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Abstract—In recent years, deep learning has been 

increasingly used to the detection of pests and diseases. 

Unfortunately, deep neural networks are particularly vulnerable 

when attacked by adversarial examples. Hence it is vital to 

explore the creation of intensely aggressive adversarial examples 

to increase neural network robustness. This paper proposes a 

wavelet transform and histogram equalization-based adversarial 

attack algorithm: WT-MI-FGSM. In order to verify the 

performance of the WT-MI-FGSM, we propose a plant pests and 

diseases identification method based on the coordinate attention 

mechanism and CondenseNetV2: CL-CondenseNetV2. The 

accuracy of CL- CondenseNetV2 on the PlantVillage dataset is 

99.45%, which indicates that the improved CondenseNetV2 

model has a more significant classification performance. In 

adversarial sample experiments using WT-MI-FGSM and CL-

CondenseNetV2, experimental results show that when CL-

CondenseNetV2 is attacked by the adversarial algorithm WT-

MI-FGSM, the error rate reaches 89.8%, with a higher attack 

success rate than existing adversarial attack algorithms. In 

addition, the accuracy of CL-CondenseNetV2 is improved to 

99.71% by adding the adversarial samples generated by WT-MI-

FGSM to the training set and performing adversarial training. 

The experiments demonstrate that the adversarial examples 

caused by WT-MI-FGSM can improve the model's performance. 

Keywords—Adversarial examples; FGSM; plants diseases and 

pests; attention mechanism; CondenseNetV2 

I. INTRODUCTION 

A country's agricultural sector is vital to its economic 
growth, with the potential to both stimulate and directly impact 
the national economy's development or stagnation. The 
stability of agriculture is intrinsically linked to social stability 
and national self-sufficiency; therefore, it is crucial to achieve 
the steady and sustainable development of agriculture. To 
achieve sustainable development in the agricultural field, we 
must first perform well in the prevention and control of crop 
diseases and insect pests, guarantee that the prevention and 
control measures are scientific and safe, successfully control 
diseases and insect pests, and promote eco-logical development 
in the agricultural field in a benevolent and sustainable 
direction [1]. 

Since the advent of deep learning, deep learning-based 
picture identification has been a popular topic in the image 
recognition community, finding widespread application in 
areas such as facial recognition, transportation, and healthcare. 
The most traditional network models are GoogLeNet, VggNet, 
and ResNet [2]-[4]. In recent years, the agricultural sector has 
also made extensive use of deep learning. Progress has been 

made in the identification of plant diseases and pests as a result 
of the extensive research undertaken by scientists. Based on the 
AlexNet network, LV and others use batch normalization, 
PRelu activation function, etc. to improve network 
convergence and avoid over-fitting. They also combine 
extended convolution and multi-scale convolution to improve 
network feature extraction ability, demonstrating that the 
algorithm of feature enhancement can effectively improve the 
network's feature extraction ability and recognition accuracy 
[5]. Pandian et al. utilized image enhancement technology 
based on image processing and deep learning to improve the 
crop disease data set. Additionally, they expanded and 
improved the data set with the antagonistic generating network 
and neural pattern transfer using migration learning 
technology. Using this method, the experimental findings show 
that the improved data set can reach higher precision [6]. 
Durmus used tomato photos from the PlantVillage dataset to 
train numerous deep neural networks, and the accuracy of 
networks such as SqueezeNet significantly improved due to 
this [7-8]. Using plant images in the visible spectrum, Lily 
proposed a straightforward and reliable method for diagnosing 
plant diseases [9]. In his research work, Kaur proposed the 
DAG-ResNet model and utilized it to discover a number of 
tomato illnesses [10]. The accuracy was 98.8%. ALVARE et 
al. integrate FasterR-CNN, SSD, RFCN, VggNet, ResNet, and 
other feature extractors to obtain a notable recognition and 
classification effect [11]. Wenliang Tang used conditional 
convolution, channel attention module, and knowledge 
distillation to improve the model [12]. The accuracy was 
97.6%. Agriculture diseases and pests have a high degree of 
similarity, a more dispersed and intricate distribution, a greater 
difficulty in classification, and a greater need for classification 
networks. Based on the classic CondenseNetV2 model, this 
work introduces CL- CondenseNetV2, a method for identifying 
agriculture diseases and pests that combines the coordinate 
attention mechanism and CondenseNetV2. The model 
incorporates a flexible and lightweight coordinate attention 
mechanism and embeds the position information into the 
channel attention in order to detect and identify the target area 
with greater precision. As a result of these enhancements, the 
CL- CondenseNetV2 model now has an identification accuracy 
of 99.45%, allowing for highly precise detection of agricultural 
diseases and pests. 

