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Abstract—Adaptability becomes important in developing 

metaheuristic algorithms, especially in tackling stagnation. 

Unfortunately, almost all metaheuristics are not equipped with 

an adaptive approach that makes them change their strategy 

when stagnation happens during iteration. Based on this 

consideration, a new metaheuristic, called an adaptive balance 

optimizer (ABO), is proposed in this paper. ABO's unique 

strategy focuses on exploitation when improvement happens and 

switching to exploration during stagnation. ABO also uses a 

balanced strategy between exploration and exploitation by 

performing two sequential searches, whatever circumstance it 

faces. These sequential searches consist of one guided search and 

one random search. Moreover, ABO also deploys both a strict 

acceptance approach and a non-strict acceptance approach. In 

this work, ABO is challenged to solve a set of 23 classic functions 

as a theoretical optimization problem and a portfolio 

optimization problem as the use case for the practical 

optimization problem. In portfolio optimization, ABO should 

optimize the quantity of ten stocks in the energy and mining 

sector listed in the IDX30 index. In this evaluation, ABO is 

competed with five other metaheuristics: marine predator 

algorithm (MPA), golden search optimizer (GSO), slime mold 

algorithm (SMA), northern goshawk optimizer (NGO), and 

zebra optimization algorithm (ZOA). The simulation result 

shows that ABO is better than MPA, GSO, SMA, NGO, and 

ZOA in solving 21, 18, 16, 11, and 8, respectively, in solving 23 

functions. Meanwhile, ABO becomes the third-best performer in 

solving the portfolio optimization problem. 

Keywords—Optimization; metaheuristic; adaptability; portfolio 

optimization; IDX30 

I. INTRODUCTION 

Metaheuristics is a popular method used in various 
optimization problems. In the cloud system, the genetic 
algorithm (GA) was modified in service caching and task 
offloading to improve resource efficiency and user satisfaction 
[1]. A deep convolutional neural network is enriched with a 
gorilla troop optimizer (GTO) to improve its capability in 
diagnosing skin cancer [2]. The whale optimization algorithm 
(WOA) was used to solve portfolio optimization based on the 
FTSE100 index [3]. An improved sparrow search algorithm 
(ISSA) was developed to improve the high-intensity focused 
ultrasound (HIFU) technology that is used for tumor treatment 
[4]. A combination of tabu search (TS) and simulated 
annealing (SA) is used to solve the coupled task scheduling of 
the heterogeneous multiple automated guided vehicles (AGV) 
in a manufacturing system [5]. Its popularity comes from two 

reasons. The first reason is that there are a huge number of 
metaheuristics already existing today. The second reason is that 
metaheuristic uses a stochastic approach to be efficient enough 
in solving large-scale optimization problems with limited 
computational resources [6]. Moreover, metaheuristic is also 
flexible enough to solve various kinds of problems by 
abstracting the problem. It focuses on the objectives and 
constraints of these problems. Then, it uses a trial-and-error 
mechanism to improve the solution through iteration. 
Meanwhile, this stochastic approach means that all 
metaheuristics do not guarantee finding the optimal global 
solution but only the high-quality or quasi-optimal one [7]. 
Besides, metaheuristic is also challenged with the optimal local 
issue. 

One important consideration in metaheuristics is 
adaptability. Adaptability is important, especially in facing the 
circumstance of whether the current search produces a better 
solution or not. Each metaheuristic was developed based on a 
strategy for finding a better solution. This new solution is then 
used for the next iteration for several purposes. In some 
metaheuristics, new solutions are used to choose the reference 
for the guided search. Some metaheuristics rank the solutions 
and then split them into several groups where each group 
performs its strategy. Some other metaheuristics rank the 
solutions to eliminate the worst solution or some worst 
solutions for the next iteration. 

Unfortunately, almost all metaheuristics are not adaptive 
enough. Many metaheuristics do not care about the quality of 
the new solution relative to the previous solution. The new 
solution still replaces the current solution, although this new 
solution is not better than the existing solution. This 
mechanism can be found in many metaheuristics, such as grey 
wolf optimizer (GWO) [8], MPA [9], GSO [10], SMA [11], 
darts game optimizer (DGO) [12], butterfly optimization 
algorithm (BOA) [13], chameleon swarm algorithm (CSA) 
[14], tunicate swarm algorithm (TSA) [15], squirrel search 
optimizer (SSO) [16], coronavirus optimization algorithm 
(COVIDOA) [17], white shark optimizer (WSO) [18], 
stochastic paint optimizer (SPO) [19], and so on. In some 
metaheuristics, a strict-acceptance approach is applied. 
Through this approach, a new solution is accepted to replace 
the current solution only if it is better than the current one. This 
approach can be found in many latest metaheuristics, such as 
the pelican optimization algorithm (POA) [20], guided pelican 
algorithm (GPA) [21], total interaction algorithm (TIA) [22], 
three-on-three optimizer (TOTO) [23], average and 
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subtraction-based optimizer (ASBO) [24], northern goshawk 
optimizer (NGO) [25], zebra optimization algorithm (ZOA) 
[26], coati optimization algorithm (COA) [27], fennec fox 
optimization (FFO) [28], chef-based optimization algorithm 
(CBOA) [29], modified honey badger algorithm (MHBA) [30], 
flower pollination algorithm (FPA) [31], football game based 
optimizer (FBGO) [32], red fox optimization algorithm (RFO) 
[33], and so on. 

On the other hand, few metaheuristics are adaptive enough 
when it fails to improve. In KMA [34], the population size 
increases if stagnation occurs and decreases when 
improvement occurs. There is a static number of the increasing 
or decreasing population. The population size can increase 
until the maximum population size, while the population size 
can decrease until the minimum population size. In an artificial 
bee colony (ABC) [35], the bee performs a full random search 
after it fails to improve for certain periods. 

The other consideration is the use case used to evaluate the 
metaheuristic when it was first introduced. In general, all 
metaheuristics were tested by using theoretical optimization 
problems. This theoretical problem consists of a set of 
mathematical functions. The set of 23 classic functions has 
been widely used in the first introduction of many 
metaheuristics, such as in the first introduction of KMA [34]. 
Other functions are CEC 2015, CEC 2017, and so on. In some 
studies, the new metaheuristics were also challenged to solve 
practical problems. Some optimization problems in mechanical 
engineering are commonly used, such as pressure vessel design 
problems, speed reducer design problems, welded beam design 
problems, and tension-compression spring design problems. 
The power flow optimization problem in the energy sector is 
also a common use case. Unfortunately, a study that uses 
optimization problems in the financial sector is rare. 

