
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 4, 2023 

168 | P a g e  

www.ijacsa.thesai.org 

SuffixAligner: A Python-based Aligner for Long 

Noisy Reads 

Zeinab Rabea
1
*, Sara El-Metwally

2
*, Samir Elmougy

3
*, M. Z. Rashad

4
* 

Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt 

 

 
Abstract—Third-generation sequencing technologies have 

revolutionized genomics research by generating long reads that 

resolve many computational challenges such as long genomics 

variations and repeats. Mapping a set of sequencing reads 

against a reference genome is the first step of many genomic data 

analysis pipelines. Many mapping/alignment tools are introduced 

and always made different compromises between the alignment 

accuracy and the resource usage in terms of memory space and 

processor speed. SuffixAligner is a python-based aligner for long 

noisy reads generated from third-generation sequencing 

machines. SuffixAligner follows the seed extending approach and 

exploits the nature of the biological alphabet that has a fixed size 

and a predefined lexical ordering to construct a suffix array for 

indexing a reference genome. A suffix array is used to efficiently 

search the indexed reference and locate the exactly matched 

seeds among the reads and the reference. The matched seeds are 

arranged into windows/clusters and the ones with the maximum 

number of seeds are reported as candidates for mapping 

positions. Using real data sets from third-generation sequencing 

experiments, we evaluated SuffixAligner against lordFAST, 

BWA, GEM3, and Minimap2, in which the results showed that 

SuffixAligner mapped more reads compared to the other 

compared tools. The source code of SuffixAligner is available at: 

https://github.com/ZeinabRabea/SuffixAligner. 
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I. INTRODUCTION 

Sequencing machines have generated a flood of biological 
data known as reads. They have revolutionized over three 
generations of technologies that play a key role in the data 
volume, read length and accuracy, sequencing cost, and speed. 
Third-generation sequencing technologies, such as Pacific 
Biosciences (PacBio) and Oxford Nanopore, produce a high 
throughput of longer reads with higher error rates than Illumina 
sequencing machines' short reads [1]. Reads 
mapping/alignment is the cornerstone in any sequence analysis 
pipeline and implies finding the nearly matched locations of 
each read in the reference genome/transcriptome tolerating the 
mismatches due to sequencing biases and errors. Since the 
reads mapping/alignment is a complex and resources intensive 
process, efficient algorithms and data structures are introduced 
to complete it reasonably [2-4]. 

 Mapping algorithms utilize two data structures: hash tables 
and suffix/prefix tries to handle the long reads generated from 
the third-generation sequencing machines [5]. The seed and 
extended approach are used in most sequence aligners and rely 
on extracting a set of matched seeds among the reference and 
read and index them in a hash table [6]. Then, the seeds are 

extended to find the optimal gapless alignment. Examples of 
tools that utilize hash tables for indexing a set of seeds are [7] 
Blast [8], NanoBLASTer [9], LAST [10], and Minimap [11, 
12]. Suffix tires based algorithms divide the mapping problem 
into two steps: 1) finding an exact match between the database 
and the query read using one of the suffixes stored in suffixes 
tries, and 2) grouping these hits of exact matches to create the 
final inexact alignment [13]. 

 Genome indexing is the first step in any mapping data 
analysis framework in which it aims search quickly and 
efficiently the reference genome for matching patterns (i.e., 
reads). Many efficient data structures are introduced to build an 
index for a reference genome, such as suffix arrays [14, 15], 
hash tables [16], suffix trees [17], and bloom filters [18]. There 
is no standard procedure for creating the optimal index file; this 
depends on how the information is organized and how he 
intends to access it. The second step is the mapping/alignment 
process that uses the genome indexing to query the reference 
and search for the reads and align it to nearly matched 
locations in the genome[19]. 

In this paper, we introduce SuffixAligner as a long-read 
aligner that utilizes a modified version of the suffix array 
construction algorithm for limited-size alphabets such as 
DNA/RNA and exploits the nature of their corresponding 
lexicographical ordering. Suffix array is used in the reference 
indexing stage to compute Burrows–Wheeler transforms. 
Reads mapping stage follows the seed and extends approach by 
extracting a set of matched hits called  -mers among reads and 
the indexed reference. These  -mers are used as seeds to find 
long stretches of matches extended in both directions of the 
sequencing read. The regions between the matched seeds 
among reads and the reference are aligned using dynamic 
programming approach. 