Although deep neural networks perform well in most 
classification tasks, they are vulnerable when faced with 
adversarial samples. Adversarial samples are a class of samples 
formed by intentionally adding subtle perturbations to a 
dataset, which can induce the network model to misclassify 
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and threaten the model's safety. However, on the other hand, 
for model designers, adversarial samples can be used as an 
effective tool to evaluate the security and robustness of the 
model. They can effectively improve the correctness and 
security of the model classification through adversarial 
training. Adversarial attack algorithms can be classified into 
two categories according to the mainstream classification 
methods: black-box attack and white-box attack, and white-box 
attack algorithms include FGSM, DeepFool, C&W, etc. [13]-
[15]. Black-box attack algorithms currently have single-pixel 
and local search attack algorithms, etc. [16]. 

However, there are fewer examples of improving the 
classification success of the model by adding adversarial 
examples for adversarial training. This paper proposes a new 
DNN called CL-CondenseNetV2 that adds a coordinate 
attention module to CondenseNetV2. A significant number of 
comparative studies have shown that our network model 
performs well. In addition, this paper introduces wavelet 
variation and histogram equalization in the image domain 
based on the MI-FGSM algorithm to propose a new adversarial 
attack algorithm WT-MI-FGSM. The adversarial examples 
generated by this algorithm can be used to train CL- 
CondenseNetV2.   Training with adversarial examples will 
help us to improve the accuracy of the classification of plant 
diseases and the security and robustness of the model. 

II. ADVERSARIAL ATTACK ALGORITHM 

FGSM, a white-box attack technique built on the 
production of adversarial example gradients, is the most widely 
used adversarial assault algorithm today. By iteratively 
computing the gradient, Alexey et al introduced I-FGSM, 
which significantly enhances the fit of the adversarial sample 
to the model [17]. After introducing the momentum factor 
based on I-FGSM, Dong et al suggested the MI-FGSM 
approach, which greatly increased the success rate of black-box 
assaults and successfully enhanced the migrability of the 
generated adversarial samples [18]. The MI-FGSM algorithm 
function is shown in (1) and (2). 
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In the formula, ()sign  is a symbolic function, and 
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 is the adversarial example generated by 

iterating 1t   times. t  represents the number of iterations. The 

step length can be obtained by T  .It ensures that the 

adversarial examples generated are in the neighborhood of x

.Where   is the decay factor of the momentum term, and 
1tg 

 

denotes the cumulative gradient iteration 1t   times. The role 

of the Clip  function is to constrain the adversarial examples 

within the  -neighborhood of the original image x  to satisfy 

the Infinite norm constraint. 

In this study, wavelet transform and histogram equalization 
are successfully integrated with MI-FGSM to create the WT-
MI-FGSM, a more effective adversarial attack algorithm. The 
overall flow of WT-MI-FGSM is shown in Fig. 1 below. By 
means of an adversarial attack algorithm, the original example 
is utilized to produce an adversarial example. First, the wavelet 
transform and histogram equalization are performed on the 
origin example to obtain a 224×224×3 image. The loss 
function is then computed using the acquired images as input 
into the model. Iteratively updating the example along the 
gradient of the loss function is followed by the addition of 
perturbations. If the requirements are unmet, the iteration will 
continue until it succeeds. Finally, output confrontational 
examples. The WT-MI-FGSM algorithm function is shown in 
(3). Where D  is the image enhancement function. It includes 
wavelet transform and histogram equalization. 
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Fig. 1. WT-MI-FGSM attack concrete steps. 

III. CL-CONDENSENETV2 MODEL DESIGN 

A. CondenseNetV2 

Huang Gao's team proposed DenseNet and CondenseNet in 
2017, and DenseNet establishes a dense connection mechanism 
that allows each layer in the network to be directly connected 
to its preceding layer in the same block to achieve feature 
reuse, which enables DenseNet to reduce the total number of 
parameters and improve efficiency significantly [19]. 
CondenseNet introduces a full-dense connection and pruning 
mechanism based on DenseNet [20]. The full-dense connection 
enables the network to establish a dense connection between 
different blocks while combining with average pooling to 
achieve stitching between feature maps of various sizes, thus 
gaining more robust feature reuse. CondenseNet can achieve 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 4, 2023 

110 | P a g e  

www.ijacsa.thesai.org 

almost the same accuracy as DenseNet with just 1/10 the 
training time thanks to the pruning mechanism, which enables 
the network to prune the irrelevant weights during the training 
phase and reduce network redundancy. 

