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Abstract—This paper proposes the use of a small differential
robot with two DC motors, controlled by an ESP32 microcon-
troller, that implements the Rapidly Exploring Random Trees
algorithm to navigate from an origin point to a destination
point in an unknown but observable environment. The motivation
behind this research is to explore the use of a low-cost, versatile
and efficient robotic platform for autonomous navigation in
complex environments. This work presents a practical and cost-
effective solution that can be easily replicated and implemented
in various scenarios such as search and rescue, surveillance, and
industrial automation. The proposed robotic platform is equipped
with a set of sensors and actuators that allow it to observe the
environment, estimate its position, and move through it. The
Rapidly Exploring Random Trees algorithm is implemented to
generate a path from an origin to a destination point, avoiding
obstacles and adjusting the robot’s motion accordingly. The
implementation of this algorithm enables the robot to navigate
through complex environments with high efficiency and reliability,
making it a suitable solution for a wide range of applications.
The results obtained through simulations and experiments show
that the proposed robotic platform and algorithm achieve high
performance and accuracy in autonomous navigation, even in
complex environments.
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I. INTRODUCTION

Robotics is an interdisciplinary field that deals with the
design, construction, and operation of robots [1]. Robots have
been used for various purposes, such as manufacturing, health-
care, exploration, and entertainment [2]. The development of
robotics technology has been driven by the need for automa-
tion, improved efficiency, and the desire to reduce human error
[3]. Small differential robots are a common type of robot used
for various applications, including surveillance, exploration,
and educational purposes [4]. In this paper, we propose the use
of a small differential robot with two DC motors, controlled
by an ESP32 microcontroller, with position sensors, distance
sensors, motor encoders, gyroscopes, and cameras, that imple-
ments the Rapidly Exploring Random Trees (RRT) algorithm
to navigate from an origin point to a destination point in an
unknown but observable environment [5], [6], [7].

The use of small differential robots for navigation in
unknown environments has been an area of interest for re-
searchers for many years [8], [9]. The ability of these robots
to navigate in tight spaces and uneven terrains makes them suit-
able for exploring unknown environments [10]. The challenge,

however, lies in the development of algorithms that allow the
robots to navigate effectively in such environments. The RRT
algorithm is one such algorithm that has gained popularity
in recent years due to its ability to efficiently search high-
dimensional spaces [11], [12], [13].

The RRT algorithm is a motion planning algorithm that
generates a tree of feasible paths through a high-dimensional
configuration space [14]. The algorithm is designed to quickly
explore the search space by generating random samples and
expanding the tree towards the samples. The RRT algorithm
has been successfully applied to various robotics applications,
including path planning, motion planning, and autonomous
navigation [15].

The development of small differential robots with advanced
sensors and microcontrollers has made it possible to implement
the RRT algorithm for navigation in unknown environments
[16]. The combination of sensors such as position sensors,
distance sensors, motor encoders, gyroscopes, and cameras
provide the robot with the necessary information to navigate
in its environment [17]. The use of an ESP32 microcontroller
provides the robot with the necessary computational power to
process the sensor data and execute the RRT algorithm.

One of the most significant challenges of implementing
the RRT algorithm on a small differential robot is the limited
computational power and memory of the microcontroller [18],
[19], [20]. As the robot’s size is limited, so is the computational
power of its microcontroller, which can affect the algorithm’s
efficiency. Hence, when designing the algorithm, it is essential
to optimize it to work within the microcontroller’s limita-
tions [21]. Furthermore, it is vital to minimize the memory
requirements of the algorithm to ensure efficient use of the
microcontroller’s limited memory [22], [23].

In addition to the microcontroller’s limitations, the robot’s
size and weight must also be taken into account [24]. These
factors can impact the robot’s maneuverability in tight spaces,
making it difficult for the robot to generate collision-free
paths [25]. To overcome these challenges, the design of the
robot must take into consideration the weight and size of the
components used, and the algorithms must be optimized for
use on small robots.

Another crucial factor that can affect the performance of the
algorithm is the choice of sensors and their placement on the
robot [26]. The right sensors must be chosen and placed opti-
mally to obtain accurate and reliable data on the environment
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[27]. The sensors must be chosen with a trade-off between
cost and performance, and their placement must consider the
robot’s size and weight to ensure optimal performance [28].

