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Abstract—In this paper, a new method called Anomaly Dis-
cover is provided for detecting anomalies in communities with
mixed attributes (binary, numerical and categorical attributes).
Our strategy tries to identify unusual users in Online Social
Networks (OSN) communities and score them according to how
far they deviate from typical users. Our ranking is based on both
users’ attributes and network structure. Moreover, for effective
anomaly detection, the context-selection process is performed for
choosing relevant attributes that demonstrate a strong contrast
between normal and abnormal users. So the anomaly score is
defined as the degree of divergence in the network structure as
well as a context-specific subset of attributes. To assess the efficacy
of our model, we used real and artificial networks. We then
compared the outcomes to those of two state-of-art models. The
outcomes show that our model performs well since it outperforms
other models and can pick up anomalies that competing models
miss.
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I. INTRODUCTION

In data analysis, anomaly detection (also called outlier
detection) is identifying items that raise suspicions by differing
from the majority of the data. The rising popularity of social
networks has attracted some malicious users who have been
abusing them. Because of this, it becomes essential on social
networks to identify anomalous users. It aims to find users
whose activities deviate significantly from regular users, which
affects widely different areas such as the detection of social
email senders, and detection of fake accounts.

For analyzing relationships in networks, graph-based
anomaly detection (GBAD) approaches were used to detect
abnormal patterns. In fact, social networks often have data
objects linked to each other, so they can be represented
as graph networks. The nodes in graph G(N, E) refer to
individuals, whereas the edges refer to relationships. The nodes
and connecting edges make up a simple graph. On the other
hand, nodes and/or edges with related features such as work
status, individual ages, type of interaction, and duration, make
up the attributed graph( also known as the labeled graph). The
attributed networks combine a topological structure with a rich
set of features.

The anomaly detection methods in plain graphs analyze the
interactions between nodes and employ the network structure
to extract graph-centric features and quantify the nodes’ close-
ness. However, the anomaly detection methods in attributed
graphs employ the graph’s structure and the coherence of

attributes as auxiliary information to find patterns and iden-
tify anomalies. Unfortunately, few research has considered
attributed graphs. In addition, most of these methods focus
only on numerical node attributes; but, real-world networks’
node attributes are made up of many attribute types. Therefore,
the approaches that consider the network structure and users’
attributes, depend on the inclusion of all of a given network’s
attributes. This makes them inadequate for application to
today’s networks, which feature ever-growing numbers of
attributes. Furthermore, the existence of irrelevant attributes
in these networks is inevitable and obstructs anomaly detec-
tion. Thus, the context selection process of selecting relevant
attributes that show a high level of contrast between normal
and anomalous users is crucial for effective anomaly detection.

The community-based approaches are well-known graph-
based strategies suggested to address the challenge of anomaly
detection [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11].
These approaches are based on detecting groups of nodes
that are densely connected to each other in the graph and to
different communities. Actually, anomalous nodes under this
setting can be defined as identifying “bridge” nodes that do
not have a direct relationship to a specific community [4].

The aim of this work is to present a new approach to the
detection of anomalous users in social networks. Our approach
is a community-based approach in attributed graphs which
considers both the nodes’ attributes and the network structure.
A node behavior, which would be considered normal across the
entire network, may appear as anomalies within the community
context. For this reason, our approach is based on the selected
context of relevant attributes. In our approach’s first step, we
start with the detection of the different communities in the
network. In the second step, the nodes will be ranked based
on the network structure and attributes similarity. The ranking
scores given to the nodes represent the anomaly degree for
each node, where a high score indicates an anomalous node,
and a low score indicates a normal node.

This paper is organized as follows. In Section II, a summary
of the state-of-the-art that reviews the existing works in the
field of anomaly detection in a social network is provided.
Section III is dedicated to the details of our proposed method
for anomaly detection. In Sections IV and V, the performance
of our approach is examined and the results obtained by our
experiments are presented. A summary and our recommenda-
tions for future works are provided in Section VI.
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II. RELATED WORKS

Due to the great interest in the discovery of anomalies
in recent times, a variety of algorithms have resulted. We
will discuss some of the suggested methods in this section.
These methods can be divided into two groups according to
the basic idea of the approach, structure-based approaches and
community-based approaches for unlabeled (plain) and labeled
(attributed) graphs.

