+KNN+BOOST, 
RF+KNN+BOOST, and the proposed ensemble model. 

Overall, the proposed ensemble model outperformed the 
other models on most datasets, achieving high scores on all 
performance metrics. LR+KNN+BOOST and 
RF+KNN+BOOST also performed well, with high accuracy 
and AUC scores, but lower precision and recall scores 
compared to the proposed ensemble model. The results 
suggest that ensemble models combining multiple machine 
learning algorithms can improve the accuracy and reliability 
of ECG classification, and may have potential for use in 
clinical settings. However, it is important to note that the 
evaluation was performed on a limited set of datasets, and 
further research is needed to evaluate the performance and 
generalizability of these models on larger and more diverse 
datasets. 

V. CONCLUSION 

The proposed real-time ECG CTG based ensemble feature 
extraction and unsupervised learning based classification 
framework for multi-class abnormality prediction in ECG 
signals shows promising results in accurately identifying 
different types of abnormalities in ECG signals. The use of 
ensemble feature extraction and unsupervised learning allows 
for robust and accurate classification of ECG signals, even in 
the presence of noise and variability. Additionally, the real-
time aspect of the framework allows for real-time monitoring 
and early detection of abnormalities in ECG signals, which 
can greatly improve patient outcomes. Further research and 
validation of the proposed framework is needed to fully assess 
its clinical utility and potential for implementation in real-
world settings. In future work, a novel parallel deep learning 
framework is used to improve the computational time on large 
big data. 
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