Based on this consideration, especially on the adaptability 
and use case issues, this work is aimed to develop a new 
metaheuristic that is adaptive enough to tackle the stagnation 
problem. This stagnation can be detected, especially when the 
optimization process fails to improve the quality of the current 
solution during the iteration.  

The main scientific contributions presented in this work are 
described below: 

1) A new metaphor-free metaheuristic called as adaptive 

balance optimizer (ABO) is presented. 

2) This work presents the adaptive strategy used in ABO, 

especially in switching between exploration and exploitation. 

3) The performance of ABO is evaluated by implementing 

it to solve both theoretical optimization problem (a set of 23 

classic functions) and practical optimization problem (portfolio 

optimization problem). 

4) The performance of ABO is also competed with five 

other metaheuristics: MPA, SMA, GSO, NGO, and ZOA. 

5) The hyper parameter evaluation is performed to 

evaluate the performance of ABO due to the increase of 

maximum iteration and population size. 

The rest of this paper is organized as follows. The literature 
review regarding the latest of metaheuristics is performed in 

Section II. A detailed description of the adaptive balance 
optimizer consisting of its main concept, algorithm, and 
mathematical model is presented in Section III. The evaluation 
regarding the performance of ABO, especially in solving the 
set of 23 classic functions, the hyperparameter test, and the 
portfolio optimization problem, is presented in Section IV. The 
in-depth analysis of the simulation result, the drawback 
regarding the theory, limitations, and the algorithm complexity 
is discussed in Section V. Finally, the conclusion and the 
potential of future studies and development are summarized in 
Section VI. 

II. RELATED WORKS 

Adaptability is one important issue in the development of 
metaheuristics. Ironically, most of all, metaheuristics were 
developed without considering this issue. Many metaheuristics 
focus on developing strategies regarding the exploration and 
exploitation capability statically. It means most metaheuristics 
perform the same installed strategy, whether the improvement 
or stagnation happens. 

Many metaheuristics respond to the improvement or 
stagnation by determining whether the new solution will be 
accepted to replace the previous solution or not. Some 
metaheuristics deploy a strict acceptance approach, meaning 
that a new solution replaces the previous solution only if the 
improvement occurs. On the other hand, some other 
metaheuristics deploy a non-strict acceptance approach which 
means that a new solution will replace the previous solution 
despite the improvement of stagnation. One distinct approach 
is introduced by simulated annealing, which uses a stochastic 
acceptance approach. If the improvement occurs, the new 
solution will replace the previous one immediately. Otherwise, 
the new solution may replace the previous solution based on a 
stochastic calculation. Ironically, metaheuristics that use 
improvement or stagnation circumstance to decide which 
strategy will be performed in the next iteration is rare to find. 

Fortunately, some metaheuristics perform adaptive 
strategies in response to improvement or stagnation. KMA uses 
improvement or stagnation to determine the population size for 
the next iteration [34]. When the improvement occurs for two 
successive iterations, the population size decreases to reduce 
computational consumption. On the other hand, when 
stagnation occurs in two successive iterations, the population 
size increases to boost the exploration effort. However, the 
searches are still the same because whether the improvement or 
stagnation takes place, there are still three groups of agents 
where each group performs different searches. Meanwhile, an 
artificial bee colony (ABC) runs a different approach to make it 
adaptive. ABC generally performs neighborhood search and 
roulette wheel selection [35]. Meanwhile, after stagnation takes 
places for certain periods, full random search is performed 
without performing strict acceptance approach [35]. 

This adaptability issue is also not popular in the 
development of latest metaheuristics. Many metaheuristics, 
especially those that use a metaphor, focus on exploiting the 
mechanism of their metaphor as a novelty or contribution. 
Besides, many latest metaheuristics exploit their capability to 
outperform other metaheuristics as proof of their superiority. 
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TABLE I. SUMMARY OF SOME LATEST METAHEURISTICS 

No Metaheuristic Metaphor Adaptability 
Acceptance 

Approach 
Use Case 

1 MHBA [30] honey badger no strict power flow 

2 SPO [19] paint no non strict 
23 functions, CEC 2019, 52-bar planar truss structure, 120-
bar dome truss structure, 3-bay 15-story frame, 3-bay 24-

story frame 

3 KMA [34] komodo 
population size decreases when 
improvement occurs and 

increases when stagnation occurs 

non strict 23 functions 

4 COVIDOA [17] coronavirus no non strict 20 functions, CEC 2011 

5 SSO [16] squirrel no non strict power system 

6 MPA [9] 
marine 
predator 

no non strict 

30 functions, pressure vessel design, welded beam design, 

tension/compression spring design, operating fan schedule, 

building energy performance 

7 GWO [8] grey wolf no non strict 
29 functions, tension/compression spring design, welded 
beam design, pressure vessel design, optical buffer design 

8 BOA [13] butterfly no non strict 
30 functions, spring design, welded beam design, gear train 

design 

9 POA [20] pelican no strict 
23 functions, pressure vessel design, speed reducer design, 
welded beam design, tension/compression spring design 

10 TIA [22] - no strict 23 functions 

11 ASBO [24] - no strict 23 functions 

12 NGO [25] 
northern 

goshawk 
no strict 

23 functions, CEC 2015, CEC 2019, pressure vessel design, 
welded beam design, tension/compression spring design, 

speed reducer design 

13 ZOA [26] zebra no strict 
23 functions, CEC 2017, tension/compression spring design, 
welded beam design, speed reducer design, pressure vessel 

design 

14 COA [27] coati no strict 

CEC 2011, CEC 2017, pressure vessel design, speed reducer 

design, welded beam design, tension/compression spring 
design 

15 RFO [33] red fox no strict 
22 functions, three bar truss, welded beam design, 

compression spring, pressure vessel, gear train 

16 this work - 
different strategy during 

improvement and stagnation 

strict and non-

strict 
23 functions, portfolio optimization problem 

The other issue concerns the practical use case chosen to 
evaluate new metaheuristics in their first introduction. 
Problems in engineering are so popular; whether mechanical, 
civil, or electrical problems. Meanwhile, studies regarding new 
metaheuristic that uses problems in finance, are rare to find.  

The summarized review of some latest metaheuristics is 
presented in Table I. There are 15 metaheuristics presented in 
Table I. Moreover, the proposed metaheuristic is placed in the 
last row to clarify its position among the existing 
metaheuristics. 

Table I indicates that almost all metaheuristics have not 
considered adaptability. These metaheuristics perform the same 
strategy from the beginning of the iteration until the maximum 
iteration is reached. Some metaheuristics perform a strict 
acceptance approach to avoid the optimization process going to 
the worse solution. In comparison, some others still accept a 
worse solution, hoping it may lead to a better solution. 
Moreover, the financial sector, still not popular, became a 
practical use case to evaluate a new metaheuristic when it was 
first introduced. 