Nevertheless, features in DenseNet and CondenseNet will 
remain the same once they are formed, drastically ignoring the 
potential value of some features. CondenseNetV2, a powerful 
yet lightweight neural network based on CondenseNet, was 
suggested by Gao Huang in 2021 [21]. CondenseNetV2 
introduces a sparse feature reactivation mechanism that enables 
the network to learn to choose a few potentially redundant 
features. The efficiency of the deep network's feature reuse is 
increased by concurrently cropping and updating these 
redundant features to make them better suited to feature 
learning. CondenseNetV2 achieves better performance than 
DenseNet and CondenseNet at a low computational cost, and 
achieves excellent performance on image classification and 
detection tasks. Table I shows the CondenseNetV2 network 
structure. 

TABLE I. CONDENSENETV2 NETWORK STRUCTURE 

Layers Input ConenseNetV2 

Convolution 224 224 3 3 Conv , stride 2 

Dense Block (1) 112 112 

1 1

3 3 4

 

L Conv

G Conv

SFR module

  
 
   

  

(k=8) 

Transition Layer (1) 112 112 2 2  average pool, stride2 

Dense Block (2) 56 56 

1 1

3 3 6

 

L Conv

G Conv

SFR module

  
 
   

  

 (k=16) 

Transition Layer (2) 56 56 2 2  average pool, stride2 

Dense Block (3) 28 28 

1 1

3 3 8

 

L Conv

G Conv

SFR module

  
 
   

  

 (k=32) 

Transition Layer (3) 28 28 2 2  average pool, stride2 

Dense Block (4) 14 14  

1 1

3 3 10

 

L Conv

G Conv

SFR module

  
 
   

  

 (k=64) 

Transition Layer (4) 14 14  2 2 average pool, stride2 

Dense Block (5) 7 7 

1 1

3 3 8

 

L Conv

G Conv

SFR module

  
 
   

  

 (k=128) 

Classification 
Layer 

1 1 

7 7 global average pool 

1000D fully-connected, 

SoftMax 

B. Introduction of Coordinate Attention Mechanism 

Attention Mechanism is a unique structure within a 
machine learning model that is used to automatically calculate 
and learn the contribution of input data to output data. 
Common modules for attention mechanisms include SE, 
CBAM, etc. SE is only concerned with the weighting of 
channels [22]. Despite the fact that CBAM simultaneously 
considers the weight allocation of channels and spaces, 
redundant convolution pooling operations result in the loss of 

some useful information [23]. Coordinate Attention (CA) 
mechanism is an attention mechanism that can embed position 
information into channel attention introduced in this paper 
[24]. In comparison to SE, CBAM, and other attention 
mechanisms, this attention mechanism is not only capable of 
capturing cross-channel information, but also direction 
perception and position perception information, in addition to 
being lightweight and flexible. Coordinate attention operations 
consist of coordinate information embedding and coordinate 
attention generation. Coordinate attention module is shown in 
Fig. 2. 

 

Fig. 2. Coordinate attention module. 

1) Coordinate information embedding: Channel attention 

frequently employs two-dimensional global pooling to encode 

global spatial information, but this operation typically makes 

it challenging to save target location data. In order to prevent 

this, the Coordinate attention mechanism decomposes the two-

dimensional pooling of channel attention into two one-

dimensional feature coding processes and collects features 

along two spatial directions. Equation (4) and formula (5) 

represent the horizontal and vertical coordinate coding 

operations of input x. 
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Where 
cx  denotes the c  th channel component of the input 

data, h  and w  respectively reflect the data's height and width. 

These two coding operations allow the attention module to 
capture the long-term dependency along one spatial direction 
and to store precise location information along the other spatial 
direction, thereby assisting the network in more precisely 
identifying the target information of pests and diseases on 
crops. 

