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Abstract—Smart devices, e.g., smart-phones, internet-of-thing
device, has been prevalent in our life. How to take full advantage
of the limited resources to satisfy as many as requirements of
users is still a challenge. Thus, in this paper, we focus on the task
offloading problem to address the challenge by device-edge-cloud
computing, by PSO improved with the imbalance initialization
and the task scheduling. The imbalance initialization is to increase
the probability that a task is assigned to a computing node such
that the node provides a longer slack time. The task scheduling
is to reassign tasks with deadline violations into other nodes,
to improve the number of accepted tasks for each offloading
solution. Extensive experiment results show that our proposed
algorithm has better performance than other ten classical and
up-to-data algorithms in both the maximization of the accepted
task number, the resource utilization, as well as the processing
rate.
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I. INTRODUCTION

In our life, smart devices, e.g., smart-phones, Internet-
of-Thing (IoT) devices, are becoming popular, and they are
appearing everywhere. As the life quality improves, people
request a wide variety of services by their devices. But smart
devices generally have limited resource capacity due to their
small spaces. Thus, smart devices cannot satisfy all require-
ments of their users. Edge computing and cloud computing
are two of commonly used ways to address this issue. Edge
computing places a few servers close to devices, aiming at
providing low latency services [1]. Cloud computing extends
the capacity of devices by its abundant computing resources,
but it usually has poor network performance [2].

Device-edge-cloud computing (DECC) combines benefits
of edge and cloud computing, which provides services by
not only local device resources but also low latency edge
servers and abundant cloud servers [3]. How to make these
heterogeneous resources cooperate well is a kind of very chal-
lenging work for high service quality and resource efficiency in
DECC. Therefore, several works focused on the task offloading
or scheduling to address this challenge. The task offloading
problem is to decide which and how many resources for each
task’s processing [3]. The offloading problem has been proofed
as NP-hard, because tasks and resources generally are discrete,
and the task processing models and the optimization objectives
are usually non-convex.
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To solve the task offloading problem, existing works
mainly exploited two kinds of approaches, heuristics and
meta-heuristics, based on their desires. Heuristics use local
search strategies to provide local best solutions with a very
few overheads. For example, Wang et al. [4] proposed two
heuristic algorithms for the offloading problem. The first one
is iteratively assigning the task to an edge server (ES), which
provides the minimal response time. The second one, load
balance, iteratively assigns the task to the ES such that the ES
can satisfy the most tasks’ requirements. Only when there is
no available edge resources, these two algorithms assign tasks
to the cloud for their processing. Sang et al. [5] and Chen
et al. [6] presented multi-stage heuristic algorithms for task
offloading in DECC, which both considers to use abundant
cloud resources at first for task processing, to improve the
overall accept ratio. Heuristics generally provide solutions with
limited performance, because they only exploit local search
strategies.

Meta-heuristics exploit global search strategies, inspired
by some natural or social laws. Meta-heuristics can provide
better solutions than heuristics many times, benefiting from
their global search abilities, with a few costs. Such as, Wang
et al. [7] and Song et al. [8] applied genetic algorithm (GA)
to improve the deadline violation and the delay, respectively.
Alqarni et al. [9] and Wang et al. [10] made use of Particle
Swarm Optimization (PSO) for the delay minimization and the
user satisfaction maximization.

No heuristic or meta-heuristic has the best performance
as there is no such thing as a free lunch. Thus, a promising
way to achieve better performance is combining two or more
heuristics and meta-heuristics for hybrid heuristics. Mahenge
et al. [11] proposed a hybrid swarm intelligence offloading
algorithm, by using the position update strategies of both PSO
and Grey Wolf Optimizer to optimize the energy consumption
of devices. To combine benefits of both swarm intelligence
and evolutionary algorithm, Wang et al. [13] used GA at first,
and then applied PSO with the population provided by GA.
Hafsi et al. [12] sequentially employed GA and PSO on each
iteration of the population evolution. Nwogbaga et al. [14]
performed a mutation operator on each individual at the end of
each iteration for PSO, to avoid trapping to local best solution.
These works only sequentially performed two meta-heuristics
without considering their integration, which provides a low
combination efficiency.

