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Abstract—Clustering of data in case of data mining has a 

major role in recent research as well as data engineers. It 

supports for classification and regression type of problems. It 

needs to obtain the optimized clusters for such application. The 

partitional clustering and meta-heuristic search techniques are 

two helpful tools for this task. However the convergence rate is 

one of the important factors at the time of optimization. In this 

paper, authors have taken a data clustering approach with 

improved bee colony algorithm and opposition based learning to 

improve the rate of convergence and quality of clustering. It 

introduces the opposite bees that are created using opposition 

based learning to achieve better exploration. These opposite bees 

occupy exactly the opposite position that of the mainstream bees 

in the solution space. Both the mainstream and opposite bees 

explore the solution space together with the help of Bee Colony 

Optimization based clustering algorithm. This boosts the 

explorative power of the algorithm and hence the convergence 

rate. The algorithm uses a steady state selection procedure as a 

tool for exploration. The crossover and mutation operation is 

used to get balanced exploitations. This enables the algorithm to 

avoid sticking in local optima. To justify the effectiveness of the 

algorithm it is verified with the open datasets from the UCI 

machine learning repository as the benchmark. The simulation 

result shows that it performs better than some benchmark as well 

as recently proposed algorithms in terms of convergence rate, 

clustering quality, and exploration and exploitation capability. 

Keywords—Bee colony optimization; BCO based clustering; 

data clustering; partitional clustering; meta-heuristic search 

I. INTRODUCTION 

Clustering is one of several notable research areas in data 
mining. It is an art of grouping elements with a goal that 
elements in a cluster are dynamically similar compared to the 
elements of other clusters [1]. There are two significant 
variants of clustering principles, hierarchical and partitional 
clustering [1,2,3]. The key issue with hierarchical clustering is 
once the cluster arrangements are made it can‟t be altered, as a 
result reallocation of elements is difficult. In this paper, our 
focus is on partitional clustering. k-Means, k-Medoids, PAM, 
and CLARA [4] are some examples of partitional clustering 
techniques. Because of simplicity and relatively low time 
complexity, the k-Means algorithm has gain popularity over 
the years. But the results of the k-Means clustering largely 
depend on the initially chosen centroids, and it usually 
converges to local optima. It is also unable to handle higher 
dimensional datasets. 

To address this issue, several optimization techniques have 
been proposed and found to be effective in this respect. Over 
the last two decades several optimization based clustering 
techniques proposed for different applications. Following are 
some of them. The clustering applications based on Ant 
Colony Optimization (ACO) introduced in [5,6,7] are based on 
the foraging behavior of artificial ants. Particle Swarm 
Optimization (PSO) based clustering algorithms that mimic a 
flock of swarming particles' food-finding behavior are 
presented in [8,9,10,11,12]. In [13,14,15,16,17], the Bee 
Colony Optimization (BCO) based clustering methods are 
proposed. These are modeled on the way artificial bees collect 
food. The clustering methods based on Genetic Algorithms 
(GA) proposed in [18,19,20] are motivated by biological 
processes as crossing, mutation, and inheritance. 

Despite the presence of several optimization techniques for 
clustering new techniques are encouraged because every 
technique has its pros and cons. For example; ACO has slow 
convergence, falls in local optima, low similarity and high time 
complexity [21]; PSO depends on predefined cluster centroids 
and is trapped in local optima for higher dimensional datasets 
[22]; BCO has a low convergence rate and imbalanced 
exploration and exploitation [23]; and the slowness of genetic 
algorithms (GA) is frequently questioned. Again, no technique 
guarantees proper grouping for a wide variety of applications. 
The overall study of the algorithms concludes that clustering a 
wide verity of applications is still an open problem and new 
algorithms are always appreciated. The new meta-heuristic 
techniques for the clustering problem should address some of 
the common issues such as dependency on the initial cluster 
centroids, slow convergence rate, more emphasis on 
exploration than exploitation, falling in local optima of larger 
datasets, low accuracy, and higher computational complexity. 
In recent years, many optimization techniques for clustering 
problem proposed that successfully addressed these issues. 
Some of these are discussed in related works section. 