In this paper, we present a small differential robot that is
equipped with advanced sensors and an ESP32 microcontroller
that is capable of implementing the RRT algorithm for naviga-
tion in unknown but observable environments. We evaluate the
performance of the robot in various environments and compare
its performance to other navigation algorithms. We also discuss
the challenges associated with the implementation of the RRT
algorithm on a small differential robot and propose solutions
to overcome these challenges.

II. BACKGROUND

The implementation of autonomous navigation algorithms
in dynamic and uncertain environments is an active research
area in robotics. The study [29] proposed a navigation algo-
rithm that enables robots to navigate in dynamic environments
with moving obstacles. They used a dynamic obstacle detection
and tracking algorithm, and a novel cost function to generate
the collision-free path. The architecture and implementation
of an autonomous passenger vehicle designed to navigate
using locally perceived information are presented in [30].
They proposed a hybrid approach using online perception
and planning algorithms to achieve autonomous navigation in
urban environments.

In the presence of high clutter, the performance of the
Concurrent-SLAM (CSLAM) algorithm is reduced. [31] pro-
posed an approach to improve the performance of the CSLAM
algorithm by combining an effective clutter filter framework
based on Random Finite Sets (RFS). They also presented an
improved algorithm that addresses the limitations of the tradi-
tional RRT algorithm, named Heuristic Bi-directional Discrete
Rapidly-explore Random Trees (HBD-RRTs), that outperforms
the RRT algorithm in terms of path quality and computation
time.

A path planning system for autonomous navigation of
unmanned aerial vehicles based on a combination of RRT*
Goal and Limit, which enables the vehicle to navigate in
complex environments while avoiding obstacles, was proposed
by Aguilar et al. [32]. Wang et al. [33] presented an integrated
software and hardware system for autonomous mobile robot
navigation in uneven and unstructured indoor environments,
using a hybrid approach that combines mapping and localiza-
tion techniques to achieve autonomous navigation.

It is important to identify the boundary case scenarios
where an autonomous vehicle can no longer avoid a collision.
Tuncali et al. [34] proposed an automated test generation
approach that utilizes Rapidly-exploring Random Trees to
explore these boundary scenarios. Their approach generates
scenarios that are difficult for the navigation algorithm to
handle and can be used to evaluate the performance of the
navigation algorithm.

Ayawli et al. [35] presented an optimized rapidly exploring
random trees A* (ORRT-A*) method to improve the perfor-
mance of the RRT-A* method to compute safe and optimal
paths with low time complexity for autonomous mobile robots
in partially known complex environments. Their approach

reduces the computation time while ensuring the optimality
and safety of the generated path.

Zhang et al. [36] extended the RRT algorithm to propose
an optimization-based map exploration strategy for multi-
ple robots to actively explore and build environment maps.
Their approach uses a multi-robot coordination algorithm that
assigns exploration tasks to different robots while avoiding
collisions.

In the presence of external agents, ensuring safety without
sacrificing performance becomes extremely challenging. Bak
et al. [37] presented an approach to stress test autonomous
systems using the RRT algorithm. Their approach generates
scenarios that test the robustness and safety of the system by
introducing unexpected changes to the environment or system
behavior.

III. METHODS

Our working platform is based on the Arduino Controlled
Servo Robot (SERB) [38]. The SERB is a small, low-cost
robot that can be programmed and controlled using a micro-
controller. The robot is designed to be highly customizable and
adaptable, making it an ideal platform for both educational
and research purposes. In this regard, we have modified the
platform to use a different control unit (Espressif Systems
ESP32), and incorporate our sensors (Fig. 1).

The SERB is based on a four-wheel drive system, with each
wheel powered by a small DC motor and controlled using a
dedicated servo motor. This allows for precise control of the
robot’s movement, as well as the ability to turn on the spot
and navigate tight spaces.

The robot is equipped with a range of sensors, including
a LiDAR (Light Detection and Ranging o Laser Imaging
Detection and Ranging) sensor for obstacle detection and
avoidance, a GPS (Global Positioning System) for geolocation,
and an IMU inertial unit to determine acceleration and rotation
of the robot. Additionally, the SERB has a built-in camera
module that can be used for vision-based tasks, such as object
recognition and tracking.

One of the key features of the SERB is its ease of use
and flexibility. The robot can be programmed using a small
microcontroller. Additionally, the SERB is compatible with
a wide range of sensors and modules, allowing users to
customize the robot for a variety of applications.