A. Structure-based Approaches

The concept behind structure-based approaches [12], [13],
[14] is that to inspect both normal and anomalous nodes’
characteristics, the structural properties are checked. To find
abnormal nodes, specific graph matrices are calculated. Akoglu
et al. [12] proposed a feature-based model called OddBall. This
method finds patterns that the majority of the graph’s egonets
follow in relation to the egonet-based features it extracts.The
1-step neighborhood surrounding a node, which includes the
node, is referred to as a node’s egonet. The main eigenvalue of
the weighted adjacency matrix of the egonet, the weight of the
egonet, the number of each node’s neighbours, and the number
of egonet’s edges are all examples of egonet features. These
features are then analyzed for each egonet, and based on how
much they deviate from a particular pattern, an outliers score
is given. In [13], the authors use the same previous approach,
but with a different metric called a brokerage, which is defined
as how many times a node bridges a connection between two
other nodes when there is no direct link between them. In [14],
the neural network model is used to construct graph-centric
attributes to identify the nodes as abnormal or normal. Degree
centrality and closeness centrality, in addition to betweenness
centrality, were used singly and in combination to improve the
model’s accuracy. Anomalous nodes have a greater degree of
proximity centrality, and betweenness centrality.

B. Community-based Approaches

Community approaches are based on the concept of finding
groups or communities of densely connected nodes in a
network and then detecting the abnormal nodes within these
communities. Anomalous nodes are described as nodes that
do not show the same characteristics compared to other nodes
belonging to the same community or that cannot be assigned to
any community [3]. So, in the first stage, Community-based
approaches start with the community detection process that
groups the nodes into groups that contain dense relationships
inside those groups and a few connections between other
groups (see Fig. 1).

The second stage consists of detecting community anoma-
lies by finding the nodes that do not deserve to be in this
community. An anomaly is a node that has different properties
compared to the members of its community and that is not
very connected to them. Some approaches identify the nodes
as either anomalous users or normal users (see Fig. 2). Some
other approaches give a score to each user that determines the
degree of its abnormality.

Community-based approaches are more effective at spot-
ting anomalies in attributed graphs. In these approaches, the
context of the node is specified by the community because it
should share qualities with other nodes within its community.

A node is considered abnormal when it deviates from these
typical characteristics. Community-based approaches can be
divided into approaches for plain graphs and approaches for
attributed graphs:

• Community-based approaches in plain graphs [4],
[5] only depend on the structural information of the
network. They look at how nodes are related and use
the network structure to extract useful information.

• Detecting community anomalies in attributed graphs
requires considering both the nodes’ attributes and
the network structure [9], [10], [11], [1]. Some
approaches use the entire attributes space, which is a
disadvantage because they are subjected to the curse
of dimensionality, which comes with a slew of issues,
including longer runtime. Some other approaches
select a set of relevant attributes (called context) to
filter the full attributes space and select only relevant
ones that show a high level of contrast between
normal and anomalous users.

Fig. 1. Community detection in the graph.

Fig. 2. Community-based anomaly detection in the graph.

III. “ANOMALY DISCOVER” APPROACH

A. Basic Idea

In this work, we present the “Anomaly Discover” approach
which is a community-based method for detecting anomalous
nodes in social networks. These community anomalies are the
nodes that are entrenched within certain graph communities
and have deviating attribute values, making them undetectable
by global techniques that look for deviation throughout the
whole graph node range. As a result, we concentrate on
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anomalous nodes that differ from their peers in terms of the
structure of the graph and the attributes of the node. While
some nodes are strongly connected to their communities, the
attribute values can vary significantly amongst nodes, for
that, we examine these two factors. By introducing context
selection, we concentrate on a subset of important attributes.
Context selection reduces the issue of unrelated attributes
spreading the full-attributes space and concealing anomalous
nodes. Context selection is another technique used to reduce
the algorithm’s time complexity. There are two phases to in our
methodology. Firstly, the network is split into communities. A
community is a collection of users (that is nodes) who are
closely connected and who have similar attributes. So, nodes
that lack these features should be regarded as abnormal. So
this phase aids in the detection of aberrant nodes that render
the community definition invalid. We adopt a modularity-
based strategy to split the network since it is fast and can
handle enormous networks. In the second phase, for each
node, the anomaly score is calculated. By considering both
attribute and structure information, this score is utilized to rank
nodes depending on the degree of their abnormality. For that,
the abnormal nodes are given higher rankings than the usual
nodes, which are given lower rankings. Two components make
up our score: (i) a structure-based score that considers the
graph structure and (ii) an attribute-based score that considers
attribute data.