This paper is organized as follows: Section II demonstrates 
a previously related work, Section III presents the methodology 
behind the SuffixAligner and describes its three basic stages, 
Section IV evaluates the SuffixAligner alignment results 
against four benchmarking alignment tools using two real 
datasets, and Section V concludes our paper and provides some 
future insights. 

II. LITERATURE REVIEW 

Suffix array plays a key role in indexing large-scale 
genomes and most aligners that dominate the bioinformatics 
field rely on suffix array and its enhanced versions to complete 
the mapping/alignment task [20]. It is a list of indexes 
corresponding to the sorted suffixes of a given sequence in the 
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lexical order. Its construction algorithm is a resource-expensive 
process, in which there is always a trade-off between the 
algorithm running time and its memory usage. Most of the 
suffix array construction approaches for indexing a reference 
genome/transcriptome should consider that the sequencing 
bases have a limited size alphabet (i.e. four letters of 
DNA/RNA alphabets) and utilize the existing integer-based 
method for suffix array construction and manipulation [21, 22]. 
Examples of mapping algorithms that rely on suffix arrays for 
indexing and searching a reference genome are Bowtie [23], 
BWA [24], GEM3 [25], and lordFAST [26] (see Table I).  The 
Burrows–Wheeler (BWT) transform is a cornerstone in many 
alignment/mapping tools developed for short reads and 
extended to long-read sequencing data. Burrows–Wheeler 
transform can also be generated from a suffix array and is used 
to build a compressed and efficient version of a reference 
genome [27]. 

TABLE I. DESCRIPTION OF BENCHMARKING ALIGNMENT TOOLS: BWA, 
GEM3, LORDFAST, AND MINIMAP2 

Aligner Description Ref 

BWA 

BWA is based on the FM-index and utilizes the 

seed-and-extend approach for  reads mapping. 

BWA has three different algorithms: 

 BWA-backtrack (Illumina  short 

sequencing read) 

 BWA-SW (long reads ranging from 
70bp to 1Mbp) 

 BWA-MEM(long reads ranging 

from 70bp to 1Mbp) 

[24] 

GEM3 

GEM3 is based on the FM-index. 

Best results are produced when the read length 
up to 1k bases 

GEM3 uses a Multithread mode  to speed up 

the running time 

[25] 

lordFAST 

LordFAST is based on the FM-index and 

utilizes the seed-and-extend approach for  reads 

mapping 
[26] 

Minimap2 

Minimap2 collects the minimizers from the 

reference and indexes them into a hash table 
using a locally sensitive hashing technique. It 

utilizes the seed-and-extend approach for  reads 

mapping. The total length of all reads should 
not exceed the 2 billion bases 

[11, 12] 

III. METHOD 

SuffixAligner is designated for reads generated by third-
generation sequencing machines. It aims to find the ideal 
location for each read in the indexed reference genome using a 
suffix array. SuffixAligner has three stages: 1) Finding the 
matched seeds between the genome and read, 2) Determining 
the part of the genome with a large number of seeds 
(identifying a matching window), 3) Using Needleman [28] 
algorithm to align the regions between the matched seeds (see 
Fig.1) . 

 

Fig. 1. The SuffixAligner proposed approach for mapping long noisy reads. 

The reference genome should be indexed first to compute 
the matched seeds among reads and the reference genome. In 
the genome indexing stage, SuffixAligner relies on a suffix 
array construction algorithm proposed in [29] and exploits the 
nature of biological sequencing data alphabets such as 
DNA/RNA as it has limited size letters with a pre-defined 
lexicographical order. The suffix array is constructed for DNA 
alphabets incrementally, knowing that there are only four 
letters with the pre-defined sorted order {A, C, G, T}. Each 
portion of the suffix array will correspond to the set of indexes 
starting with one of the DNA alphabets and will be used as a 
seed to compute the next portion corresponding to the next 
DNA alphabet in the lexical order. The Burrows–Wheeler 
transform is constructed from the computed suffix array and 
represents a compressed version of the indexed reference 
genome. This paper applies the Last-to-First Mapping (LF-
array), a mapping function from the last column of the 
Burrows–Wheeler Matrix (BWM), to the first column of the 
BWM. To compute LF-array easily and efficiently, BWT is 
extracted from the last column of BWM. Also, the first column 
(  ) is an alphabetical arrangement of the elements of BWT. 
Instead of storing the first column of BWM, the frequency of 
each DNA alphabet in BWT is computed along with its start 
index in BWT. The LF-array is calculated by adding the rank 
of each DNA alphabet with its starting index (see Fig. 2).  LF-
array efficiently searches the reference genome for the exact 
matches (seeds) extracted from the sequencing reads.  
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Fig. 2. The Last-to-first mapping (LF-array) computation from the burrows–

