
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

168 | P a g e

www.ijacsa.thesai.org

SuffixAligner: A Python-based Aligner for Long

Noisy Reads

Zeinab Rabea
1
*, Sara El-Metwally

2
*, Samir Elmougy

3
*, M. Z. Rashad

4
*

Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt

Abstract—Third-generation sequencing technologies have

revolutionized genomics research by generating long reads that

resolve many computational challenges such as long genomics

variations and repeats. Mapping a set of sequencing reads

against a reference genome is the first step of many genomic data

analysis pipelines. Many mapping/alignment tools are introduced

and always made different compromises between the alignment

accuracy and the resource usage in terms of memory space and

processor speed. SuffixAligner is a python-based aligner for long

noisy reads generated from third-generation sequencing

machines. SuffixAligner follows the seed extending approach and

exploits the nature of the biological alphabet that has a fixed size

and a predefined lexical ordering to construct a suffix array for

indexing a reference genome. A suffix array is used to efficiently

search the indexed reference and locate the exactly matched

seeds among the reads and the reference. The matched seeds are

arranged into windows/clusters and the ones with the maximum

number of seeds are reported as candidates for mapping

positions. Using real data sets from third-generation sequencing

experiments, we evaluated SuffixAligner against lordFAST,

BWA, GEM3, and Minimap2, in which the results showed that

SuffixAligner mapped more reads compared to the other

compared tools. The source code of SuffixAligner is available at:

https://github.com/ZeinabRabea/SuffixAligner.

Keywords—Long reads sequencing; reads mapping; suffix

array; alignment; seed extending; LF mapping

I. INTRODUCTION

Sequencing machines have generated a flood of biological
data known as reads. They have revolutionized over three
generations of technologies that play a key role in the data
volume, read length and accuracy, sequencing cost, and speed.
Third-generation sequencing technologies, such as Pacific
Biosciences (PacBio) and Oxford Nanopore, produce a high
throughput of longer reads with higher error rates than Illumina
sequencing machines' short reads [1]. Reads
mapping/alignment is the cornerstone in any sequence analysis
pipeline and implies finding the nearly matched locations of
each read in the reference genome/transcriptome tolerating the
mismatches due to sequencing biases and errors. Since the
reads mapping/alignment is a complex and resources intensive
process, efficient algorithms and data structures are introduced
to complete it reasonably [2-4].

 Mapping algorithms utilize two data structures: hash tables
and suffix/prefix tries to handle the long reads generated from
the third-generation sequencing machines [5]. The seed and
extended approach are used in most sequence aligners and rely
on extracting a set of matched seeds among the reference and
read and index them in a hash table [6]. Then, the seeds are

extended to find the optimal gapless alignment. Examples of
tools that utilize hash tables for indexing a set of seeds are [7]
Blast [8], NanoBLASTer [9], LAST [10], and Minimap [11,
12]. Suffix tires based algorithms divide the mapping problem
into two steps: 1) finding an exact match between the database
and the query read using one of the suffixes stored in suffixes
tries, and 2) grouping these hits of exact matches to create the
final inexact alignment [13].

 Genome indexing is the first step in any mapping data
analysis framework in which it aims search quickly and
efficiently the reference genome for matching patterns (i.e.,
reads). Many efficient data structures are introduced to build an
index for a reference genome, such as suffix arrays [14, 15],
hash tables [16], suffix trees [17], and bloom filters [18]. There
is no standard procedure for creating the optimal index file; this
depends on how the information is organized and how he
intends to access it. The second step is the mapping/alignment
process that uses the genome indexing to query the reference
and search for the reads and align it to nearly matched
locations in the genome[19].

In this paper, we introduce SuffixAligner as a long-read
aligner that utilizes a modified version of the suffix array
construction algorithm for limited-size alphabets such as
DNA/RNA and exploits the nature of their corresponding
lexicographical ordering. Suffix array is used in the reference
indexing stage to compute Burrows–Wheeler transforms.
Reads mapping stage follows the seed and extends approach by
extracting a set of matched hits called -mers among reads and
the indexed reference. These -mers are used as seeds to find
long stretches of matches extended in both directions of the
sequencing read. The regions between the matched seeds
among reads and the reference are aligned using dynamic
programming approach.