Therefore, in this paper, we aim at designing a hybrid
heuristic algorithm for providing a good task offloading so-
lution in DECC, by improved PSO. Specifically, we rep-
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resent task assignment solutions as integer coded positions
of particles, and use PSO for the position updates. And by
the earliest deadline first (EDF) heuristic algorithm for the
task scheduling on each computing node, we can achieve a
task offloading from each particle position. To improve the
performance of PSO, we propose to use an imbalance idea for
the population initialization, where the computing node for a
task’s processing has a possibility positively associated with its
capacity. This can take full use of the easily trapping into local
best position, by increasing the probability that the initialized
particles are near the global best position. To improve the
offloading solution, we reschedule tasks with deadline viola-
tions to other computing nodes for each assignment solution,
i.e., each particle position. We conduct extensive experiments
to evaluate the performance of our proposed algorithm, and
the results confirm the superior performance in optimizing
the number of tasks with requirement satisfactions and the
resource efficiency, compared with ten of classical and up-to-
data heuristics and meta-heuristics.

In the following, we state the task offloading problem of
DECC in Section II. The improved PSO is illustrated in Sec-
tion III. Experimental evaluations are presented in Section IV,
and we conclude our work in Section V.

II. PROBLEM STATEMENT

In a considered DECC system, there are D devices, E
ESs, and C CSs, which can be seen as D+E+C computing
nodes (respectively represented as ni, 1 ≤ i ≤ D+E+C). For
node ni, there are gi computing capacity. For data transferring,
the network transmission speed between ni and ni′ is bi,i′ . If
there is no network connection between ni and ni′ , bi,i′ = 0.
And within one node, there is no latency for data transfer, i.e.,
bi,i = 1.

In the DECC system, there are T tasks (tj , 1 ≤ k ≤ T )
launched by these D devices for processing. We use binary
constants li,j to indicate the relationships between tasks and
devices, where li,j = 1 means tj is launched by ni, and
li,j = 0, otherwise. For every task, say ti, the nodes that can
accept its request for processing include the device launching
it, ESs having network connections with this device, and CSs.
Therefore, we can use li,j , 1 ≤ i ≤ D + E + C, 1 ≤ k ≤ T ,
to indicate whether ni can used for processing tj , where
li,j =

∑D
i′=1(li′,j · (bi′,i ̸= 0)), for D + 1 ≤ i ≤ D + E + C,

1 ≤ j ≤ T .

For task tj , the amount of required computing resources,
i.e., its computing size, is cj . The input data amount of tj is aj ,
and the deadline is dj which means tj must be finished before
dj . Without loss of generality, we assume d1 ≤ d2 ≤ · · · ≤ dT .
Then, if task tj is offloaded into ES or CS ni, the data transfer
latency is

τDi,j =
aj∑D

i′=1(li′,j · bi′,i)
. (1)

where
∑D

i′=1(li′,j · bi′,i) is the transmission speed between
the device launching tj and the ES or CS ni. The computing
latency of tj in node ni is

τCi,j =
cj
gi
. (2)

In this paper, we ignore the transfer latency of the output data
for each task, as the result generally has much less amount
than the input [15], [16].

For multiple tasks assigned to one computing node, the
data transfers and the computing are processed sequentially.
It has been proofed that EDF yields an optimal schedule
for minimizing the number of task deadline violations in a
computing node [17], which is the major objective in the paper.
Therefore, we can deduce the finish time of each task on every
node with EDF processing order. Then, the earliest complete
time (ftDj ) of the data transfer for a task can be deduced by
Eq. (3). Where xi,j is the binary variable to indicate where tj
is assigned to ni for its processing (1 is yes, and 0 is no).

ftDj =

D+E+C∑
i=1

(xi,j ·
∑
j′≤i

(xi,j′ · τDi,j′)), 1 ≤ j ≤ T. (3)