2) Coordinate attention generation: In order to make full 

use of the global receptive field obtained through the 

embedding operation of coordinate information and encode 

the accurate position information, first embed the coordinate 

information into the obtained features for concatenate 

operation, and then send them into the convolution module 

with the shared convolution core of 1 1 , reduce its dimension 

to the original C r , and then send the feature map 
1F  after 
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batch normalization into the nonlinear activation function to 

obtain the feature map f  in the form of  1 W H C r   . 

Equation (6) is shown below. 

  1 ,h wf F z z      (6) 

Where  ,   is the splicing operation along the spatial 

dimension,   is the nonlinear activation function,
1F  is the 

convolution change function, and f  is the intermediate feature 

map that encodes the spatial information in the horizontal and 
vertical directions. 

After the above operations, f  is decomposed into hf  and 
wf  along the spatial dimension, and 1 1  convolution and 

nonlinear activation operations are performed on them to 

obtain the attention weights hg  and wg  of the feature map in 

the horizontal and vertical coordinate directions respectively. 
Equation (7) and (8) are as follows. 

  h h

hg F f  (7) 

  w w

wg F f  (8) 

Where   is the sigmoid activation function, 
hF  and 

wF  

represent the convolution change function of the characteristic 

components hf  and wf , respectively. 

Finally, expand hg  and wg , calculate the coordinate 

attention mask by matrix multiplication, and act on the input to 
get the output Y  of the attention module: 

       , , h w

c c c cy i j x i j g i g j    (9) 

C. CL-CondenseNetV2 

The above coordinate attention is added to the 
CondenseNetV2 network to obtain the basic structure of CL-
CondenseNetV2 as shown in Fig. 3. In each layer of the 
proposed network, LGC is first used to select important 
features for feature learning, and after obtaining new features, 
the SFR module is used to reactivate the previous features. On 
this basis, we added the coordinate attention module. The 
coordinate attention module improves the recognition accuracy 
of the model by making the network model lightweight while 
enabling the model to locate and identify the target region 
more accurately. Since plant disease features are distributed in 
different positions on the front of leaves, the classification 
network needs to accurately pay attention to the spatial location 
of disease features. Therefore, coordinate attention can 
significantly improve the recognition accuracy of plant 
diseases 

 

Fig. 3. CL-CondenseNetV2 structure. 

IV. PREPARATION FOR THE EXPERIMENT 

A. Experimental Environment 

The experiment's environment setting is as follows: The 
graphics card is an NVIDIA GeForce RTX 3060, and the 
Windows 64-bit system CPU is an 8-core, 16-thread AMD 
Rayon R7-5800H processor. The memory is DDR4 16G, and 
the hard drive storage is 512G SSD. The software environment 
consists of Anaconda 4.10.3 and CUDA 11.6. The model is 
built and trained using the Python programming language and 
PyTorch framework. 

B. Parameter Setting 

In the model training parameter settings, the training batch 
size is set to 16, the test batch size to 8, and the number of 
iterations to 50 rounds (Epochs). The employed optimizer is 
SGD (Stochastic Gradient Descent) [25]. The rate of learning 
is set at 0.001. Adopting the learning rate exponential decay 
approach. Gamma has been adjusted to 0.9. Loss is represented 
by the SoftMax cross-entropy loss function. The definition of 
the function is: 

1 1

lg
n C

ki ki

k i

L t y
 

   (10) 

Where, n  is the pixel of the picture; 
kit  is the probability 

that pixel k  belongs to the category i ; 
kiy  is the probability 

of predicting the pixel k  as the category i  for the 

classification network. 
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C. Data Set 

The data set utilized in this experiment is PlantVillage, 
which consists of tens of thousands of photos of healthy and 
diseased plants annotated by plant pathologists and is available 
for free download at www.PlantVillage.org. All photographs in 
the PlantVillage database were captured at experimental 
research stations affiliated with American institutions 
(Pennsylvania, Florida, Cornell, etc.). The data set consists of 
54303 health and disease images split into 38 categories, and it 
is still growing [26]. The image and caption of several plants 
pest data sets are depicted in Fig. 4. 

 

Fig. 4. Examples of images and labels of some crop pest data sets. 

D. Data Preprocessing 

By using a data enhancement approach, this work also 
increases the dataset. First, the data image is separated into a 
training set and a test set with an 8:2 ratio, and then the training 
set's data image is expanded to 81454 images to serve as the 
expanded training set. The resolution of the data image is 
finally rebuilt to 256×256 resolution, and the image is then 
standardized using the mean and standard deviation. Not only 
can data preparation imitate the actual agricultural setting and 
increase the diversity of training samples, but it can also 
improve the model's robustness and prevent overfitting. 