This paper is organized as follows: Section II demonstrates
a previously related work, Section III presents the methodology
behind the SuffixAligner and describes its three basic stages,
Section IV evaluates the SuffixAligner alignment results
against four benchmarking alignment tools using two real
datasets, and Section V concludes our paper and provides some
future insights.

II. LITERATURE REVIEW

Suffix array plays a key role in indexing large-scale
genomes and most aligners that dominate the bioinformatics
field rely on suffix array and its enhanced versions to complete
the mapping/alignment task [20]. It is a list of indexes
corresponding to the sorted suffixes of a given sequence in the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

169 | P a g e

www.ijacsa.thesai.org

lexical order. Its construction algorithm is a resource-expensive
process, in which there is always a trade-off between the
algorithm running time and its memory usage. Most of the
suffix array construction approaches for indexing a reference
genome/transcriptome should consider that the sequencing
bases have a limited size alphabet (i.e. four letters of
DNA/RNA alphabets) and utilize the existing integer-based
method for suffix array construction and manipulation [21, 22].
Examples of mapping algorithms that rely on suffix arrays for
indexing and searching a reference genome are Bowtie [23],
BWA [24], GEM3 [25], and lordFAST [26] (see Table I). The
Burrows–Wheeler (BWT) transform is a cornerstone in many
alignment/mapping tools developed for short reads and
extended to long-read sequencing data. Burrows–Wheeler
transform can also be generated from a suffix array and is used
to build a compressed and efficient version of a reference
genome [27].

TABLE I. DESCRIPTION OF BENCHMARKING ALIGNMENT TOOLS: BWA,
GEM3, LORDFAST, AND MINIMAP2

Aligner Description Ref

BWA

BWA is based on the FM-index and utilizes the

seed-and-extend approach for reads mapping.

BWA has three different algorithms:

 BWA-backtrack (Illumina short

sequencing read)

 BWA-SW (long reads ranging from
70bp to 1Mbp)

 BWA-MEM(long reads ranging

from 70bp to 1Mbp)

[24]

GEM3

GEM3 is based on the FM-index.

Best results are produced when the read length
up to 1k bases

GEM3 uses a Multithread mode to speed up

the running time

[25]

lordFAST

LordFAST is based on the FM-index and

utilizes the seed-and-extend approach for reads

mapping
[26]

Minimap2

Minimap2 collects the minimizers from the

reference and indexes them into a hash table
using a locally sensitive hashing technique. It

utilizes the seed-and-extend approach for reads

mapping. The total length of all reads should
not exceed the 2 billion bases

[11, 12]

III. METHOD

SuffixAligner is designated for reads generated by third-
generation sequencing machines. It aims to find the ideal
location for each read in the indexed reference genome using a
suffix array. SuffixAligner has three stages: 1) Finding the
matched seeds between the genome and read, 2) Determining
the part of the genome with a large number of seeds
(identifying a matching window), 3) Using Needleman [28]
algorithm to align the regions between the matched seeds (see
Fig.1) .

Fig. 1. The SuffixAligner proposed approach for mapping long noisy reads.