B. Approach Description

In our model, the first phase involves obtaining the commu-
nities, and the second phase involves associating the nodes with
the anomaly scores. We outline each phase of our method in
this section.

1) First phase: Community detection: We divide the graph
into communities in the first phase to identify the most linked
nodes. In our model, we apply the Louvain Algorithm [15],
which is a well-known modularity-based strategy for detecting
communities in graphs. We employ the Louvain algorithm
because of its speed and efficacity. This approach initially allo-
cates each node to a distinct community in order to maximize
modularity gain, and then iteratively moves each node to its
neighbor. It comes to a halt when further modularity gains
are no longer attainable. Gains in modularity are calculated as
follows:

δQ = [
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where
∑

in represents the sum weights of the edges inside
C,

∑
tot represents the sum of weights of the edges incident

to nodes in C, ki represents the sum of weights of the edges
incident to node i, ki,in represents the sum of weights of
the edges from i to other nodes in C and the sum of the
weights of all the network’s edges are represented by m. Then,
when this value is determined for all communities i is linked
to, the community that resulted in the greatest modularity
increase is assigned to i. In the absence of an increase, i stays
inside its original community. All nodes are subjected to this
process regularly and sequentially until no more increases in
modularity are possible. Once this local modularity maximum
is attained, the first stage is finished.

In the second step of the algorithm, each node is combined
into a single community, and a new network made up of nodes
from the first phase’s communities is created. Next, the first
phase is applied once more to the new network.

2) Second phase: Anomaly scoring: In this step, we char-
acterize the anomalous nodes within the communities using the
attribute and structural data. As a result, the node’s anomaly
score must take into account its deviation within the necessary
attributes as well as its community relationships. This score
introduces new issues, as it requires combining data from both
of the components described in this section: the variance in
relevant attribute values of and community connections. The
attribute-based score and the structure-based score, that are
explained in the following subsections, make up our anomalous
score.

Structure-based score: In structure-based scoring, we use
a similarity measure to examine the node’s relevance. We also
look at how connected a node is to the members of its com-
munity. Within a community anomaly nodes are consequently
less comparable, connected, and influential. In this work, the
Jaccard similarity measure and node connectivity are used to
calculate the structure-based score, as follows:

StrAnomaly(v) = 1− Jacc(v) ∗ con(v) (2)

Where Jacc(v) is the Jaccard index of node v and con(v)
is the connectivity of node v. A metric known as node
connectivity is used to evaluate how strongly connected a node
is to its surrounding neighbourhood. A node produces a high
value when its connection to its community is higher than
the average connection for the community. The following is a
description of the node connectivity:

con(v) =
nb(v)∑C

j=1
nb(vj)

|C|

(3)

where nb represents neighbors of the node within the com-
munity, and |C| represents the nodes’ number within the
community. The node with high community connectivity has a
high score con(v) and vice versa. Anomaly nodes have a low
connectivity score compared to normal nodes, which are high
in connectivity.

The Jaccard Similarity measure is used to measure the
similarity of the node to its community in a graph and hence
similar and dissimilar nodes can be detected. This similarity
index is used to identify anomalies nodes in the community.
The Jaccard index for each node in a community is the sum
of the edges the node has with other nodes in the similar
community and all other nodes in the graph. In other words, the
intersection of the number of node neighbors in the graph over
the union of the number of nodes in the similar community.
The following is how the Jaccard index is calculated:

Jacc(v) =
|ng(v) ∩ cv(v)|
|ng(v) ∪ cv(v)|

(4)

Where ng(v) represents the neighbors of the node v in the
graph, and cn(v) represents all nodes in the same community
with node v. The value of the Jaccard index should range
in: 0Jacc(v)1. A Jaccard index of 1 means the node is fully
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connected to other nodes in the similar community and vice
versa.

