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Abstract—Machine Learning (ML) is seen as a promising 

application that offers autonomous learning and provides 

optimized solutions to complex problems. The current 

Multiprotocol Label Switching (MPLS)-based communication 

system is packed with exponentially increasing applications and 

different Quality-of-Services (QoS) requirements. As the network 

is getting complex and congested, it will become challenging to 

satisfy the QoS requirements in the MPLS network. This study 

proposes a hybrid ML-based intrusion detection system (ML-

IDS) and ML-based intelligent routing algorithm (ML-RA) for 

MPLS network. The research is divided into three parts, which 

are (1) dataset development, (2) algorithm development, and (3) 

algorithm performance evaluation. The dataset development for 

both algorithms is carried out via simulations in Graphical 

Network Simulator 3 (GNS3). The datasets are then fed into 

MATLAB to train ML classifiers and regression models to 

classify the incoming traffic as normal or attack and predict 

traffic delays for all available routes, respectively. Only the 

normal traffic predicted by the ML-IDS algorithm will be 

allowed to enter the network domain, and the route with the 

fastest delay predicted by the ML-RA is assigned for routing. 

The ML-based routing algorithm is compared to the 

conventional routing algorithm, Routing Information Protocol 

version 2 (RIPv2). From the performance evaluations, the ML-

RA shows 100 percent accuracy in predicting the fastest route in 

the network. During network congestion, the proposed ML 

outperforms the RIPv2 in terms of delay and throughput on 

average by 57.61 percent and 46.57 percent, respectively. 

Keywords—Machine learning; intrusion detection system; 

routing algorithm; quality of service; communication system 

I. INTRODUCTION 

Multi-protocol label switching (MPLS) routing technique 
for telecommunication networks was invented in the late 
1990s as a more efficient alternative to the traditional Internet 
Protocol (IP) routing [1]. In contrast to traditional network 
protocols, which route data packets according to the source-to-
destination (S2D) addresses, MPLS routes traffic from one 
node to another according to predefined labels in the packet 
header. These labels may contain information related to 
quality of service (QoS) such as traffic latency, jitter, packet 
loss and downtime, which allows network traffic to be 
prioritized according to its importance. One of the most 
noteworthy advantages of MPLS is its independence from any 

protocol or transport medium. It supports IP-based, Ethernet-
based, asynchronous transfer mode (ATM), and frame relay 
transmission [1].  Other benefits of MPLS include [1]: 1) 
providing good QoS performance for latency-insensitive 
applications such as video and mission-critical data; 
2) allowing data and voice applications to coexist on the same 
network; 3) allows the pre-programming of different types of 
data with distinct priorities and service classes; and 4) offers 
network scalability to users. 

However, as the number of applications and users grows 
exponentially, conventional MPLS networks are likely to 
become more complicated and require stringent QoS 
regulations to ensure network reliability, delay tolerance, and 
throughput. Routing assignment (RA) algorithms used in 
conventional networks are typically based on the shortest path 
with fixed rules. They may not give the optimal QoS, 
particularly in a complicated network architecture. While 
standards and algorithms have been developed to increase the 
efficiency of the existing networks, it is anticipated that 
conventional approaches would be unable to meet growing 
demand while maintaining QoS. Additionally, the networks 
are facing threats from cyber attackers that take advantage of 
network vulnerabilities, resulting in extensive network 
disruption and significant damage to an organization’s 
reputation. These challenges emphasize the critical importance 
of intelligent routing techniques and network security 
protection, such as that provided by network intrusion 
detection systems (IDSs). 

An IDS monitors network traffic for signals of hostile 
activity by building a predictive model that can discriminate 
between attack and normal network flows. However, despite 
decades of advancements, existing IDSs continue to face 
detection accuracy challenges by reducing the false alarm 
rates and the identification of unknown threats [2]. 
Additionally, the fixed rules of IDS systems are vulnerable to 
threats including Denial-of-Service (DoS) and brute force [3]. 
To safeguard the network from such vulnerabilities, 
researchers all around the world have created cutting-edge 
IDS with the integration of machine learning (ML) algorithms. 
ML is capable of rapidly identifying patterns in a variety of 
data and solving complex, multi-dimensional problems with 
little to no human intervention. Since intrusion detection is a 
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classification problem, ML can be one of the promising 
candidates for IDS in the network. A Learning-based system is 
used in ML-based IDS to identify possible attack classes 
based on the behavior of an incoming packet. These ML-based 
IDSs offer various advantages over conventional systems, 
including lower computational loads and greater flexibility, as 
well as the ability to detect novel attacks and capture the 
complex features of attack behavior [4]. 

This research addresses several issues in MPLS networks, 
including improving network QoS and enhancing network 
security using ML algorithms. This work proposes a hybrid 
supervised ML-based IDS and ML-based RA algorithm 
(herewith will be referred to as ML-IDS and ML-RA, 
respectively) that is trained using an ML-IDS dataset 
generated using a simple data extraction method. The 
proposed ML-IDS is a security intrusion classification 
algorithm that analyses the incoming traffic patterns and 
network conditions and then classifies the traffic as legitimate 
or potentially intrusive. Afterwards, the ML-RA intelligently 
computes a route that is predicted to provide the best QoS 
requirements under any network condition. In short, the main 
contributions of this research work are as follows: 1) we 
proposed an ML-IDS algorithm that uses a simple data 
extraction method from the network to train the classifier 
without compromising the accuracy; 2) we developed an ML-
RA algorithm that predicts the QoS parameters and performs 
path computing for the incoming traffic with various priorities 
in different traffic conditions; and 3) we introduce the first 
hybrid ML-IDS and routing algorithm (RA) that enhances 
network security and QoS. 

This paper is organized as follows. Section II provides the 
literature review. The formulated ML-IDS and ML-RA 
methodology is presented in Section III. The discussion on the 
findings in the evaluation of the proposed strategy is presented 
in Section IV. Finally, Section V refocuses on the purpose of 
the research and draws conclusions for this study. 

II. LITERATURE REVIEW 

A. Routing Strategies in the Literature 

One of the networking fundamentals responsible for 
selecting a path for packet transmission is network traffic 
routing. With proper network routing management, it is 
possible to achieve a QoS-compliant and cost-effective route, 
especially through the implementation of ML in network 
routing. However, ML-based traffic routing is often 
challenging because of various constraints including complex 
and dynamic topologies, diverse traffic, and unique QoS 
requirements. In routing optimization problems,   traffic and  
route matrices can be used to describe the input and output of 
ML algorithms  [5]. To predict or select a path for incoming 
traffic, ML algorithms must learn the correlation between 
traffic inputs and link conditions. The recent applications of 
ML in routing can be divided into five routing objectives, 
which are discussed as follows: 

1) Routing by predicting network parameters: In today’s 

network operations and administration, it is critical to predict 

network parameters such as path or connection quality, delay, 

throughput, optical signal to noise ratio (OSNR), and 

incoming traffic. ML aims to improve overall network 

performance by learning from past data or the environment. 