The reference genome should be indexed first to compute
the matched seeds among reads and the reference genome. In
the genome indexing stage, SuffixAligner relies on a suffix
array construction algorithm proposed in [29] and exploits the
nature of biological sequencing data alphabets such as
DNA/RNA as it has limited size letters with a pre-defined
lexicographical order. The suffix array is constructed for DNA
alphabets incrementally, knowing that there are only four
letters with the pre-defined sorted order {A, C, G, T}. Each
portion of the suffix array will correspond to the set of indexes
starting with one of the DNA alphabets and will be used as a
seed to compute the next portion corresponding to the next
DNA alphabet in the lexical order. The Burrows–Wheeler
transform is constructed from the computed suffix array and
represents a compressed version of the indexed reference
genome. This paper applies the Last-to-First Mapping (LF-
array), a mapping function from the last column of the
Burrows–Wheeler Matrix (BWM), to the first column of the
BWM. To compute LF-array easily and efficiently, BWT is
extracted from the last column of BWM. Also, the first column
() is an alphabetical arrangement of the elements of BWT.
Instead of storing the first column of BWM, the frequency of
each DNA alphabet in BWT is computed along with its start
index in BWT. The LF-array is calculated by adding the rank
of each DNA alphabet with its starting index (see Fig. 2). LF-
array efficiently searches the reference genome for the exact
matches (seeds) extracted from the sequencing reads.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

170 | P a g e

www.ijacsa.thesai.org

Fig. 2. The Last-to-first mapping (LF-array) computation from the burrows–

wheeler transform.

The search starts from the read ending position towards the
starting position and stops when mismatches occur. A list of
matching seeds between the read and the reference genome,
where the seed length of more than 10bp is considered as a
valid matched seed. The list contains the starting position of
each matched seed in the reference genome , and the ending
position and the seed length is which equals
 .The starting position of the expected mapping window
of each seed is determined by . The list of matched
seeds is sorted according to the window . The optimal
window for mapping the read against a reference genome will
be chosen according to the total number of matched seeds in
the window. The window with the largest number of seeds will
be selected. The regions between the matched seeds in the
selected window are aligned using a dynamic programming
method such as Needleman algorithm.

IV. EXPERIMENTATIONS AND RESULTS

In this paper, we evaluate the four alignment tools: BWA
(bwa-0.7.17) [30], GEM3 [25], lordFAST[26], and Minimap2
[11] against our proposed SuffixAligner using real datasets
generated by MinION Oxford Nanopore sequencing
technology from two different bacterial strains: Flavobacterium
columnare and Aeromonas veronii (see Table II).

We measured the quality of alignment by measuring the
alignment rate [31]. The alignment rate is calculated by
dividing the number of mapped reads by the total number of
reads. Samtools [32] analyzed the SAM files and reports the
total number of primary and secondary alignments produced by

alignment tools. When a read maps ambiguously to multiple
locations, only one of the read alignments is considered as the
primary one, and the others are reported as secondary
alignments. Supplementary reads are those in which parts of
the reads match one location in the genome while other parts
match another and often appear in long reads. All the
experiments in this work were conducted on a workstation
running on Ubuntu Linux with a 3.70 GHz Intel(R) Xeon(R)
CPU E5-1620 v2 processor, 64 GB of RAM, and 128 GB SDD
hard disk.

TABLE II. CHARACTERISTICS OF THE DATA SET USED EXPERIMENTS

Genome Name
Flavobacterium

Columnare
Aeromonas Veronii

Genome Length 3221278 4559061

NCBI txid996 txid654

Sequencing runs SRR7449868 SRR7449790

Number Of reads 1142 3994

Number Of Bases 146.1M 644.5M

Max length in reads 62330 53937

Min length in reads 284 279

We evaluated the alignment rate of BWA, GEM3,
lordFAST, Minimap2, and SuffixAligner for the real Oxford
Nanopore sequencing runs SRR7449868 and SRR7449790.
The characteristics of the dataset are shown in Table I. As
shown in this table, SuffixAligner has the best Alignment rate.
It primary mapped 94% of the total number of reads in the run
SRR7449868 of the Flavobacterium columnare reference
genome and primary mapped 90% of the total number of reads
in the run SRR7449790 of Aeromonas veronii reference
genome.

SuffixAligner searches for a one room for every read
compared to a reference genome. It considers every read's best
mapping position and ignores the other mapping locations. It
neglects the secondary and supplementary mapping locations
mapped reads (Tables III and IV).