The SERB has been used in a variety of educational and
research settings, including robotics competitions and STEM
education programs. Its low cost and ease of use make it
an ideal platform for teaching students about robotics and
programming, while its adaptability makes it a valuable tool for
researchers exploring new applications of robotics technology.
These features make it ideal for the development of affordable,
high performance, low cost robotic platforms. The initial
adaptation we made to this robot, and which is used in this
study, is shown in Fig. 2.

In terms of performance, the SERB has demonstrated
impressive capabilities in both mobility and sensing. Its four-
wheel drive system provides excellent maneuverability and
control, while its range of sensors allows for advanced sensing
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Fig. 1. Structure of the SERB robot.

Fig. 2. Differential robotic platform prototype. The robot consists of a
SERB robot with a espressif systems ESP32, an U-Blox NEO-6M GPS, a

bosch sensortec BNO055, a RPLIDAR A1M8-R6 LiDAR, and an
omniVision technologies OV7670 camera.

and perception capabilities. Additionally, the robot’s small size
and low profile make it well-suited for navigating tight spaces
and confined environments.

The sensors installed on the SERB robot are:

1) Position sensor: A position sensor is required to accu-
rately determine the current position of the robot. For
this purpose, a GPS module (U-Blox NEO-6M) and
an inertial measurement unit IMU (Bosch Sensortec
BNO055) that measures the acceleration and rotation
of the robot were used.

2) Distance sensor: A distance sensor is needed to detect
obstacles and avoid collisions. Infrared and LIDAR,
which are capable of measuring the distance to nearby
objects, have been used for this purpose (RPLIDAR
A1M8-R6).

3) Motor encoder: A motor encoder is necessary to

provide feedback on the motor’s speed and position.
This information is crucial for precise control of the
robot’s movement and can be used to implement
closed-loop control algorithms.

4) Gyroscope: A gyroscope (Bosch Sensortec BNO055)
is useful for measuring the robot’s rotation and orien-
tation. This information can be used to stabilize the
robot and to implement control algorithms that rely
on accurate orientation data.

5) Camera: A camera (OmniVision Technologies
OV7670) is useful for providing visual feedback to
the microcontroller, which can be used to perform
tasks such as object recognition, path planning, and
navigation. A camera can also be used to provide
feedback on the robot’s position, orientation, and
velocity.

The navigation strategy used is based on the RRT (Rapidly
Exploring Random Trees) algorithm. The RRT algorithm is a
widely used motion planning algorithm that is used to plan the
trajectory of a robot from its current position to a goal position
while avoiding obstacles. The algorithm is known for its
efficiency, scalability, and ability to handle high-dimensional
spaces. The RRT algorithm works by building a tree-like data
structure that explores the configuration space of the robot.

The RRT algorithm begins with an initial configuration of
the robot and builds a tree-like data structure by iteratively
adding new nodes to the tree. Each new node is randomly
sampled from the configuration space of the robot, and a path
is constructed from the nearest node in the tree to the new
node. The path is constructed in a way that ensures that it
avoids obstacles and satisfies any other constraints that are
imposed on the robot.

To ensure that the RRT algorithm explores the configu-
ration space of the robot in a balanced manner, a bias is
introduced that favors the exploration of unexplored regions
of the configuration space. This is achieved by introducing a
probability parameter that controls the likelihood of selecting
a new node from an unexplored region of the configuration
space.

The RRT algorithm continues to build the tree-like data
structure until a node is added that is within a specified distance
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from the goal configuration of the robot. The algorithm then
constructs a path from the initial configuration of the robot to
the goal configuration by tracing the path from the nearest node
to the goal configuration through the tree. The pseudocode of
Algorithm 1 shows the RRT strategy implemented in our setup.