For a task’s computing on a node, it can be started only
when its data transfer finishes and the node is available, where
the node is available only when the its previous task finishes
its computing. Thus, the finish time of a task’s computing, i.e.,
its finish time, can be calculated iteratively by Eq. (4).

ftj =max{ftDj ,

D+E+C∑
i=1

(xi,j ·max
j′<j

{xi,j′ · ftj′})}

+

D+E+C∑
i=1

(xi,j · τCi,j), 1 ≤ j ≤ T. (4)

Then, based on above formulations, the task offloading
problem in the DECC system can be expressed as

Maximizing N =

D+E+C∑
i=1

T∑
j=1

xi,j , (5)

subject to

ftj ≤ di, 1 ≤ j ≤ T, (6)
xi,j ∈ {0, 1}, 1 ≤ i ≤ D + E + C, 1 ≤ j ≤ T. (7)

Where the objective (5) is maximizing the number of tasks
whose deadlines are met, and the constraints mainly include
the deadline requirements (Eq. 6) and the atomicity of every
task (Eq. 7). In this work, we consider the hard deadline, where
if the deadline of a task is satisfied, the task is accepted for its
processing, and it is rejected, otherwise. Due to the discrete
decision variables (xi,j) and the non-convex constraints (see
Eq. 4 and 6), the task offloading problem generally is hard to
solve. Existing tools, e.g., lpsolve [18] and MathWorks [19],
can provide exact solutions, but has exponential complexity
at worst. Therefore, in the following section, we present a
hybrid heuristic offloading algorithm to solve the problem with
a polynomial time.
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Fig. 1. The flow chart of PSOINRS.

III. THE PSO WITH IMBALANCE INITIALIZATION AND
TASK RESCHEDULING

PSO has been applied for solve optimization problem in
various fields, due to its easy implementation and good perfor-
mance. But PSO has some drawbacks which prevent its more
wide application. Therefore, in this section, we integrate two
improvement strategies on PSO to achieve a better offloading
solution for DECC, and proposed a hybrid heuristic offloading
algorithm, PSOINRS (PSO with imbalance INitialization and
task ReScheduling). The algorithm flow chart is shown in
Fig. 1.

In PSOINRS, a position of particles represents a task
assignment solution. The dimension number of particles is
identical to the task number, and the value in a dimension
indicates the node that the corresponding task is assigned to.

At first, for the population initialization of PSO, we propose
an imbalance approach to improve the particle density in the
possible best positions. Intuitively, a task has more possibility
to be processed by the node providing longer slack time (the
closeness to the deadline). Therefore, PSOINRS initializes the
position of a particle by setting the possibility of a node
positively associated with the deadline tightness that the node
provides, where the probability that tj is assigned to ni is

pi,j =
si,j∑T

j′=1 si′,j
, (8)

where si,j = dj − ftj if tj is assigned to ni and ftj ≤ dj ,
and si,j = 0, otherwise.

After the population initialization, PSOINRS evaluates the
fitness of each particle according to its position. Given a
position, we can easily achieve a task assignment solution. By
EDF ordering scheme, we achieve a offloading solution from
the task assignment solution. Then, we proposed to use the
task rescheduling in PSOINRS to improve the solution quality
for each position. The task rescheduling is scheduling tasks
with deadline violations to other nodes by EDF to improve
the optimization objective (5).

Except the imbalance initialization and the task reschedul-
ing for mapping a position into a task offloading solution,
PSOINRS updates the positions of particles identical to PSO,
as shown in Fig. 1.

IV. PERFORMANCE EVALUATION

For evaluating the performance of our proposed algorithm
presented in the previous section, we simulate a DECC envi-
ronment based on related works and the reality. In a simulated
DECC, there are 10 devices, 5 ESs, and 10 CS types. For
each device, there are [1.8, 2.5]GHz computing capacity. Each
device is randomly connected with an ES. Each ES or CS
type has [1.8, 3.0]GHz computing capacity. The data transfer
rate of a device to an ES or CS is set as [80, 120]Mbps, and
[10, 20]Mbps, respectively. There are 1000 tasks randomly
launched by these devices. Each task has [0.5, 1.2] GHz
computing size, and [1.5, 6] MB input data. The deadline of
a task is set as [1, 5]s.