Fig. 3 shows the total number of mapped reads with lengths
less than 500bp and greater than 8000bp in the case of the
sequencing run SRR7449868. For reads with lengths less than
1000bp, SuffixAligner mapped more reads than other
alignment tools; the best results are produced by SuffixAligner,
BWA, GEM3, and Minimap2 sequentially. lordFAST ignores
reads with lengths less than 1000bp. For reads with lengths
greater than 1000bp, SuffixAligner and lordFAST have
approximately the same alignment rate then BWA, Minimap2,
and GEM3 sequentially.

Fig. 4 shows the total number of mapped reads with lengths
less than 500bp and greater than 8000bp in the case of the
sequencing run SRR7449790. For reads with lengths less than
1000bp, SuffixAligner mapped more reads than other
alignment tools, and the best results are produced by
SuffixAligner, BWA, GEM3, and Minimap2 sequentially.
lordFAST ignores the reads with lengths less than 1000bp.
lordFAST has the best alignment rate with reads lengths
between 1000bp and 2000bp, while the SuffixAligner has the
best alignment rate with other reads lengths.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

171 | P a g e

www.ijacsa.thesai.org

TABLE III. EVALUATION OF BWA, GEM3, LORDFAST, MINIMAP2, AND SUFFIXALIGNER ON SEQUENCING RUN SRR7449868 (TOTAL NUMBER OF BASES IS

146.1M)

Metrics

Tools

Total Supplementary Secondary Primary
Total

mapped

Primary

mapped
Primary unmapped

% # Bases(kb) % # Bases(Kb) %

BWA 1325 183 0 1142 1222 92% 1039 4027.29 91% 103 87.88 9%

GEM3 1142 0 0 1142 1004 88% 1004 3999.73 88% 138 115.44 12%

lordFAST 1490 126 222 1142 820 55% 472 3723.04 41% 670 392.13 59%

Minimap2 1518 137 239 1142 1368 90% 992 3998.42 87% 150 116.76 13%

SuffixAligner 1142 0 0 1142 1074 94% 1074 4072.21 94% 68 42.96 6%

TABLE IV. EVALUATION OF BWA, GEM3, LORDFAST, MINIMAP2, AND SUFFIXALIGNER ON SEQUENCING RUN SRR7449790 (TOTAL NUMBER OF BASES IS

644.5M)

Metrics

Tools

Total Supplementary Secondary Primary
Total

mapped

Primary

mapped
Primary unmapped

% # Bases(kb) % # Bases(Kb) %

BWA 1325 183 0 1142 1222 92% 1039 4027.29 91% 103 87.88 9%

GEM3 1142 0 0 1142 1004 88% 1004 3999.73 88% 138 115.44 12%

lordFAST 1490 126 222 1142 820 55% 472 3723.04 41% 670 392.13 59%

Minimap2 1518 137 239 1142 1368 90% 992 3998.42 87% 150 116.76 13%

SuffixAligner 1142 0 0 1142 1074 94% 1074 4072.21 94% 68 42.96 6%

Fig. 3. The total number of mapped reads according to different read lengths in the real sequencing run (i.e., id SRR7449868) with the total number of reads

equal to 1142.

Fig. 4. The total number of mapped reads according to different read lengths in the real sequencing run (i.e., id SRR7449790) with total number of reads equal to

3994.

SuffixAligner maps more reads than lordFAST, BWA,
GEM3, and Minimap2 and has the best alignment rate.
SuffixAligner and lordFAST have approximately the same
alignment rate with the longest read lengths. Also,
SuffixAligner maps short reads and reads with lengths greater
than 8000bp.

V. CONCLUSIONS

In this paper, SuffixAligner is proposed for reads produced
by third-generation sequencing machines such as PacBio and
Oxford Nanopore. It relies on a specific type of suffix array
constructed for the limited-size alphabets, such as the four-size
alphabets of genomic data. It has three basic stages: indexing a
reference genome using a suffix array, mapping a set of
sequencing reads using the seed and extend approach, and

0

100

200

300

400

500

BWA Minimap2 lordFAST GEM3 SuffixAligner

N
u

m
b

e
r
 o

f
m

a
p

p
e
d

 r
e
a

d
s

Length of reads
<500 <1000 <2000 <4000 <8000 >8000

0

200

400

600

800

1000

1200

BWA Minimap2 lordFAST GEM3 SuffixAlignerN
u

m
b

e
r
 o

f
m

a
p

p
e
d

 r
e
a

d
s

Length of reads <500 <1000 <2000 <4000 <8000 >8000

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

172 | P a g e

www.ijacsa.thesai.org

aligning the regions between the matched seeds using a
dynamic programming approach. It mapped more reads
compared to the other alignment tools and has the best
alignment rate accordingly.