Based on this circumstance, this work proposes a new 
metaheuristic that is adaptive enough when there is no 
improvement regarding the current solution. Moreover, the 

proposed metaheuristic gives equal treatment between two 
circumstances: improvement succeeds or fails. Besides, the 
proposed metaheuristic also performs both a strict acceptance 
approach and a non-strict acceptance approach. 

III. PROPOSED MODEL 

An adaptive balance optimizer (ABO) is designed as an 
adaptive metaheuristic that gives balance effort in intensifying 
the quality of the current solution and being adaptive when the 
improvement fails. Based on this objective, the reasoning for 
constructing ABO is as follows. ABO performs multiple 
searches, as many latest of metaheuristics also perform this 
approach. ABO performs guided search and random search 
explicitly. ABO performs different strategies when the 
improvement fails. ABO accommodates both a strict 
acceptance approach and a non-strict acceptance approach. 

Based on this reasoning, the main concept of ABO is 
dividing strategy based on the circumstance it faces. There are 
two possible circumstances. The first circumstance is that the 
improvement happens. In this first circumstance, the strategy 
intensifies the exploitation. The second circumstance is that 
stagnation takes place. In this second circumstance, the strategy 
is deploying exploration. There are two searches in every 
circumstance: guided search and random search. 
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There are two searches performed in the exploitation mode. 
The first search is a guided search toward and beyond the best 
global solution. This guided search aims to trace possible better 
solutions between the corresponding solution and the global 
best solution. Moreover, this guided search is also designed to 
trace possible better solutions beyond the global best solution. 
As known, the global best solution is assumed as the best 
solution so far. It means that the quality of the best global 
solution is better than that of the corresponding solution. The 
probability of finding a better solution will increase when the 
corresponding solution moves closer to the global best 
solution. Meanwhile, it is also more probable for the global 
best solution to find a better solution by avoiding a worse 
solution. The second search is the limited random search or 
neighborhood search. In general, as a random search, the 
corresponding solution traces a new solution around its current 
solution. However, the search space is reduced as the iteration 
increases. In the exploitation mode, the strict acceptance 
approach is deployed in a guided search toward the global best 
solution and the limited random search. The searches in the 
exploitation mode are illustrated in Fig. 1. 

 
(a) 

 
(b) 

Fig. 1. Searches when improvement is achieved: (a) guided search toward 

the global best solution, (b) limited neighborhood search. 

There are two searches performed in the exploration mode. 
The first search is the guided search relative to a randomly 
selected solution. This search can be viewed as a guided 
exploration. This search is included in the exploration because 
it is used a randomly selected solution among the population as 
the reference. The population is known to be spread within the 
search space, especially in the early iteration. Moving relative 
to one of these solutions means the corresponding solution 
traces any solution within the search space but based on a 
reference. If the reference quality is better than the quality of 
the corresponding solution, the corresponding solution moves 
toward the reference. Otherwise, the corresponding solution 
avoids this reference. The direction of this movement may 
push the corresponding solution closer to or away from the best 

global solution. This search is performed based on the 
reasoning that although the global best solution is the best 
solution, getting closer to the global best solution may push the 
corresponding solution to the local optimal entrapment. The 
second search is a full random search. As its name, the 
corresponding solution moves uniformly within the search 
space. This search can be viewed as a full exploration. In this 
exploration mode, the strict acceptance approach is not 
deployed. It means the new solution replaces the existing 
solution without considering the quality of this new solution. 
Moving to the worse solution may be better, which may lead to 
a better solution, rather than staying in the current solution 
without any improvement until the iteration ends. These two 
searches in the exploration mode are illustrated in Fig. 2. 

 
(a) 

 
(b) 

Fig. 2. Searches when improvement fails: (a) guided search relative to a 

randomly selected solution, (b) full random search. 

This „two-approach mechanism‟ needs a toggle to indicate 
whether the corresponding solution is in the exploitation or 
exploration mode. This toggle has two values updated at the 
end of every iteration. Suppose the corresponding solution fails 
to improve its quality after performing two sequential searches, 
whether, in the exploration or exploitation mode, the value of 
the toggle will be set so that exploration will be performed in 
the next iteration. Otherwise, the value of the toggle will be set 
so that exploitation will be performed in the next iteration. 

The concept of ABO is then formalized using algorithm 1. 
As a metaheuristic, ABO consists of two phases: initialization 
and iteration. Lines 2 to 5 represent the initialization phase, 
while lines 6 to 25 represent the iteration phase. In the 
initialization phase, only one loop runs for the entire 
population. Meanwhile, two loops run in the iteration phase. 
The outer loop runs from the first iteration to the maximum 
iteration. The inner loop runs for the entire population. Lines 9 
to 12 represent the exploitation mode, while lines 14 to 17 
represent the exploration mode. Lines 19 to 23 represent the 
toggle updating process. gs denotes the toggle value where 1 
indicates the exploitation while 0 indicates the exploration. 
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Algorithm 1: Adaptive balance optimizer 
1 begin 

2   for all s in S 

3     perform full random search using (1) 

4     update sb using (2) 

5   end 

6   for t = 1 to tm 

7     for all s in S 

8       if gs = 1 then 

9         perform first guided search using (3) 

10         update s using (2) and sb using (3) 

11         perform limited random search using (5) 

12         update s using (2) and sb using (3) 

13       else 

14         perform second guided search using (6) and (7) 

15         update sb using (3) 

16         perform full random search using (1) 

17         update sb using (3) 

18       end if 

19       if improvement fail then 

20         gs = 0 

21       else 

22         gs = 1 

23       end if 

24     end for 

25   end for 

26 end 

27 output: sb 

The initialization phase consists of two processes. In the 
first process, the full random search is performed to generate 
initial solutions. This full random search is formalized using 
(1) where s denotes the solution, sl denotes the lower boundary, 
su denotes the upper boundary, and U denotes the uniform 
random. The second process is the global best updating process 
as formalized in (2). In (2), sb denotes the global best solution 
and f denotes the objective function. 

   (     )    (1) 

    {
   ( )   (  )

       
   (2) 

The exploration mode consists of two searches. The guided 
search toward the global best solution is formalized using (3) 
while the limited random search is formalized using (5). sc 
denotes the solution candidate which is then evaluated using 
(4) that represents the strict acceptance approach. In (5), it is 
shown that the local search space gets narrow as the iteration 
increases. 

      (   ) (     )   (3) 

   {
    (  )   ( )

      
    (4) 

      (    ) .  
 

  
/  .