For example,  Alvizu et al. [6] trained an artificial neural 

network (ANN) using a public dataset from Milan to forecast 

the traffic load and variation and calculate the best resource 

allocation via dynamic optical routing in software defined 

networks (SDNs), thereby reducing energy consumption. In 

contrast, Choudhury et al. [7] introduced a hybrid machine 

learning (ML) model based on the Gaussian process (GP) 

method to forecast traffic volume for each traffic engineering 

tunnel over time, followed by forecasting the optical 

performance of new wavelengths in a multi-vendor 

environment. 

2) Routing for QoS improvement: By controlling the 

network’s delay, jitter, bandwidth, and packet loss ratio, a 

good QoS can be attained. However, with the explosion of 

traffic volume in the network, it can be challenging to fulfil 

the QoS specifications for each incoming traffic. Due to the 

network’s complexity, conventional algorithms to improve the 

QoS parameters may be impractical. To meet the QoS 

requirements, researchers are continuously developing and 

refining unique solutions, such as ML-based algorithms, to 

maximize throughput while minimizing latency. 

Nakayama et al. [8]  proposed a routing scheme using the 
Markov Chain Monte Carlo algorithm to reduce the worst-
case end-to-end delay of all the front-haul flows of the 
centralized radio access network (C-RAN) and ensure that all 
flows meet the latency requirements. The proposed solution 
successfully reduces all flow’s latency, demonstrating that the 
ML-based approach can address the CRAN’s queuing delay 
problem. Additionally, Stampa [9] proposed a deep RL agent 
that can optimize routing in accordance with a predefined 
target metric, such as the delay requirement in SDN. The deep 
RL model automatically adapts to the current traffic 
conditions and proposes a customized configuration that 
minimizes network delay. The suggested deep RL agents were 
able to reliably calculate total traffic intensities, and the 
average delay is less than the benchmark of 100,000 randomly 
created routes. 

3) Low computation routing scheme: Incorporating ML in 

the network may lead to high computational load, especially 

when dealing with high dimensional input features or when 

using deep learning (DL)-based algorithms. With that, several 

works proposed a low computational routing scheme. For 

example, Hendriks et al. [10] proposed Q2-RA, which is 

hybrid of Q-routing and Multi-Agent Reinforcement Learning 

(MARL) RAs. In the algorithm, ad-hoc wireless nodes decide 

on a route by selecting the neighbor with the best Q-value as 

the next-hop destination.  Although this algorithm has an 

additional modified reward function to meet the QoS criterion, 

it is comparable to Q-routing. Only training traffic is provided 

throughout the learning process to obtain the Q-values on the 

available path until it converged inside a predetermined 

threshold. The transmission of data traffic then starts once the 

rate of sending learning traffic has drastically lowered. The 
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suggested Q2-RA performs better than the ad hoc on-demand 

distance vector method with QoS awareness and is more 

flexible to network condition changes. 

Martin et al. [11] proposed a classifier that was trained 
using labelled Risk Weighted Assets (RWA) configurations 
and solved using inductive logic programming (ILP). The 
classifier can offer online network setup for newly arriving 
traffic matrices once it has been trained. In response to rapidly 
changing traffic patterns, it can dynamically adapt and 
reconfigure the network because of the quick computation of 
RWA configurations. Instead of calculating ILP for every 
incoming traffic, the network will remember prior ILP 
solutions and allocate a path in accordance with the historical 
data.  As compared to the ILP method, this approach reduces 
computational time by up to 93%. 

4) Congestion-control routing: Congestion is one of the 

main concerns for network providers as it can degrade the 

overall network performance. Through congestion control, 

network stability, fair resource allocation, and a reasonable 

packet loss ratio are all made possible [12].  In conventional 

routing protocols, previous network abnormalities, such as 

network congestion, are not learned. As network traffic keeps 

growing, the network is put under a lot of strain, which creates 

problems with resource management and allocation that affect 

traffic QoS. Given that the majority of networks are still using 

outdated routing systems, this congestion problem is getting 

more critical [13]. Additionally, routing systems were created 

for fixed networks that determine the shortest paths using 

distance vectors or link costs. Eventually, the network will 

experience excessive traffic load, which will severely degrade 

network performance. The conventional RAs frequently 

commit the same routing mistake when this condition recurs, 

leading to an unmanageable rise in delay and packet error rate. 

This is where the predictive ML models come in to attempt to 

overcome the congestion issue. 

Due to the inflexibility of route selection in circuit-
switched networks, their total routing performance is usually 
constrained. This issue is highlighted by the least loaded (LL) 
routing protocol, one of the network's routing protocols. 
Because of the excessive capacity consumption under 
conditions of heavy load, this routing protocol may result in 
subpar performance and overall inefficiency [5]. To assist the 
LL routing performance, a novel online-based supervised 
Naive Bayes (NB) classifier is proposed in [14]. The classifier 
forecasts the likelihood of future circuit blocking between 
node pairs. When a service is provided or denied, the network 
snapshot is stored as historical information to determine the 
best route for new service connections. The proposed solution 
outperforms the least-load and short-path conventional routing 
protocols in terms of the minimum number of extra hops, 
lowest blocking probability, and least amount of network 
capacity overconsumption. 

Another example of congestion control is demonstrated by 
Tang et al. [13]. The authors proposed a real-time DL-based 
intelligent network traffic control method based on deep 
convolutional NN (deep CNN) with uniquely characterized 

input and output to represent the wireless mesh network 
backbone. The performance of the proposed scheme is 
compared with Open Shortest Path First (OSPF), Intermediate 
System to Intermediate System (IS-IS), and Routing 
Information Protocol (RIP). The simulation results showed 
that the DL-based routing scheme is superior to other routing 
protocols, as 98.7% of congestion cases are avoided. 

5) Load-balancing routing: The bursty nature of SDN 

packet traffic creates a network load imbalance. Yao et al. [15] 

proposed a pair of ML-aided load balance routing schemes 

that take queue utilization (QU) into account to address this 

issue. The aim is to improve load-balance routing by reducing 

the packet loss ratio and improving the worst throughput. To 

deal with network congestion caused by a sudden traffic burst, 

ANN algorithms predict the QU for the next time slot. The 

predicted value is used to guide intelligent routing decisions. 

When compared to the shortest path approach, the proposed 

scheme improves packet loss ratio and throughput while 

increasing delay by 20%. 