SuffixAligner has a long execution running time since it
aligns one read at a time. So, as a future work, distributing the
computation of mapping reads among different machines to
increase the mapping speed and to reduce the memory usage
on a single computing node. Also, SuffixAligner may be used
to improve the alignment results by mapping only unmapped
reads produced by another aligner.

REFERENCES

[1] C. Delahaye and J. J. P. o. Nicolas, "Sequencing DNA with nanopores:
Troubles and biases," vol. 16, no. 10, p. e0257521, 2021.

[2] C. Marchet, C. Boucher, S. J. Puglisi, P. Medvedev, M. Salson, and R. J.
G. R. Chikhi, "Data structures based on k-mers for querying large
collections of sequencing data sets," vol. 31, no. 1, pp. 1-12, 2021.

[3] T. Hu, N. Chitnis, D. Monos, and A. J. H. I. Dinh, "Next-generation
sequencing technologies: An overview," vol. 82, no. 11, pp. 801-811,
2021.

[4] V. Bansal and C. Boucher, "Sequencing Technologies and Analyses:
Where Have We Been and Where Are We Going?," (in eng), iScience,
vol. 18, pp. 37-41, Aug 30 2019.

[5] C. Mingard, J. Wu, M. McKeague, and S. J. J. C. S. R. Sturla, "Next-
generation DNA damage sequencing," vol. 49, no. 20, pp. 7354-7377,
2020.

[6] A. Sarkar, S. Banerjee, and S. J. I. T. o. V. L. S. I. S. Ghosh, "An
Energy-Efficient Pipelined-Multiprocessor Architecture for Biological
Sequence Alignment," vol. 28, no. 12, pp. 2598-2611, 2020.

[7] N. Pavlovikj, E. N. Moriyama, and J. S. Deogun, "Comparative analysis
of alignment tools for nanopore reads," in 2017 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), 2017, pp. 169-
174: IEEE.

[8] M. Johnson, I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. McGinnis, and
T. L. Madden, "NCBI BLAST: a better web interface," Nucleic Acids
Research, vol. 36, no. suppl_2, pp. W5-W9, 2008.

[9] M. R. Amin, S. Skiena, and M. C. Schatz, "NanoBLASTer: Fast
alignment and characterization of Oxford Nanopore single molecule
sequencing reads," in 2016 IEEE 6th International Conference on
Computational Advances in Bio and Medical Sciences (ICCABS), 2016,
pp. 1-6: IEEE.

[10] S. M. Kiełbasa, R. Wan, K. Sato, P. Horton, and M. C. J. G. r. Frith,
"Adaptive seeds tame genomic sequence comparison," vol. 21, no. 3, pp.
487-493, 2011.

[11] H. Li, "Minimap2: pairwise alignment for nucleotide sequences,"
Bioinformatics, vol. 34, no. 18, pp. 3094-3100, 2018.

[12] H. Li, "Minimap and miniasm: fast mapping and de novo assembly for
noisy long sequences," Bioinformatics, vol. 32, no. 14, pp. 2103-2110,
2016.

[13] A. J. T. J. o. C. Chayapathi and M. Education, "Survey and Comparison
of String Matching Algorithms," vol. 12, no. 12, pp. 1471-1491, 2021.

[14] A. Amir and I. J. a. p. a. Boneh, "Update query time trade-off for
dynamic suffix arrays," 2020.