Attribute-based score: The objective of the attribute-based
score is to quantify the difference in a node’s attributes from
those of other nodes within the similar community considering
subset of related attributes that are chosen in accordance with
the context. Considering that many real-world networks are
heterogeneous, this attribute similarity function facilitates the
combination of attributes of various types. We employ Yi
Yang’s original Unsupervised Discriminative Feature Selection
(UDFS) algorithm to identify relevant attributes [16]. Its goal
is to select the data representation features with the highest
discriminating. The algorithm optimises the features and pro-
duces a ranking and weighting of the features. Additionally, to
filter the entire space of attributes, they are ranked according
to their UDFS scores as follows:

minWTW=1Tr(W
TMW ) + γ||W ||2,1 (5)

where ωi is denoted by the i-th row of W , i.e., W =
[ω1, ...ωd]T , the objective function represented in eq. 5 can
also be expressed as:

minWTW=1Tr(W
TMW ) + γ

d∑
i=1

||ωi||2 (6)

As a result, a new representation of χi employing only a
select few features is provided for a datum χi, χ

′

i = WTxi.
As an alternative, we can rank each feature fi|d(i=1) based
on ||ωi||2 in descending order and choose the features with
the highest rankings. As a consequence, we’ll select a subset
of the most crucial attributes with size N , where N is a
parameter that our algorithm takes into account as input. Given
the context (relevant attributes), we can estimate the attribute-
based score, which can be defined as the average of all the
scores for the relevant attributes. This attribute-based score is
defined as:

AttrAnomaly(v) =

∑n
r=1 S(v, ar)

n
,∀ar ∈ A (7)

where S(v, ar) represents the attribute score of node v for
the attribute ar, ∀ar ∈ A, and in the set A of relevant attributes
the number of attributes is represented by n, which is define
as:

S(v, ar) =

∑C
j=1 d(v, vj)

|C|
,∀vj ∈ C (8)

where vj stands for the other nodes within the community, the
nodes’ number in the community is denoted by |C|, and the
distance between the nodes v and vj is represented by d(v, vj),
which is assigned either to zero or one. When d(v, vj) is zero,
this means that the distance between the these nodes is equal
to or less than the mean distance (Md), otherwise, it is set at
one.

d(vj , vj) =

{
0 if|ar(vi)− ar(vj)| ≤Md(C(v), ar)
1 Otherwise.

where ar(vi) represents the the attribute ar’s value in the
node vi attribute vector, and the mean distance of attribute ar
of node v is denoted by Md(C(v), ar) within the community
which is illustrated as follows:

Md(Cv, ar) =

∑C
i,j=1(ar(vi) − ar(vj))

p
(9)

where the distance between the node vi and the node vj
for the attribute ar is represented by (ar(vi) − ar(vj)), and in
each community the number of node pairs is represented by p.
This distance for binary attributes is determined by the simple
matching coefficient between the nodes vi and vj for the ar
attribute:

(ar(vi)−ar(vj)) =
∑d

k=1

(
ark(vi) ∧ ark(vj)

)
∨
(
¬ark(vi) ∧ ¬ark(vj)

)
d

The Jaccard similarity index between the “1-of-N” binary
encodings of (ar(vi) and ar(vj)) gives the distance for cate-
gorical attributes; in other words:

(ar(vi) − ar(vj)) =

∑d
k=1 ark(vi) ∧ ark(vj)∑d
k=1 ark(vi) ∨ ark(vj)

TheEuclidean distance between (ar(vi) and ar(vj)) is what
determines this distance for numeric characteristics; that is,

(ar(vi) − ar(vj)) =
1

1 +
√∑d

k=1

(
ark(vi) ∧ ark(vj)

)2
where d is the attribute’s ar dimensions, (ark(vi) is the

value of the attribute’s ar k-th coordinate for node vi, and ¬,
∧ and ∨ are the logical operators for NOT, AND, and OR,
accordingly.