The next-generation wireless network (NGWN) is a 
network service and operation interface that can support 
multiple standards such as 5G, Wi-Fi, and cognitive radio 
networks. However, the volume of traffic in the current 
communication infrastructure is expanding rapidly that the 
router’s speed may not be sufficient to keep pace. 
Additionally, the NGWN's real-time load balance request 
cannot be satisfied and served by using conventional routing 
schemes that are solely based on standard rules and have 
limited computing capacity [16]. To anticipate the network 
queue state, which is one of the measures for making wise 
routing decisions, Yao et al. [16] suggested a load balancing 
routing based on NN. The proposed algorithm is compared to 
shortest path-based algorithms such as Bellman-Ford (BF) and 
Queue-Utilization BF (QUBF), in terms of throughput and 
delay. According to the results, the proposed technique 
reached the highest throughput while incurring a 20% delay 
over the BF approach. The proposed algorithm also can 
predict the next-hop path with the smallest buffer and thus 
improve load balancing. 

B. Challenges in Routing 

From the literature review, recent related works on ML-
based RA have proven to route the traffic effectively. Almost 
all related works from literature successfully overcome the 
limitations of conventional routing protocols. Despite ML’s 
superiority in routing in communication networks, there are 
still some challenges to consider, discussed as follows. 

1) Trade-off between accuracy and computational load: 

The trade-off between accuracy and computational load in 

ML-based RA using classical ML and DL is similar to the 

issue discussed for ML-based IDS. This trade-off must be 

considered because ML routing decisions need to be swift and 

in real-time to avoid processing delay. Unlike the proposed 

ML-RA in the literature which used DL-based classifiers, our 

work aims to use ML-based regressions including DT-

regressions and   LR by Gibbs Sampling (LRgs) to predict the 

delay in all available routes. DT and LRgs are well-known for 
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their simplicity and interpretability, but they are prone to 

overfitting. To address this issue, we will train, test, and 

evaluate our proposed ML-RA under various network and 

traffic conditions. 

2) Lack of congestion and link failure scenario for 

routing: The majority of associated studies in the literature 

test the effect of their proposed ML-based routing scheme 

under congested network condition, as evident from the 

studies in [13], [17]–[22]. Only  a few research, such as [23],   

develop ML-based RA that considered both congestion and 

link or node failures. Therefore, our proposed ML-RA 

considers both congestion and link failure scenarios. 

3) Traffic modelling for performance evaluation: As the 

network becomes more complex and congested with traffic of 

varying priorities, it is critical that the ML-based routing 

mechanism can deliver traffic while meeting QoS 

requirements. However, most related works only consider 

single traffic type for routing, which may not be feasible to 

resemble real-world traffic with different priorities. There has 

been little research into ML-based routing for traffic with 

varying QoS requirements. For example, in [24], the 

Transmission Control Protocol (TCP) and User Datagram 

Protocol (UDP) traffic are considered, which correspond to 

voice over Internet Protocol (VoIP) and video traffic. While 

the authors  [10] used three traffic priorities; high, medium 

and low priority, they did not explicitly specify the traffic 

types. Our proposed ML-RA will consider three traffic types 

which are expedited forwarding (EF), assured forwarding 

(AF), and best-effort (BE) traffic, which correspond to VoIP, 

close-circuit television (CCTV), and data transfer, 

respectively. It is expected that our proposed ML-RA can 

successfully route all traffic within their QoS requirements. 

4) Quality datasets for training: When generating traffic 

in the network simulator, it is crucial that the traffic pattern is 

not random or static as demonstrated in [9], [11], [14], [17], 

[18], [22], to preserve the quality of the dataset used to train 

the ML algorithms. To improve the quality of the dataset, the 

traffic packets can be modified to resemble legitimate traffic 

properties, such as the standardized data rates and size. In this 

work, the ML-RA dataset is constructed using EF, AF, and BE 

traffic following the standard of VoIP, CCTV, and file 

transfers. More details on the traffic properties will be 

elaborated in Section III. In addition, the traffic is also 

modelled using the typical EF, AF, and BE traffic mixture 

ratios of 20:40:40 for [25]. 

Table I summarizes the discussed ML works in routing 
with their advantages and shortcomings. 

TABLE I.  SUMMARY OF RECENT ML-BASED RAS WITH THEIR ADVANTAGES AND SHORTCOMINGS 

Authors 
Routing 

Objectives 
Description 

Issues of 

Conventional 

Routing Protocol 

ML 

Method 
Advantages Shortcomings 

Yao et al.  

[15] 

Load 

balancing 

Proposed a pair of ML-assisted 

load-balancing RAs that 
consider QU, to improve load-

balance routing by packet loss 

ratio reduction and improving 
the worst throughput 

High 
computational 

complexity for 

QoS RA 

DL 

Improved global 

realignment and 

more efficient 

network 

optimization 

 High computational load 

 Only considers two traffic 

patterns (Steady and congest) 

Yao et al.  
[16] 

Load 
balancing 

Proposed NN-based load-

balancing RA to predict network 
queue status to make intelligent 

routing decisions 

Traditional RAs 

cannot always 
serve the NGWN 

effectively 

DL 

Enhance the bit 

error rate, 
throughput, and 

delay 

 High computational load 

 Do not consider link failure 

 Do not consider different 
traffic priorities 

Fadulullah et 

al.  [23] 

Predicting 
network 

parameters 

Proposed a value iteration 

architecture-based deep RL 
routing approach, which includes 

the network node’s adjacency 

matrix as learning parameters. 
The method can forecast the next 

node until the destination is 

reached 

High 

computational 

cost to address 
RWA problems 

DL 

Ensures more 
stable network 

performance in 

the event of 
network topology 

changes 

 High computational load 

 Do not consider different 

traffic priorities 

Murudkar et 

al. [18] 

Predicting 
network 

parameters 

Proposed a User Specific-
Optimal Capacity Shortest Path 

RL routing in 5G networks is to 

establish the resource-based 

optimum-capacity shortest route 

for a user between S2D pairs 

Challenging 
spectrum resource 

optimization 

RL 

Quickly 

determine the 
shortest route 

with the highest 

capacity 

 Only constant bit rate traffic 

in the simulations 

 Do not consider different 

traffic priorities 

 Do not consider node failures 
condition 

Salani et al.  

[17] 

Predicting 
network 

parameters 

Proposed an integration of RF-

based estimation for routing and 

spectrum assignment for quality 
of things 

Inaccessible of 
perfect 

transmission 

knowledge to 
train the ML 

model 

RF 
Saves up to 30% 
on spectrum 

occupation. 

 Traffics in the simulations are 
generated randomly 

 Do not consider different 
traffic priorities 

 Do not consider link failure 
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Vashishth et 

al. [22] 

Low 
computation 

routing 

scheme 

Proposed cascade learning, an 
ensemble-based ML that 

combines LR and NN classifiers. 