     

 
/  (5) 

The guided search relative to randomly solution is 
formalized using (6) and (7). ss denotes the randomly selected 
solution which is selected uniformly among the population S. 
Meanwhile, as shown in (7), the corresponding solution moves 

toward the reference if the quality of the reference is better 
than the quality of the corresponding solution. Otherwise, the 
corresponding solution avoids the reference. 

    ( )    (6) 

  {
   (   ) (     )  ( )   (  )

   (   ) (     )     
  (7) 

Moreover, the detailed explanation regarding the influence 
of parameters used in this algorithm is as follows. The solution 
s plays an important role as autonomous agent performing the 
searching process. Meanwhile, the population S as the 
collection of s actualizes the population-based metaheuristics. 
The greater size of S in general improves the exploration 
capability although the size is not always linear to the 
performance quality. The sb represents the best solution which 
is the basic form of collective intelligence in the swarm-based 
metaheuristic. Iteration t control the iterative process which is 
limited by the maximum iteration tm. Uniform random U is 
used for the stochastic process which becomes the foundation 
of any metaheuristic. The boundaries sl and su are used as the 
hard constraint in finding the possible solution. The objective 
function f is used for measurement of the quality of any 
solution. 

IV. SIMULATION AND RESULT 

This section presents the simulation and evaluation of ABO 
in solving optimization problems. This evaluation can be split 
into three parts. The first part is a simulation regarding the 
theoretical optimization problem. The second part is a 
simulation regarding the hyperparameter test. The third part is 
a simulation regarding the practical optimization problem. In 
the first and third parts, ABO is benchmarked with five latest 
metaheuristics: MPA, GSO, SMA, NGO, and ZOA. MPA, 
GSO, and SMA are metaheuristics that do not deploy a strict 
acceptance approach. On the other hand, NGOs and ZOA are 
metaheuristics that deploy a strict acceptance approach. 
Meanwhile, ABO plays in the middle by deploying a strict 
acceptance approach and not a strict acceptance approach 
based on the circumstance it faces. 

The first part is the simulation regarding the theoretical 
optimization problem. In this work, the set of 23 functions is 
used as the use case. This set of functions is chosen due to its 
broad and diverse circumstances and challenges. It can be split 
into three groups: high-dimension unimodal, high-dimension 
multimodal, and fixed-dimension multimodal functions. A 
detailed description of these functions is presented in Table II. 

In this work, several adjusted parameters are set as follows. 
In general, the maximum iteration is 50 while the population 
size is 5. The fishing aggregate device for MPA is set 0.5 that 
represents balance between exploration within the search space 
and the guided exploration toward two randomly selected 
solutions. The z score for SMA is 0.5. The result in solving the 
high dimension unimodal functions, high dimension 
multimodal functions, and fixed dimension multimodal 
functions is presented in Table III, Table IV, and Table V 
respectively. 
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TABLE II. DETAIL DESCRIPTION OF 23 FUNCTIONS 

No Function Model Dimension Problem Space Global Opt. 

1 Sphere ∑  
 

 

   

 50 [-100, 100] 0 

2 Schwefel 2.22 ∑|  |

 

   

 ∏|  |

 

   

 50 [-100, 100] 0 

3 Schwefel 1.2 ∑(∑  

 

   

)

 
 

   

 50 [-100, 100] 0 

4 Schwefel 2.21    *|  |      + 50 [-100, 100] 0 

5 Rosenbrock ∑(   (       
 )  (    ) )

   

   

 50 [-30, 30] 0 

6 Step ∑(      ) 

   

   

 50 [-100, 100] 0 

7 Quartic ∑ 

 

   

  
         ,   - 50 [-1.28, 1.28] 0 

8 Schwefel ∑      .√|  |/

 

   

 50 [-500, 500] -418.9x50 

9 Ratsrigin     ∑(  
       (    ))

 

   

 50 [-5.12, 5.12] 0 

10 Ackley        

(

      √
 

 
∑  

 

 

   
)

     (
 

 
∑       

 

   

+        ( ) 50 [-32, 32] 0 

11 Griewank 
 

    
∑   

  
    ∏    .

  

√ 
/ 

   +1 50 [-600, 600] 0 

12 Penalized 

 

 
{     (   )  ∑ .(    ) (         (     ))/

   

   

 (    ) }

 ∑ (           )

 

   

 

50 [-50, 50] 0 

13 Penalized 2 

   {    (    )  ∑.(    ) (      (      ))/

   

   

 (    ) (      (    ))}  ∑ (          )

 

   

 

50 [-50, 50] 0 

14 Shekel Foxholes (
 

   
 ∑

 

  ∑ (      )
  

   

  

   

)

  

 2 [-65, 65] 1 

15 Kowalik ∑(   
  (  

      )

  
         

)

   

   

 4 [-5, 5] 0.0003 

16 Six Hump Camel    
       

  
 

 
  

          
     

  2 [-5, 5] -1.0316 

17 Branin (   
   

   
  

  
 

 
    *

 

   (  
 

  
*    (  )     2 [-5, 5] 0.398 

18 Goldstein-Price 

(  (       ) (           
                

 )) (  

 (       )
 (            

      

            
 )) 

2 [-2, 2] 3 
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19 Hartman 3  ∑(     ( ∑.   (      )
 
/

 

   

),

 

   

 3 [1, 3] -3.86 

20 Hartman 6  ∑(     ( ∑.   (      )
 
/

 

   

),

 

   

 6 [0, 1] -3.32 

21 Shekel 5  ∑(∑(      )
 
   

 

   

)

  
 

   

 4 [0, 10] -10.1532 

22 Shekel 7  ∑(∑(      )
 
   

 

   

)

  
 

   

 4 [0, 10] -10.4028 

23 Shekel 10  ∑(∑(      )
 
   

 

   

)

  
  

   