Anomaly score:: To rank nodes in every community and
recognize anomalous nodes, we next use both the structure-
based and attribute-based scores to get an aggregate anomaly
score (those with a higher anomaly score). Calculate each node
v anomaly score as below:

AnomalyScore(v) = StrAnomaly(v)+(1−α)AttAnomaly(v)
(10)

where the weight used to regulate the relative importance of
attribute-based anomaly and the structure-based anomaly is
represented by α.

C. Algorithm

First, we use the Louvain algorithm to partition the graph
into communities (line 1). Then, we determine each node’s
Jccarad similarity (line 3). Before assigning the structure-based
score, we iterate over each node to determine its connected-
ness(line 6). Afterward, we determine each attribute’s UDFS
score (line 8), and we choose the N attributes corresponds to
lowest score of UDFS to be the relevant attributes (line 9).
Then, for each community, we iterate, comparing the distance
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between the node and its community nodes with the commu-
nity mean distance using the relevant attributes (lines 10-16).
Finally, the anomalous score of the nodes from G is returned
(line 20) by combining the structure-based score and attributes-
based score (lines 17–19). The name (AnomalyDiscover), an
integration of the words community and anomaly, refers to our
algorithm for community-based anomaly detection.

Algorithm 1 Anomaly Discover

Require: G : (V,E), A: Attributes, N : number of select
attributes

Ensure: Ranking of all v ∈ V
1: C ← Louvain Method(G)
2: Initialize empty vectors StrAnomaly, AttrAnomaly,

AnomalyScore for all v ∈ V
3: Jacc ← Jaccard similarity index for all v ∈ G (Eq. 4)
4: For each v ∈ G do
5: Compute connectivity(v) (Eq. 3)
6: Compute StrAnomaly(v) (Eq. 2)
7: End For
8: For all ar ∈ A calculate UDFS score (Eq. 6)
9: A’ ← subset of N attributes with the lowest UDFS score

10: For each community Ck in C do
11: Md ← mean values of attributes from A’ in Ck (Eq.

9)
12: For each vi in Ck do
13: svi ← a dictionary containing for each attribute

ar of vi its anomaly score
14: Compute AttrAnomaly(v) (Eq. 7)
15: End For
16: End For
17: For each v ∈ G do
18: Calculate the anomaly score using the Eq. 10
19: End For
20: Return AnomalyScore

D. Complexity Analysis

First, the graph is partitioned into communities by ap-
plying the Louvain algorithm, which has a running-time
cost O(vlogv) for the number of graph nodes. After that,
the Jaccard similarity measure is calculated, and that costs
O(v + e), where the number of edges in the graph is rep-
resented by e. Next, the StrAnomaly score is calculated with
the nodes’ number linear cost. The context is then defined
using the UDFS score, which has a cost of O(mv2), where
m represents the total attributes’ number. Consequently, the
computational complexity of the Anomaly Discover model
is O(max(mv2, v + e)). When all of the graph nodes are
allocated to one community, which happens when a quadric
analysis is carried out for each community, this is the worst-
case scenario. As a result, the algorithm performs better on a
real network with a large number of communities.

IV. EXPERIMENTAL EVALUATION OF PERFORMANCES

To study the performance of the “Anomaly Discover”
method, we compared it with two well-known algorithms
witches are CODA and ConSub that we briefly introduce in
this section:

• CODA [17] is one of the most popular models used for
anomaly detection in social network communities. In
this model, community detection and anomalous node
identification are done in a single step. It utilizes the
entire attribute set of nodes.

• ConSub’s [7] concept is a statistically-based selection
of a subset of all attributes of the nodes. This subset
demonstrates dependencies inside the graph structure.
To find abnormal nodes in the communities, a subset
of attributes is chosen and used with the DistOut
distance-based outlier model.