Algorithm 1 High-Level Pseudocode for RRT Algorithm

1: # Define the start and goal points
2: start point = current position
3: goal point = target point
4:
5: # Initialize the RRT tree
6: rrt tree = start point: None
7:
8: # Set the maximum number of iterations and the step size
9: max iterations = 1000

10: step size = 0.1
11:
12: # Iterate until the maximum number of iterations
13:
14: for i do in range(max iterations):
15: # Generate a random point
16: random point = generate random point()
17:
18: # Find nearest point in tree
19: nearest point = find nearest point(rrt tree,

random point)
20:
21: # Steer towards random point from nearest point
22: new point = steer(nearest point, random point,

step size)
23:
24: # Check for collisions
25:
26: if i thens collision free(nearest point, new point):
27: # Add the new point to the tree
28: rrt tree[new point] = nearest point
29:
30: # Check if the goal is reached
31:
32: if i thens goal reached(new point, goal point):
33: # Generate the path from start to goal
34: path = generate path(rrt tree, start point,

goal point)
35: break
36: end if
37: end if
38: end for
39:
40: # Follow the path using motor encoders and gyroscope
41: follow path(path)

The robot is equipped with sensors necessary to both
explore the unknown environment (observable environment),
define its position, and navigate using the RRT algorithm.
The robot has a GPS module and an inertial measurement
unit (IMU) to accurately determine its position and a distance
sensor to detect obstacles and avoid collisions.

To begin with, the start and goal points of the exploration
are defined. The start point is the robot’s current position,
and the goal point is the target location that the robot should

reach. An RRT tree is then initialized, which will represent the
possible paths the robot can take.

The maximum number of iterations and the step size
are set. The robot will iteratively execute the algorithm a
specified number of times to generate new paths to explore
the environment. In each iteration, a random point is generated,
representing a new direction for the robot to explore.

The nearest point in the RRT tree to the random point is
found. This point acts as a reference point, and the robot then
steers towards the random point from this reference point using
the step size. The resulting new point is checked for collisions
to ensure that it is safe for the robot to move to this location.

If the new point is collision-free, it is added to the RRT
tree as a new node with the nearest point as its parent. The
algorithm checks if the goal point has been reached by the
robot. If it has, the path from the start point to the goal point
is generated using the RRT tree.

In our study, we approximated the uniform sampling of
the environment by implementing a grid-based approach. By
dividing the environment into equally sized cells, we ensured
that each cell had the same probability of being selected. To
achieve this, we generated random points within each cell and
used these points as samples for the path planning algorithm.
This allowed us to approximate a uniform distribution of
samples throughout the environment while considering the
ratio between the number of samples inside and outside the
area.

To predict the robot’s state at a future time horizon (e.g.,
t + k), we employed a recursive estimation method. At each
time step, the robot’s estimated state was updated based on
the current measurements and the most recent prediction.
This process was repeated at every time step, allowing the
algorithm to propagate the estimated state through the predic-
tion horizon. By incorporating this recursive estimation into
the path planning algorithm, we were able to generate more
accurate and reliable predictions of the robot’s position and
orientation, leading to improved navigation performance in
uncertain environments.

Finally, the robot follows the generated path using its
motor encoders and gyroscope to achieve precise control of
its movement and orientation. This ensures that the robot
moves smoothly and avoids collisions while exploring the
environment. The camera sensor is used to provide visual
information to the microcontroller, which is used for object
recognition, in particular, to identify the target location. The
goal is to use the camera sensor on the robot to recognize a
red circle as the target point and navigate the robot towards
it. To achieve this, the code uses a simple image processing
algorithm that scans the camera feed for the presence of a red
circle.

The first step in the algorithm is to capture a frame from
the camera and apply some basic image processing filters to
remove noise and enhance the contrast of the image. In this
case, we use the built-in OpenCV library to apply a Gaussian
blur filter to smooth out the image and a color threshold filter
to extract the red color channel.

Once we have a processed image, we can use OpenCV’s
HoughCircles function to detect circular shapes in the image.
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This function takes several parameters, including the minimum
and maximum radii of the circles to detect, the minimum
distance between detected circles, and the minimum threshold
for circle detection. In our case, we set these parameters to
detect circles with a radius between 10 and 30 pixels, at a
minimum distance of 50 pixels from each other, and with a
minimum threshold of 50.

Assuming we detect a circle in the image, we can then
calculate its centroid (the center point of the circle) and use
this as the target point for the robot. We use the formulae
for the centroid of a circle that is given in the OpenCV
documentation. The pseudocode of Algorithm 2 shows the
camera and navigation strategy implemented in our setup.