We compare our proposed algorithm with First Fit (FF),
First Fit Decreasing (FFD), EDF, Short Job First (SJF), random
(RAND), GA, GAR [20], PSO, PSOM [14], and GAPSO [13].
RAND is randomly initializing a population, and provide the
best individual. We use the following performance metrics for
the evaluation of each algorithm, the number of tasks with
deadline satisfactions, the overall computing resource utiliza-
tion, the computing rate, and the data processing rate. The rate
of computing and data processing is the computing size and
the input data amount of tasks with deadline satisfactions.

Fig. 2 shows the number of tasks with deadline satisfactions
when applying different offloading algorithms, which is one of
the most commonly used metrics for evaluating the user sat-
isfaction or the quality of service (QoS). From this figure, we
can see that PSOINRS has 8.73%–36.8% better performance
than others. This verifies the performance superiority of our
proposed algorithm. The benefits of PSOINRS are mainly the
imbalance initialization and the task rescheduling, which will
be both evaluated and illustrated in the followings.

Fig. 3 gives the resource utilizations achieved by these
offloading algorithms, which is one of the most frequently
used metrics for the quantification of the resource efficiency.
As shown in the figure, heuristics (FF, FFD, EDF, and SJF)
has better utilizations than meta-heuristics (GA, GAR, PSO,
PSOM, GAPSO, and PSOINRS). This is mainly because
heuristics prioritise processing tasks locally or in low-latency
edge resources, while meta-heuristics pursues the global op-
timization objective for maximizing the number of accepted
tasks, because the task processing with a low data transfer
latency has a high computing resource utilization, which is
mainly decided by the ratio between the data transfer latency
and the computing delay.
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Fig. 2. The accepted task numbers achieved by various methods.
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Fig. 3. The resource utilizations achieved by various methods.

Fig. 4 and 5 presents the rates of the computing and the
data processing when applying these offloading methods. From
these figures, we can see that our proposed algorithm has the
fast processing rate. Our algorithm has 12.0%–36.9% faster
computing rate, and 10.7%–39.6% faster data processing rate
than others.

Next, we evaluate the performance of our improvement
strategies, the imbalance initialization and the task reschedul-
ing, and the experimental results are shown in Fig. 6 and
7, where PSOIN and PSORS are respectively PSO with
the imbalance initialization and the task rescheduling. From
these figures, we can see that the imbalance initialization can
improve GA by 1.73% and PSORS 12.1%, which verifies
the validity of the imbalance initialization. In Fig 7, we can
see that offloading algorithms with the task rescheduling can
achieve 18.5%–189% better performance then that without
it in processing rate. Thus, the task rescheduling strategy is
deserved to be integrated into offloading algorithms.

From Fig. 6 and 7, we also can see that the imbalance
initialization can decrease the performance of PSO, while the
task rescheduling can make up the degradation and improve
both the accepted task number, the utilization and the pro-
cessing rate. This inspires us that the combination of multiple
improvement strategies may produce good solutions, even
though a signal improvement strategy degrades the overall
performance.
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Fig. 4. The computing rates achieved by various methods.
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Fig. 5. The data processing rates achieved by various methods.

V. CONCLUSION

In this paper, we focus on the task offloading problem in
DECC systems. We first formulate the problem as a discrete
non-convex optimization model, which is hard to be solved.
Then, we propose a PSO-based algorithm to solve the task
offloading problem, where we use the imbalance initialization
and the task rescheduling to improve the performance of
PSO on the solving offloading problem in DECC. Extensive
experiments are conducted and results verify the superior
performance of our proposed algorithm.
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Fig. 6. The improvement of the imbalance initialization.
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Fig. 7. The improvement of the task rescheduling.
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