E. Transfer Learning 

In the realm of artificial intelligence, there exists a method 
known as "transfer learning". First, acquire knowledge in the 
source domain, and then apply it to the target domain, so that 
the target domain can achieve superior learning outcomes [27]. 
We can use this technique to reduce the number of training 
samples required by the model, eliminate the time-consuming 
and inefficient "ab initio" training process, accelerate network 
model training, and improve their overall learning efficiency. It 
has found widespread application in the field of image 
classification. 

The improved model employs the model fine-tuned transfer 
learning method, employs the CondenseNetV2 pre-training 
model trained on the ImageNet large open dataset, and 
combines the transfer learning fine-tuning method to apply its 
parameters to the CL-CondenseNetV2 model, and uses it to 
identify plants diseases and pests. 

F. Performance Metrics 

For each of the experiments examined in this study, the 
evaluation metrics Accuracy, Precision, Recall, and Specificity 
are used to assess how well the network performed in 
identifying the test pictures. The evaluation metrics are 
calculated using the following equation. 

TP TN
Accuracy

TP TN FP FN




  
 (11) 

TP
Precision

TP FP



 (12) 

TP
Recall

TP FN



 (13) 

TN
Specificity

TN FP



 (14) 

Where TP  is the true case, FP  is the false positive case, 
FN  is the false negative case, and TN  is the true negative 

case. Accuracy is the percentage of samples that the model 
properly recognizes and categorizes to the total samples, which 
is often used to evaluate the overall accuracy of the model. 
Precision is the ratio of true cases to the number of positive 
cases classified by the model; Recall is the ratio of true cases to 
all positive cases; Specificity is the ratio of true negative cases 
to all negative cases. 

V. PREPARATION FOR THE EXPERIMENT OF 

CLASSIFICATION 

A. Experiment of Classification 

1) Comparison of experimental effects between CL-

CondenseNetV2 and CondenseNetV2: The original 

CondenseNetV2 and CL-CondenseNetV2 are trained on the 

extended dataset to evaluate how well the improved approach 

of this model works. Fig. 5 and 6 depict a comparison of the 

accuracy curve and loss value curve of the original network 

and the modified network, while Table II depicts a comparison 

of the accuracy and loss value results. 

 

Fig. 5. Comparison of accuracy curves between CL- CondenseNetV2 and 

CondenseNetV2. 
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Fig. 6. Comparison of loss curve between CondenseNetV2 and CL-

CondenseNetV2. 

TABLE II. ACCURACY AND LOSS OF CL- CONDENSENETV2 AND 

CONDENSENETV2 

Algorithms 
Acc 

(%) 

Pre 

(%) 

Recall 

(%) 

Spe 

(%) 

Params 

(M) 
Loss 

CL-

CondenseNetV2 
99.45 98.85 98.17 99.89 6.1 0.0259 

CondenseNetV2 99.07 96.69 97.03 99.22 6.1 0.0389 

As can be shown in Fig. 5 and 6, the CL-CondenseNetV2 
suggested in this study is superior than the CondenseNetV2 
network model when it comes to the classification and 
recognition of pictures, as well as the recognition of crop 
diseases and insect pests. The accuracy and speed of CL-
CondenseNetV2's accuracy convergence are faster than those 
of the original network, and the loss value curve is more 
consistently steady. According to Table I, the recognition rate 
of the original network is 99.07 percent, whereas the upgraded 
network model enhances the recognition rate of crop diseases 
and pests by 0.38 percent, demonstrating the viability of the 
improved model CL-CondenseNetV2. 

2) Comparison of experimental effects between CL- 

CondenseNetV2 and other models: To further validate the 

benefits of the CL-CondenseNetV2 network model, employ 

three traditional networks, Vgg16, ResNet18, and ResNet50, 

to train on the improved data set and conduct comparative 

experiments with CL-CondenseNetV2 in the same 

experimental environment, using the same training parameters 

and training timeframes. Fig. 7 and 8 depict a comparison 

between the accuracy curve and the loss value curve. 

Fig. 7 demonstrates that the CL-CondenseNetV2 network 
model maintains certain advantages. CL-CondenseNetV2's 
accuracy curve converges more rapidly during training, is more 
stable, and can essentially maintain its accuracy advantage over 
Vgg16, ResNet18, and ResNet50. 