Algorithm 2 High-Level Pseudocode for Camera and Naviga-
tion

1: Import required libraries
2: Define constants for target color and size thresholds,

maximum and minimum speed, maximum turn rate, and
PID constants KP, KI, and KD

3: Initialize the BNO055 sensor and servo motors
4: Initialize variables for target coordinates and PID control
5: Setup function:
6: Begin serial communication
7: Attach servo motors
8: Set PID output limits and mode to automatic
9: Start the BNO055 sensor

10: Loop function:
11: Capture a camera frame and detect the target
12: If target is not detected:
13: Generate a path using the RRT algorithm
14: Else:
15: Update path to go directly to the target
16: Follow the path using PID control
17: Adjust the robot’s speed and heading based on the error
18: FollowPath function:
19: Calculate current heading and error
20: in heading and speed
21: Calculate the new motor setpoint using PID control
22: Call the turnRobot function with the heading error
23: turnRobot function:
24: Calculate turn rate based on heading error
25: and constrain it to the maximum turn rate
26: Calculate left and right motor speeds based
27: on the turn rate and motor setpoint
28: Write the left and right motor speeds to the servo motors

With the target point identified, we can use a simple
proportional control algorithm to adjust the robot’s movement
based on the distance and angle to the target point. Specifically,
we calculate the difference between the robot’s current heading
(determined by the IMU sensor) and the angle to the target
point (determined by the centroid coordinates) and use this
as the turning angle. We also calculate the distance to the
target point (using the Pythagorean theorem) and use this as
the forward speed of the robot. We then set the speed of each
motor based on these calculated values.

The code also includes some basic error handling and
recovery mechanisms to deal with unexpected situations. For
example, if the camera fails to detect the target point or

the robot gets stuck, we set the motors to rotate in opposite
directions to try to free the robot from its current position.

IV. RESULTS

To visualize the trajectory of the robot, we created a small
simulator in Python that with the help of Matplotlib manages
to visually replicate the operating conditions of our robot in
the laboratory (3 × 2 meters environment, Fig. 3). The map
is generated directly with Python.

Fig. 3. Simulation environment. The map shows the robotics laboratory
used in the performance tests. Target point (red), simulation path (blue),

robot starting point (green), and obstacle (gray).

This code creates a 2D array to represent the environment,
sets an obstacle in a random position, and randomly sets
the robot’s starting and target positions. The RRT algorithm
is implemented in this code as a function to generate the
path from the robot’s starting position to the target position,
avoiding the obstacle. Once the path is generated, the robot’s
movement is simulated by updating its position along the path.
Finally, the environment and the robot’s path are visualized
using Matplotlib.

Note that the robot’s size is set to 22 × 22 cm, but the
environment’s dimensions are in meters. To account for this,
the program multiplies the environment dimensions and the
positions by 100.

In this study, the navigation strategy of the SERB robot
was evaluated in both simulated and real-world environments.
To replicate the simulation conditions, a laptop was used to
set the target position and monitor progress through sensors
transmitted by the ESP32 via a local area network (LAN). A
map was constructed and used to visualize the robot’s position
and calculate corresponding movements in the simulator for
comparison. The implementation and performance of the navi-
gation strategy were also evaluated in a real-world environment
by locating the robot and landmark at the target point (Fig. 4).

Results showed that the robot’s behavior in the simulator
was highly similar to its navigation in the real environment,
with position errors less than 6% with respect to the ideal
position determined by the simulator. This error rate falls
within the range of position sensor error. Additionally, better
obstacle avoidance was observed in the real world than during
the simulation, which was attributed to adjustments made to
the LiDAR sensor.
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Fig. 4. Online simulation and testing with the robot in real environments. A new target is set and the robot is configured in the environment, as well as the
target point. The map is built with python recreating obstacles and boundaries, and is used to visualize the position and calculate the differences between

simulation and real prototype.

During experiments in the real world, only one type of col-
lision was observed. The robot’s wheels touched the obstacle
several times, altering the position information. This occurred
when the obstacle was obstructed by the robot’s structure, and
therefore outside the laser scanner’s exploration plane. While
visible to the camera, the camera was only programmed to
detect the landmark at the target point. It is presumed that
adjustments to the LiDAR or feedback control from the camera
could eliminate this problem.

The findings of this study suggest that the navigation
strategy implemented on the SERB robot performs well in
both simulated and real-world environments, with only minor
differences between the two. Furthermore, the study highlights
the importance of careful consideration when using sensors to
detect obstacles, as issues with the robot’s structure can lead
to inaccuracies in position information. Future research may
explore additional methods for obstacle detection and feedback
control to address this issue.