 4 [0, 10] -10.5363 

TABLE III. BENCHMARK RESULT IN SOLVING HIGH DIMENSION UNIMODAL FUNCTIONS 

F Paramater MPA [9] GSO [10] SMA [11] NGO [25] ZOA [26] ABO 

1 

mean 4.3320x103 5.6223x104 7.4626x104 0.0286 0.0000 0.0000 

st dev 1.9644x103 1.3632x104 1.1712x104 0.0306 0.0000 0.0000 

min 1.4711x103 3.1528x104 4.1722x104 0.0006 0.0000 0.0000 

max 8.5016x103 8.1858x104 9.7149x104 0.0940 0.0000 0.0000 

mean rank 4 5 6 3 1 1 

2 

mean 0.0000 2.9343x1067 0.0000 0.0000 0.0000 0.0000 

st dev 0.0000 1.0545x1068 0.0000 0.0000 0.0000 0.0000 

min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

max 0.0000 4.8598x1068 0.0000 0.0000 0.0000 0.0000 

mean rank 1 6 1 1 1 1 

3 

mean 2.8487x104 1.3073x105 2.1393x105 5.4226x103 0.0266 9.3981x101 

st dev 1.9967x104 5.5564x104 4.0595x104 5.4283x103 0.1163 3.2324x102 

min 3.0737x103 4.8925x104 1.3394x105 1.0971x102 0.0000 0.0000 

max 8.5281x104 2.5705x105 2.6921x105 2.3616x104 0.5470 1.7244x103 

mean rank 4 5 6 3 1 2 

4 

mean 2.9387x101 5.3229x101 8.6454x101 0.4646 0.0000 0.0000 

st dev 5.5277 5.9824 2.5769 0.2558 0.0000 0.0000 

min 1.6824x101 4.0608x101 8.2000x101 0.1033 0.0000 0.0000 

max 4.3961x101 6.4096x101 9.1000x101 1.0545 0.0000 0.0000 

mean rank 4 5 6 3 1 1 

5 

mean 1.1760x106 1.4327x108 2.5991x108 4.9230x101 4.8938x101 4.8948x101 

st dev 6.8289x105 5.4495x107 4.5292x107 0.3290 0.0199 0.0300 

min 1.8459x104 5.1647x107 1.9294x108 4.8997x101 4.8907x101 4.8844x101 

max 2.6106x106 2.4223x108 3.4018x108 5.0357x101 4.8970x101 4.8982x101 

mean rank 4 5 6 3 1 2 

6 

mean 4.8607x103 5.5470x104 7.3622x104 1.0499x101 1.0452x101 1.0797x101 

st dev 1.5346x103 9.7258x103 1.1486x104 0.5606 0.6440 0.4690 

min 2.4904x103 3.9545x104 4.2292x104 9.3723 8.9883 9.6110 

max 7.7010x103 7.5723x104 8.6172x104 1.1632x101 1.1331x101 1.1453x101 

mean rank 4 5 6 2 1 3 

7 

mean 1.4044 1.0796x102 4.9953x102 0.0341 0.0064 0.0181 

st dev 0.8089 4.7866x101 6.3307x101 0.0176 0.0047 0.0139 

min 0.2819 4.2202x101 3.9856x102 0.0047 0.0007 0.0015 

max 3.4301 2.5038x102 6.0442x102 0.0756 0.0201 0.0454 

mean rank 4 5 6 3 1 2 
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Table III indicates that ABO performs well in solving high-
dimension unimodal functions. ABO becomes the first best in 
solving three functions (Sphere, Schwefel 2.22, and Schwefel 
2.21), second best in solving three functions (Schwefel 1.2, 
Rosenbrock, and Quartic), and third best in solving one 
function (Step). Table III also indicates a significant gap 
between three metaheuristics (ABO, ZOA, and NGO) and the 
three others (SMA, MPA, and GSO), where the first group's 
performance is far better than the second group. 

Table IV indicates that ABO performs well in solving high-
dimension multimodal functions. ABO becomes the first best 
in solving two functions (Rastrigin and Ackley), second best in 
solving three functions (Griewank, Penalized, and Penalized 2), 
and fourth best in solving one function (Schwefel). Moreover, 
ABO can find the optimal global solution in solving Rastrigin 
and Ackley. Meanwhile, ZOA can also find the optimal global 
solution for these two functions. 

The result in Table IV also divides these metaheuristics into 
two groups. The first group consists of MPA, GSO, and SMA. 

On the other hand, the second group consists of NGO, ZOA, 
and ABO. Metaheuristics in the second group perform better 
than metaheuristics in the first group, while the performance 
gap is significant. This circumstance takes place in almost all 
high-dimension multimodal functions except Schwefel. 

Table V indicates fierce competition among these six 
metaheuristics in solving fixed-dimension multimodal 
functions. Fortunately, ABO also performs well in solving 
these functions. Among these ten functions, ABO performs as 
the second best in six functions (Shekel Foxholes, Kowalik, 
Branin, Goldstein-Price, Hartman 3, and Hartman 6), third best 
in one function (Six Hump Camel), fourth best in one function 
(Shekel 5), and fifth best in two functions (Shekel 7 and Shekel 
10). Different from the high-dimension unimodal and high-
dimension multimodal functions, fierce competition happens 
for all metaheuristics in all ten functions. In general, the 
performance gap among the metaheuristics is narrow. 

TABLE IV. BENCHMARK RESULT IN SOLVING HIGH DIMENSION MULTIMODAL FUNCTIONS 

F Parameters MPA [9] GSO [10] SMA [11] NGO [25] ZOA [26] ABO 

8 

mean -3.4011x103 -4.6121x103 -4.9782x103 -4.2472x103 -2.8643x103 -3.9093x103 

st dev 6.5297x102 1.2521x103 5.6572x102 6.4312x102 5.6143x102 5.8738x102 

min -5.3489x103 -7.2897x103 -6.0276x103 -5.3898x103 -3.7800x103 -5.2110x103 

max -2.3316x103 -2.6163x103 -3.7595x103 -3.1568x103 -1.8763x103 -2.9836x103 

mean rank 5 2 1 3 6 4 

9 

mean 3.5962x102 5.1678x102 2.0979x102 1.5365 0.0000 0.0000 

st dev 7.6955x101 5.6595x101 4.0802x101 4.6372 0.0000 0.0000 

min 1.3328x102 3.9772x102 1.3101x102 0.0096 0.0000 0.0000 

max 4.4327x102 6.3509x102 2.7401x102 2.1832x101 0.0000 0.0000 

mean rank 5 6 4 3 1 1 

10 

mean 9.9728 1.9884x101 1.7682x101 0.0984 0.0000 0.0000 

st dev 1.5062 0.5195 0.3827 0.2589 0.0000 0.0000 

min 5.6136 1.7694x101 1.6002x101 0.0061 0.0000 0.0000 

max 1.1753x101 2.0513x101 1.8082x101 1.1222 0.0000 0.0000 

mean rank 4 6 5 3 1 1 

11 

mean 4.3770x101 4.8578x102 6.0186x102 0.0592 0.0000 0.0209 

st dev 1.6561x101 1.0101x102 1.0956x102 0.1247 0.0000 0.0805 

min 2.2313x101 3.4842x102 3.8985x102 0.0004 0.0000 0.0000 

max 7.8995x101 6.7935x102 7.9722x102 0.5502 0.0000 0.3806 

mean rank 4 5 6 3 1 2 

12 

mean 9.8780x104 2.1018x108 5.3614x108 1.0144 1.0824 1.0486 

st dev 1.6112x105 1.6467x108 1.4009x108 0.1346 0.1164 0.1113 

min 3.1218x102 4.6630x107 2.0839x108 0.7859 0.8031 0.8918 

max 6.2116x105 6.4261x108 7.7637x108 1.2334 1.2492 1.2878 

mean rank 6 4 5 1 3 2 

13 

mean 1.5887x106 5.5397x108 1.0300x109 3.3180 3.0916 3.1319 

st dev 2.1136x106 3.4988x108 2.1375x108 0.1249 0.0393 0.0176 

min 9.1574x103 1.8162x108 6.7786x108 3.1396 2.9894 3.0821 

max 1.0123x107 1.5915x109 1.4917x109 3.5531 3.1363 3.1835 

mean rank 4 5 6 3 1 2 
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TABLE V. BENCHMARK RESULT IN SOLVING FIXED DIMENSION MULTIMODAL FUNCTIONS 