Using the ML-based 
Probabilistic Routing Protocol 

and the History of Encounters 

and Transitivity (MLProph) as 
input, the logistic algorithm will 

generate two probabilities: 

delivered or not delivered 

Context-free 

routing protocols 
suffer from high 

network overhead 

ratio and 
congestion 

Ensemble 

LR and 
DL 

Enhance message 

delivery 

probability, 
network overhead 

ratio, average hop 

count, and 
message drop 

rate. 

 Data generated is based on a 

flooding-based routing 

protocol to train the ML 

algorithms 

 Do not consider different 
traffic priorities 

 Do not consider node failures 
condition 

Vashishth et 
al. [21] 

Low 

computation 
routing 

scheme 

Proposed a routing approach 
based on the Gaussian mixture 

(GM) model classifier in the 
Opportunistic Internet of Things 

(OppIoT) that increases message 

delivery probability 

Fixed S2D path is 

non-existent, 
making routing 

very challenging 

GM 

Increase message 
delivery 

probability, the 
average hop 

count, the number 

of dropped 
packets, and the 

network overhead 

ratio 

 Delay is not one of the 

performance parameters 

 Do not consider node failures 

 

 
 

 

Hendriks et 

al. [10] 

Low 

computation 

routing 

scheme 

Proposed a hybrid of Q-routing 

and MARL RA. Ad-hoc wireless 

nodes use the algorithm to make 

routing decisions by selecting 

the neighbor with the best Q-
value as the next hop 

Traditional RAs 

have a high 

overhead load to 
be used in an ad 

hoc environment 

RL 

Outperforms 
well-known ad-

hoc RAs in 

dynamic 
environments 

with QoS 

constraints 

 Do not consider node failures 
or congestion 

Li et al. [14] 
Congestion-
control 

routing 

Proposed an online-based 

supervised NB classifier for 

performance improvement. The 
classifier predicts the likelihood 

of future circuit blocking and 

uses the data to select routes for 
future service connections 

Fixed route 
oriented 

significantly 

limits the routing 
performance and 

flexibility 

NB 

Saves ~ 90% of 

the time for the 

learning process, 
significantly 

speeding up 

simulation 
studies. 

 Traffic in the simulations is 

generated randomly 

 Do not consider different 
traffic priorities 

Tang et al. 

[13] 

Congestion-
control 

routing 

Proposed a real-time DL-based 

intelligent network traffic 

control based on DCNN for a 
wireless mesh backbone 

OSPF for training 

the ML-RA, 
which lacks the 

necessary 

intelligence to 
handle newly 

occurring 

situations 

DL 
Avoid 98.7% of 

congestion cases 

 High computational load 

 Do not consider different 

traffic priorities 

 Do not consider link failure 

scenario 

Pasca et al. 

[20] 

QoS 

improvement 

Proposed an application-aware 

multipath flow routing 

framework integrating ML in 
SDN for traffic classification. 

The algorithm assigns paths 

based on QoS requirements of 
available parameters e.g., 

bandwidth and delay 

Traditional static 

routing is slow to 
respond to 

network changes 

and slow to 
converge 

NB, DT, 
Bayesian 

Network 

and SVM 

Provide better 
routing 

configuration 

effectively 
reduces the 

network delay 

 

 Do not consider link failure 

 Do not improve on delay 

Nakayama et 

al. [8] 

QoS 

improvement 

Proposed a routing scheme based 
on the Markov Chain Monte 

Carlo algorithm to decrease the 

worst-case end-to-end delay of 
all CRAN front-haul flows and 

ensure that all flows fulfill the 

latency requirements 

The current QoS-

aware routing 

scheme ignores 
frame-level 

queuing delay. 

Markov 
Chain 

Monte 

Carlo 

All flows have a 

delay that is less 

than the threshold 
and meets the 

requirements. 

 Do not consider node failures 
or congestion 

 Different class traffic is 
considered but did not 

mention explicitly 

Stampa et al.  

[9] 

QoS 

improvement 

The authors designed and tested 

a deep RL agent in SDN that 

could significantly improve 
routing based on delay 

requirements 

Limited routing 

optimization 
capabilities 

Deep RL 

Achieves 

improved delay 
when compared 

to the non-DRL 

agent routing 
scheme 

 Data samples used are 

100,000 gravity generated 
traffic matrix 

 Do not consider different 

traffic priorities 

 Do not consider link failure 

and congestion 

Mao et al. 
[19] 

QoS 
improvement 

Proposed Tensor-based Deep 
Belief Architectures (TDBA), in 

which traffic patterns from the 

edge router are fed into TDBA to 
build a path to all edge routers 

Conventional 
routing cannot 

cope with the 

complex 
environment 

DL 

Achieves zero 

packet loss rate 

 

 High computational load 

 Do not consider different 
traffic priorities 

 Do not consider link failure 
condition 
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Alvizu et al. 

[6] 

Predicting 

network 
parameters 

Trained an ANN for forecasting 
the traffic load and variation and 

calculate the best resource 

allocation in SDN 

Over-provisioning 
yields inefficiency 

and high 

operational costs 

DL 

The proposed 
scheme yields an 

optimality gap 

above 3% 

 Training using a public 

dataset 

 Do not consider link failure 

III. DEVELOPMENT OF THE HYBRID ML-IDS AND ML-RA 

The ML-IDS dataset development is carried out via 
Graphical Network Simulator 3 (GNS3) by varying the 
network inputs. The normal incoming traffic is generated via 
the OSTINATO traffic generator, while the attack traffic is 
generated via Low Orbit Ion Cannon (LOIC). The output of 
the simulations in GNS3 for the ML-IDS algorithm will be the 
actual normal or attack label, while the output for ML-RA is 
the actual delay for all available routes between a S2D pair. 
All inputs and outputs are extracted via Wireshark and 
tabulated in a CSV file to build the ML-IDS and ML-RA 
datasets. 

For ML-IDS, since it is a classification-based algorithm, 
the dataset is fed into MATLAB to train several ML 
classifiers. In contrast, ML-RA is a regression-based 
algorithm, and the ML-RA dataset is fed to train ML 
regression models. Both datasets are split into 70% training 
dataset and 30% testing dataset for performance evaluation 
during the algorithm development phase. 

To further improve the performance of the ML models, the 
hyperparameters are optimized iteratively in MATLAB until 
the performance, i.e., error rate, converges to a constant value. 
Then, all the ML models are further tested using new data. 
The new data consists of new input features but without the 
actual output label. It is up to the ML models to provide 
predictions on the new data. The model which provides the 
most promising performance such as accuracy, precision, and 
F-measure are chosen for the proposed ML-IDS and ML-RA. 
Finally, both ML-IDS and ML-RA are cascaded together to 
build a new hybrid algorithm to enhance network security and 
improve network delay and throughput. 