A. Evaluation Measures

In order to evaluate the performance of the community-
anomaly detection model and establish its validity on synthetic
and real datasets, we compare the acquired nodes’ ranks
of the model with the ground truth. The Area Under the
Curve (AUC) is one of the most important performance metrics
for anomaly ranking and classification models. AUC measures
how well the model can differentiate between two classes;
a greater value of AUC means a more effective model. In
a machine learning classification task, comparing the actual
classes to the predicted classes of the mode. Hence, the
results can be categorized into four groups: true positives, false
positives, true negatives, and false negatives. True positives
are actual anomalies that the model predicted correctly as
anomalies, while true negatives are actual normals that the
model predicted correctly as normal. On the other hand,
false positives are actual normals that the model predicted as
an anomaly, while, false negatives are actual anomalies that
the model predicted as normal. Specificity is the proportion
of correctly identified negatives, whereas sensitivity is the
proportion of correctly detected positives. We provide several
thresholds in the classification model and to create the ROC
curve, sensitivity (also referred to as the true positive rate) is
plotted against the false positive rate which is calculated as (1-
Specificity).

So, the optimum model is the one that reliably detects all
positives and all negatives at a specified threshold value while
still obtaining the highest levels of specificity and sensitivity.
The top-left portion of the ROC plot contains the greatest
value. The area under the curve (top-left corner) consequently
represents the ROC curve’s ability to reach the highest level
of specificity and sensitivity.

The model’s runtime is the second metric considered in this
evaluation since it’s crucial to see if the model can accurately
identify the community abnormality in a timely manner. If a
shorter runtime is possible, it is better if the outcomes are
high-caliber.

B. Real Benchmark Dataset

The Book network and Disney network serve as our
testbeds in this part, and the performance of our model is
compared to that of the CODA and ConSub models. The only
variable in our suggested model is how many attributes to
include. The number of characteristics was set to half-number
and 10 attributes maximum; adding more characteristics in-
creased the run-time without notably enhancing the quality.
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TABLE I. MODELS PARAMETER SETTING

CODA Number of communities= 8 Anomaly percentage= 0.05 Link importance= 0.01
ConSub Size of interval= 10 The number of Monte Carlo iterations= 150 The significance level=0.05

Table I provides information about the other models’ parameter
settings.

We compare our findings with those of ConSub and CODA
in order to assess our methodology using the following real
networks:

• Disney Network: the Amazon co-purchase network
was divided up into a Disney network that exclusively
considered Disney DVDs. In the graph, each product
is characterized by 30 properties, including review
ratings, product prices, and other information. The
network has 124 nodes and 334 edges. The network,
although being a tiny dataset, is used to test the
majority of anomaly detection models because of its
intricate graph and attribute structure. The ground
truth of whether an object is an abnormality or normal
is not available for this real-world dataset. As part of
a user experiment to determine the dataset’s ground
truth, high school students personally classified each
object as normal or an abnormality.[18] presents a
thorough explanation of the dataset and the user
experiment.

• Book Network: this network which was based on
Amazon Co-Purchase Network, includes books that
users have tagged as “amazon fails” [19]. On Amazon,
customers could use tags to describe items, and differ-
ent tags like the “amazon fail” tag was used to indicate
dubious products. The network has 1468 nodes, 3695
edges, and 28 attributes that are used to describe each
object. The basis for this dataset was established by
classifying a book as an anomaly when at least 20
users had labeled it as an “amazon fail”.

• Enron Network: we employ email transmission as
edges between email addresses on the Enron com-
munication network. Spam dataset outliers were de-
fined as addresses that have sent spam. This network
contains 13 533 nodes, 176 967 edges. There are 20
attributes present in each node that provide aggregate
information about the average number of recipients,
the average content length, or the time interval be-
tween two mails [19].