F Parameters MPA [9] GSO [10] SMA [11] NGO [25] ZOA [26] ABO 

14 

mean 1.1070x101 1.0182x101 5.4396 6.9609 9.3836 6.8624 

st dev 4.1377 4.8001 3.5089 4.6037 3.7321 3.0608 

min 3.0579 1.9920 0.9980 0.9980 0.9980 2.0116 

max 1.7717x101 2.1073x101 1.2671x101 1.6441x101 1.2670x101 1.3619x101 

mean rank 6 5 1 3 4 2 

15 

mean 0.0254 0.0910 0.1326 0.0046 0.0076 0.0048 

st dev 0.0158 0.3541 0.0236 0.0068 0.0139 0.0045 

min 0.0050 0.0016 0.0778 0.0004 0.0003 0.0010 

max 0.0666 1.6747 0.1484 0.0206 0.0462 0.0165 

mean rank 4 5 6 1 3 2 

16 

mean -0.9560 -1.0198 -0.0367 -1.0316 -0.9480 -1.0159 

st dev 0.0620 0.0315 0.1083 0.0000 0.2207 0.0189 

min -1.0218 -1.0316 -0.4578 -1.0316 -1.0316 -1.0315 

max -0.7795 -0.8923 0.0000 -1.0316 -0.1680 -0.9609 

mean rank 4 2 6 1 5 3 

17 

mean 3.4078 1.3439 0.6438 0.3982 7.4391 0.4691 

st dev 2.5163 2.7178 0.0000 0.0003 1.0158x101 0.0688 

min 0.5003 0.3981 0.6438 0.3981 0.3981 0.3981 

max 8.7875 1.0341x101 0.6438 0.3993 3.5964x101 0.6438 

mean rank 5 4 3 1 6 2 

18 

mean 3.0989x101 1.3393x101 3.0000 2.9077x101 4.7903x101 4.0246 

st dev 2.2928x101 2.4219x101 0.0000 3.5703x101 7.8849x101 1.3238 

min 4.5662 3.0000 3.0000 3.0000 2.9999 3.0000 

max 8.1122x101 8.4200x101 3.0000 8.4824x101 3.3648x102 7.2993 

mean rank 5 3 1 4 6 2 

19 

mean -3.3279 -0.0357 -0.0495 -0.0495 -0.0495 -0.0495 

st dev 0.4178 0.0174 0.0000 0.0000 0.0000 0.0000 

min -3.8536 -0.0495 -0.0495 -0.0495 -0.0495 -0.0495 

max -2.2160 -0.0056 -0.0495 -0.0495 -0.0495 -0.0495 

mean rank 1 6 2 2 2 2 

F Parameters MPA [9] GSO [10] SMA [11] NGO [25] ZOA [26] ABO 

20 

mean -1.3750 -2.5835 -0.9122 -2.7680 -2.1337 -2.6242 

st dev 0.5288 0.6656 0.6304 0.3178 0.4571 0.1370 

min -2.2961 -3.2141 -2.5003 -3.2903 -3.0922 -2.7921 

max -0.5046 -0.9227 -0.1587 -2.1049 -1.4533 -2.3383 

mean rank 5 3 6 1 4 2 

21 

mean -0.8384 -3.7757 -2.1840 -3.0163 -3.7476 -2.4582 

st dev 0.2820 2.5466 2.8701 2.3674 2.3361 0.8451 

min -1.4088 -9.2109 -1.0153x101 -1.0084x101 -9.1107 -5.0406 

max -0.4575 -0.5200 -0.5090 -0.8561 -0.7072 -1.2512 

mean rank 6 1 5 3 2 4 

22 

mean -0.8586 -3.0051 -3.1134 -2.8936 -3.4404 -2.5657 

st dev 0.3301 1.8833 3.6634 1.9308 2.1138 0.9282 

min -1.5584 -8.5430 -1.0403x101 -8.5422 -8.3691 -5.0053 

max -0.3876 -0.8972 -0.6342 -0.8590 -0.9487 -1.5357 

mean rank 6 3 2 4 1 5 

23 

mean -1.2082 -3.9409 -2.5317 -3.6734 -3.1585 -2.3391 

st dev 0.4895 2.8005 2.2583 1.8173 1.4812 0.80007 

min -2.4122 -1.0195x101 -1.0536x101 -7.6571 -7.2028 -4.3752 

max -0.5738 -0.8049 -0.7951 -1.4377 -1.0123 -1.2768 

mean rank 6 1 4 2 3 5 
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TABLE VI. CLUSTER BASED SUPERIORITY OF ABO COMPARED TO OTHER 

METAHEURICTICS 

Group MPA [9] GSO [10] 
SMA 

[11] 

NGO 

[25] 
ZOA [26] 

1 6 7 6 5 0 

2 6 5 5 4 2 

3 9 6 5 2 6 

Total 21 18 16 11 8 

Table VI summarizes the performance comparison between 
ABO and the five other metaheuristics. The comparison 
represents the superiority of ABO compared to other 
metaheuristics based on the group of functions. This group-
based comparison is needed because of the distinct 
characteristics among the groups of functions. It is assumed 
that some metaheuristics may be better in a certain group but 
mediocre in another group. The last row represents the total 
number of functions where ABO outperforms a metaheuristic. 