The simulation setup, the proposed algorithm, system 
parameters, and simulation scenarios are discussed in detail as 
follows. 

A. The Simulation Setup 

The network environment for the hybrid ML-IDS and ML-
RA in the MPLS network system is depicted in Fig. 1. The 
network consists of eight edge routers, R1, R2, R5, R6, R7, 
R8, R9, and R10, which can be used as ingress or egress label 
edge routers (LER). Concurrently, R3 and R4 are normal label 
switch routers (LSRs) in the MPLS domain. All edge routers 
are linked to various types of traffic, such as VoIP, CCTV, 
and file transfers. The network is built in four ring topologies: 
1) R1, R2, R3, R4, R5, and R6 form the main ring; 2) R1, R4, 
R5, R7, and R8 form the second ring and serve as node 
protection for R4; 3) R2, R3, and R9 form the third ring; and 
4) the final ring is made up of R3, R6, and R10. The third and 
fourth rings protect the links between R2-R3 and R3-R6, 
respectively. In this network environment, all links are active, 
and the conventional RA and proposed ML-RA must compute 
the route for all traffic. 

GNS3 is used to build the network for simulation, data 
collection, and performance analysis. OSTINATO and LOIC 
are used to generate normal and attack traffic, respectively. 
All edge routers are connected to either a Virtual PC (VPC), 
Windows virtual machine (VM), or OSTINATO traffic 
generator. The VPC is placed in the edge routers for traffic 
monitoring while the VM is used to mimic an actual 
Window’s PC in the network for file transfers, generate DoS 
traffic and for traffic monitoring. Note that generated traffic 
can be sent using several streams simultaneously using 
different protocols at different rates. 

 

Fig. 1. Network environment in GNS3.
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To launch a DoS attack, the LOIC tool is first installed in 
Window’s VM in GNS3. After configuring the virtual 
Ethernet port of the VM, the IP address of the client or server 
is entered in the network as the DoS attack target, followed by 
the DoS method and packet flooding speed. The LOIC will 
flood the route leading to the targeted client. Once the DoS 
attack began, all network Virtual Private Clouds (VPCs) lost 
connectivity to the targeted client, while all clients connected 
to the route that links to the target client are also affected by 
the DoS attack. This scenario illustrated the severe damage of 
a DoS attack in the network domain as the attack affects not 
only the victim but also the devices linked to it. 

B. Hybrid Supervised ML-IDS and ML-RA 

This section discusses how ML-IDS and ML-RA are 
cascaded together to form complete ML-based security and 
QoS enhancement algorithms. Fig. 2 shows the framework of 
the proposed hybrid ML-IDS and ML-RA. The ML-IDS is 
incorporated at every ingress router that is R1, R2, R5, R6, 
R7, R8, R9, and R10, while the rest of the routers only focus 
on forwarding the traffic as computed by the ML-RA. ML-
IDS is a classifier-based supervised ML that will predict the 
incoming traffic as normal or attack. In contrast, ML-RA, is a 
regression-based supervised ML that predicts the delay of all 
possible routes between the S2D pair. 

 

Fig. 2. Framework for the hybrid ML-IDS and ML-RA. 

As incoming packets enter the ingress router, network 
information such as S2D IP address, traffic priority, requested 
load, packet size, number of packets, and data rates are fed 
into the ML-IDS. Additional network domain information, 
such as congestion rate and available routes, is required as 
inputs for the ML-RA. The output for the ML-IDS will 
classify the incoming traffic. If it is predicted as attack traffic, 
the ML-IDS will block and drop the traffic from entering the 
MPLS network. However, if it is predicted as normal by ML-
IDS, the traffic will feed into the ML-RA module for route 
computation. To build the ML-IDS, the dataset constructed 
from the data generated using LOIC and OSTINATO is 

tabulated in a CSV file format. The ML-IDS dataset is later 
fed into the Classification Learner App (CLA) in MATLAB, 
which trains model to classify data using supervised ML. This 
application allows users to import datasets, select features, 
specify validation schemes, train models, and assess results. 
Automated training of the ML algorithms allows users to 
select the models with the best classification model types. 
These automated training features ease the model 
development and evaluation process by eliminating the trial-
and-error process to choose the best ML classifiers. 

After importing the dataset into the CLA, the data is ready 
to be trained by a series of ML algorithms, and the best 
performing algorithm will be chosen for the proposed ML-
IDS. The overall process to develop the proposed ML-IDS is 
as shown in Fig. 3. The dataset is split into a training dataset 
and test dataset with a split ratio of 70:30 [26]. However, the 
split ratio must be carefully adjusted to avoid over-fitting or 
under-fitting. A trial-and-error basis is generally adopted until 
the accuracy saturates. 

The dataset of ML-RA is built in GNS3, covering the 
incoming traffic and network information from the MPLS 
domain. Simulations are conducted in GNS3 using different 
traffic parameters in the OSTINATO traffic generator for EF, 
AF, and BE traffic. For congestion, another OSTINATO 
traffic generator is run in GNS3 by bursting continuous 
packets. Broken links are simulated by simply closing the link 
in GNS3. The available routes in the network are performed 
by using RIPv2 routing protocol. RIPv2 was chosen due to 
ease of configurations in the Cisco emulator in GNS3 and 
because RIPv2 utilizes shortest-path routing scheme 
regardless of network conditions. 

At first, a random S2D pair is chosen. Then, by using trace 
IP route in the Cisco Command Line Interface (CLI), GNS3 
will show the main route computed by the RIPv2. Then, the 
main route is purposely closed to allow the RIPv2 to 
recompute to other available routes. The process is repeated 
until there are no more alternatives for S2D pair. For this 
research, the alternative routes are already trained by the ML-
RA using the RIPv2 routing protocol. The advantage of this 
method is that ML-RA algorithm no longer needs to manually 
compute alternative routes in the network when a sudden 
surge of traffic in the network occurs. The ML-RA algorithm 
is trained so that it will predict the QoS parameters on all 
available routes and quickly assign a path for the traffic in any 
incoming packets and network conditions. For each S2D pair, 
different EF, AF, and BE traffic configurations, and network 
conditions are run in the simulations for several iterations to 
improve the ML-RA training rate. Since the delay and 
throughput of each iteration are not always precisely constant 
due to processing delay and limitation of the simulation 
platform, training it with several iterations will allow the ML-
RA to foresee the patterns and trends in the network. 
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Fig. 3. Flowchart for the development of ML-IDS.