C. Synthesis Benchmark Dataset

Evaluating anomaly detection methods is not a straightfor-
ward process due to the lack of suitable datasets containing
anomalies and the lack of ground truth that defines which
data points are actual abnormalities. As a result, performance
evaluation is typically the purpose of synthetic datasets. These
datasets are utilized to compare a model’s performance on
synthetic versus real data. Based on [7], synthetic datasets of
various attribute counts and sizes are created. To replicate the
characteristics of real networks, the graph is created by fol-
lowing a power-law distribution. Relevant attributes obtained
values from a Gaussian distribution, while irrelevant attributes

obtained values from a uniform distribution. To ensure there
were no abnormal values in the relevant attributes, the tails
of each Gaussian distribution were truncated using a hyper
ellipsoid (see Fig. 3). Anomaly nodes’ characteristic values
were modified to be random numbers beyond the boundaries
of their communities’ hyper ellipsoids. The anomalous nodes
number within the communities is determined by the anomaly
ratio, which is 10%. Only when at least two pertinent attribute
combinations are taken into account can the anomalies be
found.

The graphml file and the true file are the two files that make
up any synthetic dataset. The graph and each node’s properties
can be found in the graphml file. The true file includes the
actual nodes, with a ground truth value of 0 for normal nodes
and 1 for anomalous nodes. We use synthetic datasets that
contain 1000 number of nodes and various characteristics 2,
10, 20, 40, 60, and 80 to assess the performance of the model’s
as the number of attributes increases. To evaluate how well
the model performs when the network size is increased, we
use synthetic datasets with varying numbers of nodes and ten
attributes. We configured our model parameter to be the half-
number of attributes to test the impact of increase in attributes
a while utilising the same configuration in the real network
trials for the other models.

Fig. 3. Gaussian distribution with cutting tails.

V. RESULTS FOR REAL AND SYNTHESIS DATASETS

A. Results for Real Datasets

1) Disney network: Fig. 4 and 5 illustrate our model’s
results applied on the Disney network in contrast to CODA
and ConSub. The findings show that the “Anomaly Discover”
model produces good-quality outcomes with an AUC of .83
(see Fig. 4). In contrast, the other models produce results
of poorer quality, with an AUC of.82 for ConSub and.50
for CODA, respectively. The ConSub model performs better
than the CODA model, which produces the lowest-quality
outputs. In Fig. 5, the runtime evaluation is displayed. The
CODA model comes in second with a runtime of 6.05 seconds,
just 0.04 seconds behind the “Anomaly Discover” model.
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At 8.93 seconds, the ConSub model is the slowest model.
The “Anomaly Discover” model yields the best outcomes
for identifying community abnormalities, according to this
experiment on the Disney Network, out of the three methods.
Among the three, the “Anomaly Discover” model is the fastest.
While the ConSub model delivers high-quality findings but
operates slowly, the CODA model is recognised as the least
effective model for identifying community-anomalies in a real-
world network.

Fig. 4. AUC and ROC curve for the disney network.

Fig. 5. Evaluation of runtime for disney network.

2) Book Network: By computing the AUC, Fig. 6 shows
how well the “Anomaly Discover”, CODA, and ConSub mod-
els perform. In comparison to the other models, the “Anomaly
Discover” model produces least findings (see Fig. 6), whereas
ConSub produces the highest-quality results (AUC = 0.60).
The “Anomaly Discover” model outperforms the CODA mod-
els in the Book network’s runtime evaluation, which shows
that it executes in 12.48 seconds and yields the best results.
The CODA model is the slowest at 36 seconds (see Fig. 7).

3) Enron network: The outcomes of our model on the
Enron network in comparison to CODA and ConSub are shown
in Fig. 8 and 9. The figures demonstrate that our model
produces good-quality outcomes with an AUC of .78 (see Fig.
8), but it was the slowest (see Fig. 9). In contrast, the CODA
produces a result that has lower quality with an AUC .46 but
it was the fastest. ConSub produces a result inferior to the
“Anomaly Discover” model, but it was faster than our model.

Fig. 6. AUC and ROC curve for the book network.

Fig. 7. Evaluation of runtime for book network.

Fig. 8. AUC and ROC curve for the enron network.
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Fig. 9. Evaluation of runtime for enron network.