Table VI indicates that ABO is superior to MPA, GSO, and 
SMA and still competitive compared with NGO and ZOA. 
ABO is better than MPA, GSO, SMA, NGO, and ZOA in 
solving 21, 18, 16, 11, and 8 functions, respectively. 
Meanwhile, ABO equals NGO in solving two functions and 
ZOA in solving six functions. It means ABO is worse than 
NGO in solving ten functions and ZOA in solving nine 
functions. ABO is superior to MPA in all groups of functions. 
Meanwhile, ABO is superior to GSO and SMA in solving 
unimodal and multimodal functions. On the other hand, ABO 
is still competitive compared to GSO and SMA in solving 
fixed-dimension multimodal functions. ABO is superior to 
NGO in solving unimodal and high-dimension multimodal 
functions but inferior in solving fixed-dimension multimodal 
functions. Contrary, ABO is superior to ZOA in solving fixed-
dimension multimodal functions but inferior in solving high-
dimension functions. Based on this summary, ABO has fierce 
competition with NGO and ZOA, where ABO is better than 
NGO in high-dimension functions while ABO is better than 
ZOA in fixed-dimension functions. 

The second part of the simulation is regarding the hyper-
parameter evaluation. In this work, two parameters are 
observed. The first parameter is the population size, while the 
second is the maximum iteration. The set of 23 functions is still 
used in this evaluation. The result of the population size 
evaluation is presented in Table VII, while the result of the 
maximum iteration is presented in Table VIII. 

Table VII indicates that the increase in population size does 
not improve the quality of the solution in almost all functions. 
The improvement takes place only in three functions. Among 
these three functions, two functions are high dimension 
unimodal functions, and one function is a fixed dimension 
multimodal function. Meanwhile, there are two reasons why 
the improvement fails. The first reason is that the global 
optimal or quasi-optimal solution has been achieved. This 
reason can be found in twelve functions. The second reason is 
that ABO fails to find the quasi-optimal solution after reaching 
the maximum iteration. This reason can be found in eight 
functions. 

TABLE VII. RELATION BETWEEN POPULATION SIZE AND AVERAGE 

FITNESS SCORE 

Function 
Average Fitness Score Significantly 

Improved? n(X) = 10 n(X) = 40 

1 0.0000 0.0000 no 

2 0.0000 0.0000 no 

3 4.2181x101 0.0030 yes 

4 0.0000 0.0000 no 

5 4.8935x101 4.8880x101 no 

6 1.0556x101 9.8178 no 

7 0.0187 0.0056 yes 

8 -4.2131x103 -4.7692x103 no 

9 0.0000 0.0000 no 

10 0.0000 0.0000 no 

11 0.0000 0.0000 no 

12 0.9883 0.7949 no 

13 3.1324 3.1151 no 

14 2.8768 1.5147 no 

15 0.0043 0.0012 yes 

16 -1.0258 -1.0290 no 

17 0.4353 0.4057 no 

18 3.5492 3.1038 no 

19 -0.0495 -0.0495 no 

20 -2.6985 -2.9387 no 

21 -2.5507 -3.5834 no 

22 -2.4601 -3.3685 no 

23 -2.9200 -3.3965 no 

TABLE VIII. RELATION BETWEEN MAXIMUM ITERATION AND AVERAGE 

FITNESS SCORE 

Function 
Average Fitness Score Significantly 

Improved? t = 60 t = 120 

1 0.0000 0.0000 no 

2 0.0000 0.0000 no 

3 1.9130x101 0.0638 yes 

4 0.0000 0.0000 no 

5 4.8975x101 4.8939x101 no 

6 1.0700x101 1.0506x101 no 

7 0.0253 0.0164 no 

8 -4.0184x103 -4.2073x103 no 

9 0.0000 0.0000 no 

10 0.0000 0.0000 no 

11 0.0000 0.0000 no 

12 1.0667 0.9978 no 

13 3.1436 3.1255 no 

14 4.2826 2.6412 no 

15 0.0043 0.0034 no 

16 -1.0224 -1.0248 no 

17 0.4671 0.4316 no 

18 3.6447 3.2859 no 

19 -0.0495 -0.0495 no 

20 -2.7096 -2.7824 no 

21 -2.7736 -2.5821 no 

22 -2.1184 -2.9625 no 

23 -2.2307 -3.0198 no 
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Table VIII indicates that the increase of the maximum 
iteration does not improve the quality of the solution in almost 
all functions. The improvement occurs only in one high-
dimension unimodal function (Schwefel 1.2). There are twelve 
functions where the global optimal or quasi-optimal solution 
has been achieved in the low maximum iteration circumstance 
so that there is no improvement anymore due to the increase of 
maximum iteration. 

The third part is the evaluation of ABO in solving a 
practical optimization problem: portfolio optimization. This 
problem is chosen because most works that introduced new 
metaheuristics chose problems in mechanical engineering or 
power flow distribution as their use case. The portfolio 
optimization problem is an important optimization work in the 
finance sector. In general, two objectives can be chosen for the 
portfolio optimization problem. The portfolio optimization 
problem can be defined as an effort to arrange financial assets 
(stock, bond, gold, and so on) to maximize the return or control 
the risk [36]. 

In this work, the assets are stocks of the energy or mining 
companies listed in IDX30. IDX30 is a list published by the 
Indonesian stock exchange that consists of 30 very liquid 
stocks with high market capitalization and strong fundamentals. 
There are ten stocks, and the list is presented in Table IX. 
These stocks have three important attributes: stock index, 
market price, and year-on-year capital gain. The market price 
and capital gain are presented in rupiah per share. The 
information regarding these stocks was obtained on February 
22, 2023. 

This portfolio optimization is taken based on some scenario. 
The objective is maximizing the total capital gain which is 
calculated by accumulating the capital gain of all shares that 
are held. The quantity of each stock ranges from 200 lots to 
1,000 lots where each lot represents 100 shares. The maximum 
total investment is five billion rupiah. This problem can be 
seen as a unimodal problem where the dimension is 10. 

In this portfolio optimization, ABO is also competed with 
five metaheuristics like in the first part: MPA, GSO, SMA, 
NGO, and ZOA. The population size is 10 where the maximum 
iteration is 30. The result is presented in Table X. 

TABLE IX. STOCK INFORMATION 

No Stock Index Price Capital Gain 

1 ADRO 2,850 530 

2 ANTM 2,050 -150 

3 BRPT 910 -55 

4 ESSA 940 295 

5 INCO 6,800 1,860 

6 ITMG 35,575 11,600 

7 MDKA 4,610 853 

8 MEDC 1,060 500 

9 PGAS 1,540 135 

10 PTBA 3,540 530 

Table X indicates that ABO is competitive in solving this 
portfolio optimization problem, although it is not the best 
performer. ABO becomes the third best after SMA and NGO. 
On the other hand, ZOA becomes the worst metaheuristic in 
solving this portfolio optimization problem, although it is very 
competitive in solving the set of 23 functions.  