Fig. 8 shows that the CondenseNetV2 loss value curve has 
fallen greatly and rapidly, and that the loss value curve is more 
steady than those of Vgg16, ResNet18, and ResNet50, 
indicating that the network is more robust. This demonstrates 
that the CL-CondenseNetV2 network model is preferable. 
Table III displays a comparison of the experimental outcomes 
of each model. 

 

Fig. 7. Comparison of accuracy curves of each model. 

 

Fig. 8. Comparison of loss curve of each model. 

TABLE III. ACCURACY AND LOSS OF EACH MODEL 

Algorithms 
Acc 

(%) 

Pre 

(%) 

Recall 

(%) 

Spe 

(%) 

Params 

(M) 
Loss 

CL-

CondenseNetV2 
99.45 98.85 98.17 99.89 6.1 0.0259 

ResNet18 98.35 96.48 93.57 99.38 11.2 0.0573 

ResNet50 98.37 95.37 95.52 99.85 23.5 0.0527 

Vgg16 98.21 96.18 96.65 99.34 134.4 0.0596 

Table III shows that under the same experimental 
conditions, CL- CondenseNetV2 achieved the highest accuracy 
of 99.45, the lowest loss value of 0.0259, and the least 
parameters of 6.1M, which were superior to Vgg16, ResNet18, 
and ResNet50. The accuracy of CL-CondenseNetV2 is 1.08 
percentage points higher than the highest of the remaining deep 

learning models, ResNet50̆while the number of parameters 

is 17.4M less than that of ResNet50. When compared to 
Vgg16, whose parameters is as high as 134.4M, the reductions 
are even more significant. CL-CondenseNetV2 outperforms 
other methods when taking into consideration both the network 
model's parameters and the recognition accuracy, indicating 
that the enhanced model may be put to better use in the 
detection of plant diseases and pests. 
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B. Experiment of Adversarial Example 

1) Preparation for the experiment: To fairly validate the 

performance of the WT-MI-FGSM proposed in this paper, the 

experimental preparation for the adversarial attack 

experiments is approximately the same as when a model such 

as CL-CondenseNetV2 is trained. The experiments use the 

PlantVillage dataset. This experiment utilized smaller 

perturbations to make them more difficult to identify rather 

than setting the hyperparameters as the norm in the 

momentum method. Using small perturbations can increase 

the attack algorithm's success rate when compared to other 

adversarial attack methods. The maximum perturbation ε = 

0.3; the number of iterations T = 10; the step size α = 0.03; 

and the fading factor µ = 1.0. Controlled studies employing 

the white-box attack techniques of I-FGSM, MI-FGSM, and 

FGSM, respectively, were also carried out to further confirm 

the efficacy of the performance of WT-MI-FGSM. 

2) Experimental results: This experiment contrasts four 

white-box adversarial attack algorithms—WT-MI-FGSM, I-

FGSM, MI-FGSM, and FGSM—attack Vgg16, ResNet50, 

ResNet18, CondenseNetV2, and CL- CondenseNetV2, and 

generates both adversarial and original cases, as illustrated in 

Fig. 9. According to the experimental findings, all five models 

are susceptible to adversarial assaults, and all four of these 

attacks have a high success rate. The attacked models' 

recognition accuracy was lowered by roughly 91%. It is 

important to note that the differences between the original 

instances and the adversarial examples produced by the WT-

MI-FGSM given in this research are negligible and 

challenging for the human eye to detect. The adversarial 

examples and original examples generated by the experiment 

are shown in Fig. 9. 

 

Fig. 9. Adversarial examples generated by various algorithms. 

The recognition rate of each model reduces dramatically 
when attacked by the adversarial attack algorithm, as seen in 
Table IV. Vgg16 has the fastest drop when attacked by the 
WT-MI-FGSM algorithm proposed in this research, with a 
recognition rate of 0.6%, followed by ResNet18 and ResNet50, 

with a recognition rate of 2.8% and 3.1%. And closely 
followed by CondenseNetV2, with a recognition rate of 5.3%. 
CL-CondenseNetV2 still has the greatest recognition rate after 
receiving the attack, with 10.2%. In addition, Table IV 
compares the performance of WT-MI-FGSM with other 
traditional adversarial attack algorithms. The success 
percentages of FGSM, I-FGSM, and MI-FGSM after CL-
CondenseNetV2 received assaults from each algorithm are 
85.9%, 86.5%, and 87.3%, respectively. They are all less than 
89.8% of WT-MI-FGSM. WT-MI-FGSM outperforms MI-
FGSM, which has the highest attack success rate among classic 
attack algorithms, by 1.9%. It is observed that the proposed 
adversarial attack algorithm WT-MI-FGSM has the best 
performance in this paper. 