B. Results for Synthesis Datasets

1) First experiment: We evaluate our model performance as
we add more attributes using the AUC curve with datasets of
1000 numbers of nodes. The variance in AUC of the tested
models as the number of features rises is depicted in Fig.
10. In comparison to ConSub and CODA, our model results
in the best AUC, which ranges from 0.88 to 0.98. Fig. 11
illustrates the runtime evaluation by showing the runtimes with
increasing numbers of attributes. In spite of the fact that CODA
runtime often grows as the number of characteristics does
as well, “Anomaly Discover” and ConSub both provide the
best scalability in this regard. It’s important to keep in mind
that matrix operations are costly, and with CODA, they are
performed for each attribute, increasing the runtime.

Fig. 10. Variations in AUC using different number of attributes for each
tested models.

2) Second experiment: Networks with 500, 1000, 2000,
3500, 6000, and 10000 nodes are utilised to evaluate the model
with a larger network. In the smallest network, the AUC of
the “Anomaly Discover” model is 0.93, and in the largest
network, it is 0.90. In fact, when compared to the other models,
“Anomaly Discover” has the greatest AUC (see Fig. 12). Fig.
13 displays the evaluation of the runtime as the network size
increases. ConSub has overall faster runtimes than the other

Fig. 11. Variations in runtime using different number of attributes for each
tested models.

models, although the “Anomaly Discover” outperforms CODA
in networks with 500, 1000, 2000, and 3500 nodes, while
CODA outperforms “Anomaly Discover” in networks with
6000 and 10000 nodes.

Fig. 12. Variations in AUC using the different number of nodes for each
tested models.

C. Discussion

The outcomes of these tests show how well “Anomaly
Discover” works to identify community anomalies in both real
and synthetic networks. In fact, we’ve achieved things that are
extremely intriguing, which earlier approaches like ConSub [7]
couldn’t. As the model defines the pertinent network properties
rather than taking into account the entire attribute space,
it increases the number of attributes while still producing
high-quality results and scalability. As a result, the model is
appropriate for applications used today, when the number of
attributes is increasing. Since the ConSub model also describes
the network context, whereas CODA [17] simply considers the
network attributes, it performs better than CODA in terms of
performance.

VI. CONCLUSION

In this study, we focused on finding anomalous users in
online networks. In particular, we are seeking to identify
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Fig. 13. Variations in runtime using different number of nodes for each
tested models.

anomalies that diverge from their communities in comparison
to normal users who frequently share numerous attributes
with their members of the community. In fact, by using both
structure information and attributes information, we were able
to create an anomalous ranking score to efficiently find com-
plicated anomalies that differed in either their characteristics
values or their structure, or both. To highlight any deviation
in these values, the context is selected, which is a subset of
the relevant attributes. Given that many real-world networks
are heterogeneous, this approach enables the combining of the
attributes of mixed types.

We next go over different ways that an extension of our
suggested approach could be implemented. Other features of
online social networks, such as user communication through
comments or message exchange, could be evaluated to find
anomalies, though. While they might have common attribute
values and structural characteristics with their community,
these data might signify an unexpected communication pattern,
making them a useful indicator of anomalous nodes.

REFERENCES

[1] S. A. Moosavi, M. Jalali, N. Misaghian, S. Shamshirband, and M. H.
Anisi, “Community detection in social networks using user frequent
pattern mining,” Knowl. Inf. Syst., vol. 51, no. 1, p. 159–186, apr
2017. [Online]. Available: https://doi.org/10.1007/s10115-016-0970-8

[2] M. Bouguessa, A Model-Based Approach for Mining Anomalous Nodes
in Networks, 01 2020, pp. 213–237.

[3] L. Akoglu, H. Tong, and D. Koutra, “Graph-based anomaly detection
and description: A survey,” CoRR, vol. abs/1404.4679, 2014. [Online].
Available: http://arxiv.org/abs/1404.4679

[4] H. N. Win and K. T. Lynn, “Community detection in facebook with
outlier recognition,” in 2017 18th IEEE/ACIS International Conference
on Software Engineering, Artificial Intelligence, Networking and Par-
allel/Distributed Computing (SNPD), 2017, pp. 155–159.

[5] M. Bouguessa, A Model-Based Approach for Mining Anomalous Nodes
in Networks, 01 2020, pp. 213–237.

[6] E. Müller, P. I. Sánchez, Y. Mülle, and K. Böhm, “Ranking outlier nodes
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