wheeler transform. 

The search starts from the read ending position towards the 
starting position and stops when mismatches occur. A list of 
matching seeds between the read and the reference genome, 
where the seed length of more than 10bp is considered as a 
valid matched seed. The list contains the starting position     of 
each matched seed in the reference genome    , and the ending 
position     and the seed length is    which equals     
       .The starting position of the expected mapping window 
of each seed is determined by          . The list of matched 
seeds is sorted according to the window   . The optimal 
window for mapping the read against a reference genome will 
be chosen according to the total number of matched seeds in 
the window. The window with the largest number of seeds will 
be selected. The regions between the matched seeds in the 
selected window are aligned using a dynamic programming 
method such as Needleman algorithm. 

IV. EXPERIMENTATIONS AND RESULTS 

In this paper, we evaluate the four alignment tools: BWA 
(bwa-0.7.17) [30], GEM3 [25], lordFAST[26], and Minimap2 
[11] against our proposed SuffixAligner using real datasets 
generated by MinION Oxford Nanopore sequencing 
technology from two different bacterial strains: Flavobacterium 
columnare and Aeromonas veronii (see Table II).  

We measured the quality of alignment by measuring the 
alignment rate [31]. The alignment rate is calculated by 
dividing the number of mapped reads by the total number of 
reads. Samtools [32] analyzed the SAM files and reports the 
total number of primary and secondary alignments produced by 

alignment tools. When a read maps ambiguously to multiple 
locations, only one of the read alignments is considered as the 
primary one, and the others are reported as secondary 
alignments. Supplementary reads are those in which parts of 
the reads match one location in the genome while other parts 
match another and often appear in long reads. All the 
experiments in this work were conducted on a workstation 
running on Ubuntu Linux with a 3.70 GHz Intel(R) Xeon(R) 
CPU E5-1620 v2 processor, 64 GB of RAM, and 128 GB SDD 
hard disk.   

TABLE II. CHARACTERISTICS OF THE DATA SET USED EXPERIMENTS 

Genome Name 
Flavobacterium 

Columnare 
Aeromonas Veronii 

Genome Length 3221278 4559061 

NCBI txid996 txid654 

Sequencing runs SRR7449868 SRR7449790 

Number Of reads 1142 3994 

Number Of Bases 146.1M 644.5M 

Max length in reads 62330 53937 

Min length in reads 284 279 

We evaluated the alignment rate of BWA, GEM3, 
lordFAST, Minimap2, and SuffixAligner for the real Oxford 
Nanopore sequencing runs SRR7449868 and SRR7449790. 
The characteristics of the dataset are shown in Table I. As 
shown in this table, SuffixAligner has the best Alignment rate. 
It primary mapped 94% of the total number of reads in the run 
SRR7449868 of the Flavobacterium columnare reference 
genome and primary mapped 90% of the total number of reads 
in the run SRR7449790 of Aeromonas veronii reference 
genome. 

SuffixAligner searches for a one room for every read 
compared to a reference genome. It considers every read's best 
mapping position and ignores the other mapping locations. It 
neglects the secondary and supplementary mapping locations 
mapped reads (Tables III and IV). 

Fig. 3 shows the total number of mapped reads with lengths 
less than 500bp and greater than 8000bp in the case of the 
sequencing run SRR7449868. For reads with lengths less than 
1000bp, SuffixAligner mapped more reads than other 
alignment tools; the best results are produced by SuffixAligner, 
BWA, GEM3, and Minimap2 sequentially. lordFAST ignores 
reads with lengths less than 1000bp. For reads with lengths 
greater than 1000bp, SuffixAligner and lordFAST have 
approximately the same alignment rate then BWA, Minimap2, 
and GEM3 sequentially. 