TABLE IV. ACCURACY AND LOSS OF EACH MODEL 

Algorith

ms 

ResNet

18 

ResNet

50 

Vgg1

6 

CondenseNet

V2 

CL- 

CondenseNet

V2 

FGSM 88.5% 88.2% 
92.1

% 
86.1% 85.9% 

I-FGSM 89.8% 89.3% 
92.4
% 

87.4% 86.5% 

MI-

FGSM 
91.2% 90.1% 

93.2

% 
89.1% 87.3% 

WT-MI-

FGSM 
97.2% 96.9% 

99.4

% 
94.7% 89.8% 

Adversarial examples can increase model accuracy and 
robustness. The adversarial examples generated by WT-MI-
FGSM are added to the training set, and the individual models 
are adversarial trained. Table V shows the accuracy of each 
model after training. CL-CondenseNetV2 has an accuracy of 
99.71%, which is 0.26% greater than without adversarial 
training. Other models' accuracy has also increased. The 
experimental results show that adversarial examples generated 
by WT-MI-FGSM can improve model performance. 

TABLE V. THE EXPERIMENT OF ADVERSARIAL TRAINING 

Models 
mAP 

(%) 

mAP(%) 

(Slow) 

mAP(%) 

(Medium) 
mAP(%)(Fast) 

CL-
CondenseNetV2 

99.71 99.07 99.97 99.57 

CondenseNetV2 99.38 97.29 99.88 97.93 

ResNet18 98.69 93.76 99.67 96.79 

ResNet50 98.73 95.75 99.85 95.78 

Vgg16 98.63 94.56 99.57 96.85 

C. Discussion 

To further verify that the CL- CondenseNetV2 model 
which is added to adversarial examples has a higher 
recognition rate of plant diseases and pests, it is compared with 
the DAG-ResNet model in literature [10] and the 
CondConvSENet detection model in literature [12]. The 
experimental results are shown in the Table VI. 
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TABLE VI. EXPERIMENTAL RESULTS 

Models Acc (%) 

CL-CondenseNetV2 

(Add adversarial examples) 
99.71 

CL-CondenseNetV2 99.45 

DAG-ResNet 98.80 

CondConvSENet 97.60 

As can be seen from the table, the recognition rate of the 
CL- CondenseNetV2 model is higher than that of other models, 
while the classification recognition rate of the CL- 
CondenseNetV2 model after adding counter samples is far 
higher than that of other models. The feasibility and necessity 
of adding adversarial samples in model training are illustrated. 

VI. CONCLUSIONS 

In this paper, the proposed CL-CondenseNetV2 based on 
CA attention and CondenseNetV2 effectively improves the 
network's attention to feature space and enhances the accuracy 
of identifying agricultural diseases and pests. CL-
CondenseNetV2 obtains 99.45% recognition accuracy in 
comparative studies with many models, outperforming classic 
CondenseNetV2, ResNet18, ResNet50, and Vgg16. This paper 
proposes a new adversarial attack algorithm WT-MI-FGSM 
based on MI-FGSM with the introduction of wavelet transform 
and histogram equalization. The comparison experiments use 
different adversarial attack algorithms against various models. 
The experimental results reveal that WT-MI-FGSM has a 
greater attack success rate than FGSM, I-FGSM, and MI-
FGSM when compared to conventional adversarial attack 
methods, and the perturbations are too small to be recognized 
by human eyes. Furthermore, the adversarial samples generated 
by WT-MI-FGSM are added to the training set. After 
adversarial training, the recognition rate of CL-
CondenseNetV2 may reach 99.71%, which is 0.26% higher 
than the accuracy rate without adversarial training, effectively 
increasing the model recognition's accuracy and robustness. 
Adversarial training is an efficient method for increasing the 
model's robustness. However, it has drawbacks such as 
sluggish training speed and overfitting when trained on tiny 
data sets. As a result, enhancing the performance of adversarial 
training will be the main focus of future study. 
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