There are a total of 21 features for the ML-RA dataset. The 
first five input features are the information of the incoming 
traffic while the rest are on network conditions. To simplify 
the dataset, network congestion and broken links share the 
same column, where the value “0” denotes zero congestions, 
value “20” denotes congestions, while “100” denotes a broken 
or closed link. The data extracted from the simulations is up to 
half-a-million of iterations for all possible S2D pairs with 
different traffic and network conditions. 

The ML-RA dataset is then fed into MATLAB's 
Regression Learner App (RLA) to create a regression model 
that predicts the delay for each route in the network. The RLA 
eases the ML development work by suggesting several 
regression models that fit the ML-RA dataset. For this case, 
the linear and tree-based regressions algorithms, including 
medium tree, course tree, and fine tree are suggested by the 
RLA. All the regression’s algorithm is then compared with 

their prediction speed, training time and RMSE. The best one 
among all will be chosen as the ML model for the ML-RA. 
Delay in this context is defined as the total time taken from the 
moment the first packets enter the MPLS domain to the time 
the last packets are received at the receiver end. The predicted 
delay by the ML-RA for the main route, Alternative Route 1 
(ALT1), Alternative Route 2 (ALT2), and Alternative Route 3 
(ALT3) are denoted as                           and 

        , respectively. The predicted delays by the ML-RA 

will be used for route computation. The flowchart for the route 
computation is as shown in Fig. 4. The route computation for 
each traffic will be based on four network conditions, namely, 
all routes available, one or two routes down, three routes 
down, and all routes down based on the predicted delay. If the 
route is not available either due to broken links for node 
failures, the ML-RA will predict a value of “∞” to the route, 
indicating that the predicted delay is too high and should be 
avoided. 
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Fig. 4. Route computation flowchart for the proposed ML-based hybrid IDS and intelligent routing algorithm. 
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As shown in Fig. 4, when all routes are available, the ML-

RA module will rank each of the predicted delays from lowest 
to highest. Then the route with the lowest predicted delays 
will be chosen for the traffic, starting with EF, followed by AF 
and BE traffic. In the event where all routes are down, ML-
RA will drop all the packets until a route is back to available. 
One of the advantages of ML-RA is that from the predicted 
delay alone is already sufficient to understand the network 
conditions. For instance, when the link is congested, the 
predicted delay will be high. While, when the link is down or 
node failure, the predicted delay is “∞”. This eases the route 
computation works to choose the best route for the traffic 
without processing too much network information. 

C. System Parameters 

The design parameters for ML-IDS are shown in Table II. 
Note that the traffic generated by both OSTINATO and LOIC 
traffic generators in GNS3 follows the IEEE 802.3 standard, 
where the packet length is between 64 to 1520 [27]. The 
OSTINATO traffic generator is limited to only 20 Mbps for 
normal traffic, while LOIC generates attack traffic up to 40 
Mbps, with up to 40,000 packets per second. However, due to 
limited computing storage, the number of packets per session 
is capped at 20,000 packets per session. 

The design parameters for the ML-RA are as shown in 
Table III. The traffic in the network comprises of EF, AF, BE, 
and congested traffic. The requested load begins at 20% with 
an increment of 10% up to 100% according to the traffic 
mixture ratio of 20:40:40 for EF, AF, and BE, respectively. 
Our finding shows that the maximum network capacity in 
GNS3 is at 20 Mbps. With that, at 100% requested load, the 
throughput for EF, AF and BE is 4 Mbps, 8 Mbps, and 
8 Mbps, respectively. The packet length for EF traffic is fixed 
at 160 bytes, following the Cisco bandwidth calculator [28]. 
Due to the limited computational storage of the GNS3 VM 
and ease of data extraction, the packet size for AF and BE 
traffic is fixed at 500 bytes. However, for congestion traffic, 
the length of the packet is set at random between 60 to 1550 
bytes with the number of packets up to 20,000 packets per 
session using the “random” feature in OSTINATO. 

D. Simulation Scenarios for Performance Study 

Four S2D pairs are chosen for ML-RA validations: R6 to 
R2, R2 to R5, R10 to R7, and R5 to R3. These S2D pairs were 
selected because there are one main route and three alternative 
routes; namely ALT1, ALT2, and ALT3 available and it 
involves almost the entire link in the network, which is 
suitable for performance study. It is worth mentioning that 
there are also other S2D pairs available. However, because the 
four pairs with all the available routes already involve the 
entire links and LSRs in the network, it is deemed sufficient. 

For ease of explanation on the routing, each of the routes 
in the network is given a unique LSP ID, as shown in Fig. 5. 
For instance, the route between R1 to R4 is LSP 1. For routes 
with more than one hop, for example, the route between R1 to 
R6 is denoted as LSP 1.2.3, which represents a total of three 
links. The main and alternative routes computed by the RIPv2 
routing protocol for R6 to R2, R2 to R5, R10 to R7, and R5 to 
R3 are tabulated in Table IV. When the network is not 

congested, the shortest path offers the best QoS parameters. 
RIPv2 will always compute the shortest path, which in this 
case, is the main route between an S2D pair regardless of 
network congestion. The downside is, when there is a sudden 
change in the network, RIPv2 may not be able to perform at 
its peak. When the main route is broken, the RIPv2 will re-
compute the next best route, which is the ALT1 and so forth. 

To force the traffic to choose another alternative route, 
traffic engineering is configured via CLI in the Cisco router’s 
Internetwork Operating System. A sample case study is 
demonstrated in this paper, in which the main route for an 
S2D pair is congested, with one network route is down. The 
purpose of this sample study is to investigate how the 
proposed ML-RA can compute the path for different network 
conditions. The accuracy of the ML-RA is considered good 
when it can avoid congested routes and broken links. As a 
result, it is expected that the ML-RA will offer better QoS 
performance compared to RIPv2 that only considers the 
shortest path. The objective of ML-RA is to predict and 
compute the best routes in the network, regardless of the 
network conditions. The simulation details in GNS3 for ML-
RA performance study are summarized in Table V for R6 to 
R2, R2 to R5, R10 to R7, and R5 to R3. The performance 
study focuses on the accuracy of the ML-RA to choose the 
route with the predicted best QoS. Then, the delay and 
throughput for the route are computed by the ML-RA and 
compared with RIPv2. 