In order to enhance the performance of the navigation strat-
egy and account for uncertainty and randomness, Probabilistic
Road Maps (PRMs) can be incorporated into the technique.
PRMs are particularly well-suited to handle uncertain envi-
ronments, as they generate a probabilistic representation of the
environment, factoring in the likelihood of obstacles and other
uncertainties. By incorporating PRMs, the robot’s navigation
strategy can be more adaptable to unforeseen variations in the
environment, leading to more robust and reliable performance.

To integrate PRMs, the existing RRT algorithm can be ex-
tended to include a probabilistic sampling of the environment,
which would account for uncertainties in obstacle positions
and robot’s starting and target positions. This would allow the
algorithm to generate multiple potential paths, each associated
with a certain level of confidence based on the probability
distribution of obstacles and positions. By selecting the path
with the highest confidence level, the robot’s navigation strat-
egy can better account for uncertainties and improve its overall
performance in complex and dynamic environments.

Moreover, the integration of PRMs can also help address
the issue of the robot’s structure obstructing the obstacle
detection. By including a probabilistic model of the robot’s
structure, the algorithm can better predict the likelihood of

an obstruction and adjust its path planning accordingly. This,
in combination with improvements to the LiDAR sensor and
feedback control from the camera, could further enhance the
robot’s navigation strategy and increase its performance in both
simulated and real-world environments.

V. DISCUSSION

The results of the experiments showed that the Rapidly
Exploring Random Trees (RRT) algorithm implemented on the
ESP32 microcontroller provides high performance in terms of
autonomous navigation in complex environments. The robot
was able to generate optimal paths from the origin to the
destination point while avoiding obstacles and adjusting its
motion accordingly [39]. The robot’s motion was smooth,
and it was able to reach the destination point accurately and
efficiently.

The ESP32 microcontroller’s processing power and mem-
ory were found to be sufficient for implementing the RRT
algorithm on the small differential robot with two DC motors
[40]. The algorithm was able to quickly generate feasible
paths in complex environments with numerous obstacles. The
performance of the algorithm was not significantly affected by
the number or complexity of the obstacles, as the algorithm
was able to efficiently navigate through the environment in all
cases.

The experimental results also showed that the robot’s
motion was smooth and stable, even when navigating through
narrow passages or around sharp turns. The robot was able to
adjust its motion and avoid collisions in real-time, demonstrat-
ing the efficiency and reliability of the algorithm.

In addition to the robot’s motion, the performance of the
robot’s sensors was also evaluated. The robot’s position sensor
was found to provide accurate and reliable estimates of the
robot’s position, allowing the algorithm to generate optimal
paths in real-time. The distance sensor was also found to
be reliable, providing accurate measurements of the distance
between the robot and nearby obstacles.

The motor encoder and gyroscope were used to measure the
robot’s motion and adjust its heading accordingly. The motor
encoder was found to provide accurate measurements of the

www.ijacsa.thesai.org 880 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 3, 2023

robot’s speed and direction, allowing the algorithm to adjust
the robot’s speed and heading in real-time. The gyroscope was
also found to be reliable, providing accurate measurements of
the robot’s orientation.

VI. CONCLUSION

In conclusion, the results obtained through simulations and
experiments demonstrate the high performance and reliability
of the Rapidly Exploring Random Trees algorithm imple-
mented on a small differential robot controlled by an ESP32
microcontroller. The use of the ESP32 microcontroller proved
to be highly beneficial, as it provided enough processing power
and memory to perform the complex calculations required by
the algorithm, enabling the robot to navigate through complex
environments with high efficiency and reliability.

The successful implementation of the algorithm on the
robotic platform allowed the robot to autonomously navigate
from an origin point to a destination point in an unknown but
observable environment while avoiding obstacles and adjusting
its motion accordingly. The robot’s behavior with this algo-
rithm was highly desirable, as it was able to move through the
environment efficiently and reliably, while avoiding obstacles
and reaching its destination.

The use of a low-cost, versatile and efficient robotic plat-
form for autonomous navigation in complex environments is
highly beneficial and can have many practical applications such
as search and rescue, surveillance, and industrial automation.
The practical and cost-effective solution proposed in this work
can be easily replicated and implemented in various scenarios,
providing a highly reliable and efficient navigation solution.

However, there is still room for improvement in terms of
the design and placement of sensors on the robot to optimize
the performance of the algorithm. Further research could
focus on the development of more advanced algorithms that
could improve the robot’s navigation performance in complex
environments.
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