Fig. 4 shows the total number of mapped reads with lengths 
less than 500bp and greater than 8000bp in the case of the 
sequencing run SRR7449790. For reads with lengths less than 
1000bp, SuffixAligner mapped more reads than other 
alignment tools, and the best results are produced by 
SuffixAligner, BWA, GEM3, and Minimap2 sequentially. 
lordFAST ignores the reads with lengths less than 1000bp. 
lordFAST has the best alignment rate with reads lengths 
between 1000bp and 2000bp, while the SuffixAligner has the 
best alignment rate with other reads lengths. 
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TABLE III. EVALUATION OF BWA, GEM3, LORDFAST, MINIMAP2, AND SUFFIXALIGNER ON SEQUENCING RUN SRR7449868 (TOTAL NUMBER OF BASES IS 

146.1M) 

Metrics 

 

Tools 

Total Supplementary Secondary Primary 
Total     

mapped 

Primary 

mapped 
Primary unmapped 

# # # # #            % #          Bases(kb)       % #    Bases(Kb)       % 

BWA 1325 183 0 1142 1222 92% 1039 4027.29 91% 103 87.88 9% 

GEM3 1142 0 0 1142 1004 88% 1004 3999.73 88% 138 115.44 12% 

lordFAST 1490 126 222 1142 820 55% 472 3723.04 41% 670 392.13 59% 

Minimap2 1518 137 239 1142 1368 90% 992 3998.42 87% 150 116.76 13% 

SuffixAligner 1142 0 0 1142 1074 94% 1074 4072.21 94% 68 42.96 6% 

TABLE IV. EVALUATION OF BWA, GEM3, LORDFAST, MINIMAP2, AND SUFFIXALIGNER ON SEQUENCING RUN SRR7449790 (TOTAL NUMBER OF BASES IS 

644.5M) 

Metrics 

 

Tools 

Total Supplementary Secondary Primary 
Total     

mapped 

Primary 

mapped 
Primary unmapped 

# # # # #            % #          Bases(kb)       % #    Bases(Kb)      % 

BWA 1325 183 0 1142 1222 92% 1039 4027.29 91% 103 87.88 9% 

GEM3 1142 0 0 1142 1004 88% 1004 3999.73 88% 138 115.44 12% 

lordFAST 1490 126 222 1142 820 55% 472 3723.04 41% 670 392.13 59% 

Minimap2 1518 137 239 1142 1368 90% 992 3998.42 87% 150 116.76 13% 

SuffixAligner 1142 0 0 1142 1074 94% 1074 4072.21 94% 68 42.96 6% 

 

Fig. 3. The total number of mapped reads according to different read lengths in the real sequencing run (i.e., id SRR7449868) with the total number of reads 

equal to 1142. 

 

Fig. 4. The total number of mapped reads according to different read lengths in the real sequencing run (i.e., id SRR7449790) with total number of reads equal to 

3994. 

SuffixAligner maps more reads than lordFAST, BWA, 
GEM3, and Minimap2 and has the best alignment rate. 
SuffixAligner and lordFAST have approximately the same 
alignment rate with the longest read lengths. Also, 
SuffixAligner maps short reads and reads with lengths greater 
than 8000bp. 

V. CONCLUSIONS 

In this paper, SuffixAligner is proposed for reads produced 
by third-generation sequencing machines such as PacBio and 
Oxford Nanopore. It relies on a specific type of suffix array 
constructed for the limited-size alphabets, such as the four-size 
alphabets of genomic data. It has three basic stages: indexing a 
reference genome using a suffix array, mapping a set of 
sequencing reads using the seed and extend approach, and 
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aligning the regions between the matched seeds using a 
dynamic programming approach. It mapped more reads 
compared to the other alignment tools and has the best 
alignment rate accordingly. 

SuffixAligner has a long execution running time since it 
aligns one read at a time. So, as a future work, distributing the 
computation of mapping reads among different machines to 
increase the mapping speed and to reduce the memory usage 
on a single computing node. Also, SuffixAligner may be used 
to improve the alignment results by mapping only unmapped 
reads produced by another aligner. 
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