TABLE II.  DESIGN PARAMETERS FOR THE PROPOSED ML-IDS 

Design Parameter Description 

Packet length 60 bytes < Packet length < 1520 bytes 

Number of packets Up to 20,000 packets per session 

Data rates Up to 40 Mbps 

Packets per second Up to 40,000 packets per second for DoS attack 

ML-based classifier GBT, RF, DT, DL, FLM, LR, and GLM 

Dataset Proposed ML-IDS dataset and CICIDS-2018 

Actual traffic type 
The actual traffic from the dataset’s label (normal or 

attack) 

TABLE III.  DESIGN PARAMETERS FOR THE PROPOSED ML-RA 

Design Parameter Description 

Traffic Priority EF, AF and BE 

Requested Load 20%, ∆ ± 10% up to 100% 

Packet Length 
Background traffic (60 bytes to 1550 bytes), EF (160 

bytes), and AF and BE (500 bytes) 

Number of Packets Up to 20,000 packets per session 

Data Rates Up to 20 Mbps for 100% load 

Congestion Rates Fixed at 20 Mbps 

ML-based 

Regressions 

Linear Model Regressions, Medium Tree Regressions, 

Fine Tree Regressions, and Course Tree Regressions 

Dataset Proposed ML-RA dataset 

Routes Main route, ALT1, ALT2, ALT3 

Delay 
Actual delay of the traffic from simulation during the 
training phase 
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Fig. 5. Network environment with LSP ID. 

TABLE IV.  MAIN AND ALTERNATIVE ROUTES BY RIPV2 ROUTING 

PROTOCOL 

Sourc

e 

router 

Destinati

on 

router 

Main 

route 

(LSP) 

ALT1 

(LSP) 

ALT2 

(LSP) 

ALT3 

(LSP) 

R6 R2 4.5 13.12.11.10 3.2.1.6 3.9.8.7.6 

R2 R5 6.1.2 6.7.8.9 5.4.3 
10.11.12.13.
3 

R10 R7 12.5.6.7 12.11.10.6.7 
13.3.9.

8 
13.3.2.1.7 

R5 R3 3.4 3.13.12 2.1.6.5 9.8.7.6.5 

IV. RESULTS AND DISCUSSION 

This section will discuss the results of the proposed 
system, along with some of its limitations and the future 
direction of the hybrid ML-IDS and ML-RA system. 

A. Simulation Results 

Delay is an essential parameter in evaluating the 
performance of ML-RA, especially for EF and AF traffic, as 
they require stringent delay requirements. There is no strict 
timing delay requirement for BE traffic. However, for 
comparison purposes, the delay for BE traffic is compared in 
different network conditions and different routing protocols 
and measured via the analysis tool in GNS3’s Wireshark. 
Provided that it is within the delay standards, the lower the 
delay, the better the performance of ML-RA. 

The next performance matrix evaluated is throughput, 
which is defined as the amount of data transferred between a 
S2D router to show the performance between ML-RA and 
RIPv2 RA [29]. AF and BE traffic require high amount of 
throughput compared to the EF traffic. It is also expected that 
the higher the congestion rate and the number of hop count for 
selected LSP will lower the throughput performance. Similar 
to delay, throughput is also measured via the analysis tool in 
GNS3’s Wireshark. 

Delay and throughput performance parameters are chosen 
for benchmarking purposes. This is because one of the 
problem statements is that the shortest path in the network will 
not provide the best QoS especially when the network 
resources are limited. The delay comparison between ML-RA 
and RIPv2 will show which RA performs the best with 

different traffic and network conditions. The delay 
performance parameter is also helpful to evaluate the accuracy 
of the ML-RA to predict the fastest route in the network. 

TABLE V.  SIMULATION DETAILS FOR ML-RA PERFORMANCE STUDY 

Source 

router 

Destination 

router 
Main route (LSP) 

R6 R2 LSP 4.5 is congested and LSP 3 is closed 

R2 R5 LSP 6.1.2 is congested and LSP 3 is closed 

R10 R7 LSP 12.5.6.7 is congested and LSP 3 is closed 

R5 R3 LSP 3.4 is congested and LSP 6 is closed 

When the traffic reaches a receiver beyond the standard 
delay requirements, it is considered as packet loss. This shows 
that the delay parameter alone is sufficient to describe how the 
traffic is being forwarded in the network. Conversely, the 
throughput performance parameter is chosen to verify the 
capacity rate of the traffic to reach the destination. Having 
higher throughput proves that the route computed by the RA 
offers better quality for the incoming traffic. For the 
performance simulation, a total of four S2D pairs are chosen, 
which are R6 to R2, R2 to R5, R10 to R7, and R5 to R3 as 
summarized in Table V. 

The sample case studies the performance of ML-RA when 
the main route is congested, and one of the routes to reach the 
destination router is down. With that, for all the S2D pairs, 
there are only two routes available, which are the congested 
main route and ALT1. Based on the traffic and network 
conditions, the routes computed by ML-RA for R6 to R2, R2 
to R5, R10 to R7, and R5 to R3 are as shown in Table VI. The 
computed route for this case for all S2D pairs is the ALT1. 
The result is as expected where ML-RA accurately rerouted 
the traffic to the normal ALT1 as the main route is congested. 
As has been explained, since RIPv2 always chooses the 
shortest path regardless of network congestion, RIPv2 still 
computed the main route for routing. In terms of delay, it is 
expected that as the load increases, the delay also increases 
due to a higher number of packets being forwarded to the 
destination. The delay comparisons between ML-RA and 
RIPv2 for all S2D pairs are shown in Fig. 6. The lower the 
delay of the ML-RA compared to RIPv2, the better the 
performance of the algorithm. 

In Fig. 6, the solid line represents the delay for the route 
computed by ML-RA, while the dotted line represents the 
delay for RIPv2. The delay for both routes computed by ML-
RA and RIPv2 increase as the offered load for all traffic 
increases from 20% to 100%.  However, the delay for ML-RA 
is lower compared to RIPv2 for all traffic types. This is 
because ML-RA rerouted the traffic immediately via the 
ALT1. The results prove that, although the ALT1 comprises 
of a higher number of hops, the delays are lower compared to 
the congested main route with a lesser number of hops. For 
instance, the delay for R6 to R2, as shown in Fig. 6(a), even 
though the main route comprises of only one hop, but since 
the main route is congested, the delay for ALT1 which 
comprises of three hops contributes to a lower delay. 
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Fig. 6. Delay for the sample case. 

TABLE VI.  SIMULATION DETAILS FOR ML-RA PERFORMANCE STUDY 

Source 

router 
Destination router Predicted fastest route by ML-RA 

R6 R2 LSP 13.12.11.10 

R2 R5 LSP 6.7.8.9 

R10 R7 LSP 12.11.10.6.7 

R5 R3 LSP 3.13.12 

However, from 20% to 40% offered load for R6 to R2 S2D 
pair, the delay for BE traffic for both ML-RA and RIPv2 are 
almost in-line with each other as shown in Fig. 6(a). This is 
because the ratio of the number of hops between ALT1 and 
main route is almost triple, and the traffic from 20% to 40% 
offered load is too small to notice any delay difference. 
Nonetheless, beyond 40% offered load, the delay difference is 
more significant. At 100% offered load, the delay for BE 
traffic reduces from 1.2974 s to 0.6228 s for the route 
computed by ML-RA. While in Fig. 6(b) to 6(d), even though 
the difference in terms of number of hops between the main 
route and ALT1 is only by one additional hop, there is also a 
significant delay difference between the route computed by 
ML-RA and RIPv2. Since RIPv2 only computes the shortest 
available path in the network, the main route is chosen even 
though it will result in a higher delay. The delay comparison 
between ML-RA and RIPv2 for EF traffic for all pairs is not 
as significant as AF and BE traffic. This is because the data 
size and data rate for EF traffic are smaller compared to AF 
and BE.  