[15] F. A. Louza, S. Gog, G. P. Telles, F. A. Louza, S. Gog, and G. P. J. C. o.
F. D. S. f. S. Telles, "Induced suffix sorting," pp. 23-40, 2020.

[16] T. Maier, P. Sanders, and R. J. A. T. o. P. C. Dementiev, "Concurrent
hash tables: Fast and general (?)!," vol. 5, no. 4, pp. 1-32, 2019.

[17] M. M. A. Aziz, P. Thulasiraman, and N. Mohammed, "Parallel
generalized suffix tree construction for genomic data," in Algorithms for
Computational Biology: 7th International Conference, AlCoB 2020,
Missoula, MT, USA, April 13–15, 2020, Proceedings 7, 2020, pp. 3-15:
Springer.

[18] M. Najam, R. U. Rasool, H. F. Ahmad, U. Ashraf, and A. W. J. B. r. i.
Malik, "Pattern matching for DNA sequencing data using multiple
bloom filters," vol. 2019, 2019.

[19] Y. Wu, B. Lao, X. Ma, and G. Nong, "An improved algorithm for
building suffix array in external memory," in Parallel Architectures,
Algorithms and Programming: 10th International Symposium, PAAP
2019, Guangzhou, China, December 12–14, 2019, Revised Selected
Papers 10, 2020, pp. 320-330: Springer.

[20] B. Lao, Y. Wu, G. Nong, and W. H. J. I. T. o. C. Chan, "Building and
checking suffix array simultaneously by induced sorting method," vol.
71, no. 4, pp. 756-765, 2021.

[21] A. Das and R. Baruri, "All Pairs Suffix-Prefix Matches using Enhanced
Suffix Array," in 2020 International Conference on Smart Electronics
and Communication (ICOSEC), 2020, pp. 815-822: IEEE.

[22] F. A. Louza, S. Gog, and G. P. Telles, "Optimal suffix sorting and LCP
array construction for constant alphabets," Information Processing
Letters, vol. 118, pp. 30-34, 2017.

[23] M. Naghibzadeh, S. Babaei, B. Behkmal, M. J. I. J. o. I. Hatami, and C.
T. Research, "The Efficient Alignment of Long DNA Sequences Using
Divide and Conquer Approach," vol. 14, no. 3, pp. 48-56, 2022.

[24] S. Liu, Y. Wang, W. Tong, and S. J. B. Wei, "A fast and memory
efficient MLCS algorithm by character merging for DNA sequences
alignment," vol. 36, no. 4, pp. 1066-1073, 2020.

[25] S. Marco-Sola, M. Sammeth, R. Guigó, and P. J. N. m. Ribeca, "The
GEM mapper: fast, accurate and versatile alignment by filtration," vol.
9, no. 12, pp. 1185-1188, 2012.

[26] E. Haghshenas, S. C. Sahinalp, and F. J. B. Hach, "lordFAST: sensitive
and fast alignment search tool for long noisy read sequencing data," vol.
35, no. 1, pp. 20-27, 2019.

[27] L. Egidi, F. A. Louza, G. Manzini, and G. P. Telles, "External memory
BWT and LCP computation for sequence collections with applications,"
Algorithms Mol Biol, vol. 14, p. 6, 2019.

[28] S. J. M. B. Needleman, "Wunsch С (1970) J," vol. 48, pp. 444-453.

[29] Z. Rabea, S. El-Metwally, S. Elmougy, and M. Zakaria, "A fast
algorithm for constructing suffix arrays for DNA alphabets," Journal of
King Saud University - Computer and Information Sciences,
2022/05/06/ 2022.

[30] H. Li and R. J. B. Durbin, "Fast and accurate long-read alignment with
Burrows–Wheeler transform," vol. 26, no. 5, pp. 589-595, 2010.

[31] M. R. Stratton, P. J. Campbell, and P. A. Futreal, "The cancer genome,"
Nature, vol. 458, no. 7239, pp. 719-724, 2009.

[32] P. Danecek et al., "Twelve years of SAMtools and BCFtools," vol. 10,
no. 2, p. giab008, 2021.