TABLE X. PORTFOLIO OPTIMIZATION RESULT 

No Metaheuristic Total Capital Gain 

1 ABO 1,461,870,054 

2 ZOA [26] 1,353,039,265 

3 NGO [25] 1,478,676,650 

4 SMA [11] 1,479,375,445 

5 GSO [10] 1,461,377,050 

6 MPA [9] 1,377,967,381 

V. DISCUSSION 

The simulation result shows that ABO is competitive 
enough as a swarm-based metaheuristic. ABO can find an 
acceptable solution in both theoretical and practical 
optimization problems. ABO can find the optimal global 
solution in solving five functions. ABO is superior to MPA, 
SMA, and GSO and competitive to NGO and ZOA in solving 
the set of 23 functions. Meanwhile, ABO becomes the third 
best in solving the portfolio optimization problem. 

Solving the theoretical optimization problem shows that a 
strict-acceptance approach is important to achieve good 
performance, especially for high-dimension functions. In these 
functions, ZOA [26] and NGO [25] are metaheuristics that 
implement a strict-acceptance approach, while ABO 
implements both strict-acceptance and non-strict-acceptance 
approaches. ABO, ZOA, and NGO are the best of the three in 
solving almost all functions in the big dimension problems, 
while GSO [10], MPA [9], and SMA [11] do not implement a 
strict-acceptance approach. This circumstance indicates that 
metaheuristics implementing a strict-acceptance approach 
significantly achieves better results than others. On the other 
hand, circumstance becomes more dynamic in solving fixed-
dimension multimodal functions where the gap among 
metaheuristics is narrow whether these metaheuristics 
implement a strict-acceptance approach. It means avoiding a 
worse solution is important in solving high-dimension 
functions, while this strategy is not important in solving fixed-
dimension multimodal functions. 

The strict-acceptance approach also does not significantly 
affect solving the portfolio optimization problem. Table X 
shows the narrow gap between the best and worst 
metaheuristics. On the other hand, ZOA as the worst performer 
is a metaheuristic that adopts a strict-acceptance approach. On 
the contrary, MPA, as a metaheuristic that does not adopt a 
strict acceptance approach, becomes the second worst 
performer. As a metaheuristic that does not adopt a strict-
acceptance approach, SMA becomes the best performer. 
Meanwhile, NGO becomes the second-best performer as a 
metaheuristic that adopts a strict-acceptance approach. 
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The simulation result also shows that the competition 
among latest metaheuristics becomes tougher. It is common for 
many latest metaheuristics to deploy multiple searches and 
enrich the guided search with the random search. Many 
metaheuristics can find the global optimal in several functions 
and quasi-optimal in many other functions. Meanwhile, many 
metaheuristics still need help finding the quasi-optimal solution, 
especially in the low maximum iteration and low population 
size. This circumstance strengthens the no-free-lunch theory 
that a metaheuristic cannot solve all problems with superior 
results. 

There are three loops conceptually performed during the 
iteration. The outer loop is the iteration from the first iteration 
to the maximum iteration. The intermediate loop is the iteration 
for the entire population. The inner loop is the iteration for the 
entire dimension because all dimensions are calculated in every 
search. Meanwhile, there are two searches performed by every 
agent in every iterations. Based on this explanation, the 
algorithm complexity of ABO is presented as 
O(2tmax.n(X).n(D)). This complexity is normal for the 
population-based metaheuristic. Moreover, this complexity is 
achieved because ABO does not implement a sorting process in 
every iteration. 

There are limitations regarding this work and its proposed 
metaheuristics, even though the proposed ABO performs well 
in solving both theoretical and practical optimization works. In 
ABO, the adaptability in tackling the local optimal is 
performed by choosing a non-strict acceptance approach. 
Meanwhile, this non-strict acceptance approach is implemented 
in any iteration. It differs from simulated annealing, where 
accepting a worse solution becomes more difficult as iteration 
increases. Meanwhile, different metaheuristic, such as tabu 
search, uses tabu list to restrict the repetition of a similar 
solution. This circumstance shows that there are various 
adaptive approaches that can be explored in the future. At the 
same time, a single metaheuristic such as ABO cannot adopt 
various adaptive strategies into a single metaheuristic. 

This work has presented the use of optimization problem in 
financial sector, which is the portfolio optimization problem in 
the introduction of a new metaheuristic. This work also proves 
that ABO is competitive enough in solving this problem which 
is an integer-based problem. Meanwhile, there are various 
kinds of other optimization problems in the financial sector, 
such as credit risk assessment, investment planning, debtor 
analysis, and refinancing problems. These problems can also 
be addressed in future work. 

There is also a limitation in choosing a practical 
optimization problem as a use case to evaluate the performance 
of the new metaheuristic.  This work chooses a portfolio 
optimization problem as the use case, with its characteristics 
being integer-based and unimodal. On the other hand, there are 
various practical optimization problems, whether common or 
not, in many studies introducing new metaheuristics. These 
problems can be used for future studies, especially proposing 
an improved or modified version of ABO. 

The future studies can also be performed by implementing 
ABO to solve various sustainable development goals (SDGs) 
related issues. SDG has become the global issue and 

consideration for developing sustainable society and 
environment. For example, efficient energy consumption 
becomes the main and important issue related to climate 
change, renewable and affordable energy. Besides, 
optimization plays an important role in the operation of 
industry, transportation, and many other economic activities. 

VI. CONCLUSION 

The introduction of a new adaptive metaheuristic, namely 
adaptive balance optimizer (ABO), has been presented in this 
paper. This proposed model is designed to make a 
metaheuristic adaptive, especially when facing optimal local 
circumstances. This paper also presents the competitiveness of 
ABO in solving both theoretical and practical optimization 
problems. ABO is better than MPA, GSO, SMA, NGO, and 
ZOA in solving 21, 18, 16, 11, and 8 functions, respectively, in 
solving 23 functions. It means ABO is superior to MPA, GSO, 
and SMA and still competitive with NGO and ZOA in solving 
23 functions. Meanwhile, ABO is still competitive in solving 
portfolio optimization problems, although ABO is not the best 
performer in solving this problem. 

Adaptability can be used for future studies in 
metaheuristics. Various strategies have yet to be explored to 
make metaheuristics more adaptive, especially in tackling the 
local optimal entrapment. Besides, developing a superior 
metaheuristic that can solve the optimization problem in the 
low maximum iteration and low population size becomes 
challenging too. Moreover, future work can be conducted by 
addressing several common issues, such as scalability and 
more practical recent and future use cases. The scalability issue 
is related to wider boundaries and higher dimensions of the 
problem. Meanwhile, there are various recent and future 
optimization problems, such as in the green and blue economy, 
climate change, renewable energy, and many more. 
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