The throughput is shown in Fig. 7. As opposed to delay, 
the higher the throughput offered by the ML-RA compared to 
RIPv2, the better the performance of the algorithm. Since the 
design parameters for the traffic is set at 20:40:40 traffic 
mixture ratio for EF, AF, and BE traffic, respectively, both AF 
and BE should theoretically have the same amount of 
throughput. However, due to the simulators’ computation 
load, slight throughput fluctuation is expected. The throughput 
for all four S2D pairs shows a similar trend, which increases 
with increasing offered load from 20% to 100% for all traffic. 
However, since ML-RA successfully rerouted the traffic to the 
ALT1 for all four pairs, the throughput offered by the routes 
computed by ML-RA is higher compared to RIPv2. 

For R6 to R2 S2D, the throughput for AF and BE traffic is 
almost in-line to each other from 20% to 60% offered load, as 
shown in Fig. 7. This is because the delay differences for both 
ML-RA and RIPv2 are not significant enough to produce a 
higher throughput difference.  While for the rest of the S2D 
pairs where the number of hops difference between the 
congested main route and ALT1 is just addition by one, the 
delay difference between ML-RA and RIPv2 is even more 
significant which correlates to higher throughput difference. 

The throughput and delay improvements for all S2D pairs 
are as shown in Table VII. In terms of throughput, the 
improvements for EF, AF, and BE traffic are up to 75.0%, 
57.1%, and 57.1%, respectively. While in terms of delay, the 
improvements are up to 50.0%, 44.4%, and 44.4%, 
respectively. The results prove the superiority of ML-RA to 
predict and compute the fastest route in the network. For all 
S2D pairs, ML-RA learned from historical data that for this 
network condition, the fastest route would be ALT1. As a 
result, ML-RA intelligently computes ALT1 as the preferred 
route in the future when given the similar network condition. 

From the results, the ML-RA is proven to be able to 
predict the route with the lowest delay and highest throughput, 
outperforming the RIPv2. ML-RA avoided the closed and 
congested routes and accurately computed the other faster 
alternative routes. Even when all routes are congested, ML-
RA accurately predicts the fastest route in the network. Even 
though the route computed by ML-RA is the same as RIPv2, 
the goal of predicting the fastest path is met and maintained. 
Although only four S2D pairs are considered, the main and 
alternative routes cover the entire network, and almost all the 
LSRs in the network are involved.  Thus, the ML-RA is 
expected to perform similarly for other S2D pairs. 

 

Fig. 7. Throughput for the sample case. 

TABLE VII.  THROUGHPUT AND DELAY IMPROVEMENT BY ML-RA 

Source Destination 

Delay improvement 

(%) 

Throughput 

improvement (%) 

EF AF BE EF AF BE 

R6 R2 50.0 44.4 44.4 33.3 51.3 52.0 

R2 R5 42.8 33.3 33.6 75.0 50.0 50.0 

R10 R7 27.7 36.3 36.3 38.4 57.1 57.1 

R5 R3 44.4 33.3 33.3 22.2 50.0 50.0 
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B. Limitations and Future Work of the Hybrid ML-IDS and 

ML-RA System 

From the performance evaluations of the proposed ML-
IDS and ML-RA, the system shows 100% accuracy in 
predicting the fastest route, as well as shows better 
performance against the RIPv2 in terms of delay and 
throughput. Despite the great performance of the proposed 
system, there may be several limitations that can be further 
improved in future research. For example, the proposed 
system relies on simulation data generated in GNS3 for 
dataset development. Note that the dataset was constructed 
using EF, AF, and BE traffic following the standard of VoIP, 
CCTV, and file transfers. However, this dataset may not 
accurately reflect the traffic patterns and network behavior of 
real-world environments. Thus, it may be advantageous to 
validate the performance of the system with real-world traffic 
data to confirm its practicality and effectiveness. Additional 
research on the influence of the parameters for the dataset on 
the performance of the system may also be investigated. The 
system’s performance could also be assessed against different 
datasets in addition to evaluating its performance and 
scalability on larger and more complicated networks. 
Moreover, other ML techniques such as deep learning or 
reinforcement learning could be integrated to improve the 
accuracy and resilience of the proposed system. It is also 
advantageous to validate with real-world traffic data to 
confirm its practicality and effectiveness. Finally, the 
proposed system’s implementation in a real-world 
environment could be performed to evaluate its applicability 
and feasibility in practical scenarios. 

V. CONCLUSION 

This study develops a hybrid ML-IDS and ML-RA 
algorithm to enhance the MPLS network’s resiliency and 
improve traffic QoS. The proposed ML-IDS is a 
classification-based ML algorithm that learns the traffic 
pattern at the ingress router. Based on historical data, ML-IDS 
predicts and classifies the incoming traffic as normal or attack. 
The predicted attack traffic will be denied access to the 
network domain and discarded. While the 
predicted normal traffic will be queued according to their 
priority.  This study prioritizes EF, AF, and BE traffic, which 
correspond to VoIP, CCTV, and data transfers, all having 
unique delay and bandwidth requirements. The GNS3 network 
setup is used for simulation and data collection. In particular, 
the LOIC traffic generator is used in the setup to simulate a 
DoS attack, while the OSTINATO traffic generator is used to 
generate the EF, AF, and BE traffic. Another OSTINATO 
traffic generator is used to burst background traffic in the 
network to simulate network congestion. The data in the 
network is collected as datasets. The output label for the ML-
IDS and ML-RA datasets is the actual traffic type 
(normal or attack) and the actual delay for all available routes 
for all S2D pairs. The datasets are fed into MATLAB, which 
is then used to train classifiers for the ML-IDS algorithm and 
regressions for the ML-RA algorithm. For the performance 
evaluation, the ML-RA algorithm is compared to RIPv2. From 
the performance evaluations, the ML-RA shows 100% 
accuracy in predicting the fastest route in the network. During 
network congestion, the proposed ML outperforms the RIPv2 

in terms of delay and throughput on average by 57.61% and 
46.57%, respectively. 
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