The rate of convergence of a clustering algorithm mainly 
depends on the initially chosen centroids. The convergence rate 
is faster if these initially chosen centroids are closer to the 
optimal centroids. Otherwise, it takes a considerably large time 
to converge. To improve the convergence rate and get better 
clustering results keeping a balance between exploration and 
exploitation in this paper, we have proposed an Opposition 
Learning based Improved Bee Colony Optimization (OLIBCO) 
algorithm for data clustering. The OLIBCO algorithm 
considers an opposite set of bees along with the initially chosen 
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mainstream bees. First a set of mainstream bees initialized with 
randomly selected centroids, then the corresponding opposite 
bees are created with opposite centroids using opposition based 
learning technique. Both the mainstream bees and opposite 
bees explore the solution space together using Bee Colony 
Optimization based clustering algorithm. This intensifies the 
exploration, thereby helps in finding better cluster centroids at 
an early stage of the solution. Every bee generates its cluster in 
K (number of clusters) stages. In every stage, once a feasible 
solution found the bees come back to hive to compare their 
solution, thereby recruiter bees recruit their followers and go to 
next stage. After all stages complete the best solution found 
and remaining data objects allocated to this and referred as 
local best. The local best considered to be the global best if it is 
better than the previous global best. The use of opposition 
based learning helps in getting faster convergence and the 
crossover and mutation operations applied to the local best 
helps in further exploitation of the result. 

The rest part of the paper is organized as follows. The 
related works is discussed in Section II. Section III presents the 
proposed algorithm with complexity analysis. Section IV 
shows the simulation and comparative analysis of the 
algorithm for different applications. Finally, Section V presents 
the conclusion and future work. 

II. RELATED WORKS 

Several new optimization techniques for the clustering 
problem have been proposed over the years. The Ant Colony 
Optimization (ACO) [24] is based on the foraging behavior of 
artificial ants. In [5], an energy-efficient clustering routing 
method based on the enhanced ACO algorithm introduced to 
address the issue of energy consumption in UWSNs. For no-
wait flow shop scheduling, a hybrid ant colony algorithm based 
on crossover and mutation mechanisms is developed with the 
goal of minimizing the maximum completion time in [6]. To 
find the ideal CH for an energy-efficient routing protocol in 
WSN the Ant Colony Optimization (ACO) integrated 
Glowworm Swarm Optimization (GSO) technique (ACI-GSO) 
proposed in [7]. The Particle Swarm Optimization (PSO) is a 
population-based heuristic search method proposed in [25]. In 
order to achieve flawless clustering with balanced load and 
energy-efficient optimization, the authors in [8] used a GWO-
PSO-based clustering method. For Cooperative PSO based 
clustering, a new initialization approach has been put forth in 
[9]. The suggested data clustering strategy in [10] is based on 
the KDE and PSO clustering algorithm resolves the issues of 
PSO-based clustering approaches. The work in [11] illustrates 
a secure technique for clustering using Improved Particle 
Swarm Optimization Algorithm in IoT. To get the best network 
performance, a method based on GA and PSO is proposed in 
[12] for the CH selection and to optimize the sink mobility. 

The Bee Colony Optimization (BCO) is another meta-
heuristic algorithm inspired by the food collection strategy of 
honey bee swarms [26]. An effective method for regularly 
finding, aggregating, analyzing, and managing important data 
on potential patients collected from the internet of medical 
things is shown in [13]. The research [14] proposes a 
revolutionary artificial bee colony approach for data clustering. 
BCO+KM clustering is a hybrid data clustering algorithm, 

which combines BCO and K-means proposed in [15]. In [16], a 
data clustering approach proposed called Modified BCO 
algorithm where a bee that is with a better fitness receives the 
high preference. The study [17] proposes an enhanced bee 
colony optimization algorithm with a document clustering 
application. The work in [27] looks into the multi-objective 
system reliability optimization problem using fuzzy 
parameters. In recent years some other optimization techniques 
proposed for different task. These include: Whale Optimization 
Algorithm (WOA) [28,29], Cuckoo Search Optimization 
(CSO) [30,31], Kho-Kho optimization algorithm [32], P-spline 
based clustering [33], Moth-Flame Optimization (MFO) 
algorithm [34], Brain Storm Optimization (BSO) algorithm 
[35], and Class Topper Optimization (CTO) algorithm [36]. 

Opposition based learning is another helpful technique in 
the field of optimization. There are several researches done in 
the literature using opposition based learning for optimization 
of different tasks. Some of them are given here. In [37], an 
approach discussed for dividing the population into several 
memeplexes using shuffled differential evolution. To improve 
the convergence, the authors in [38], used this technique with 
harmony search meta-heuristic optimization. In [39], the 
authors have employed opposition-based learning to break 
down a multi-objective optimization problem into a number of 
scalar optimization sub-problems, which they are then 
simultaneously optimizing with the evolutionary algorithm. To 
overcome the limitations of PSO, the authors in [40], have 
utilized the generalized opposition based learning. For data 
clustering problems, the authors have used Chimp 
Optimization Algorithm, Generalized Normal Distribution 
Algorithm, and Opposition-Based Learning method in [41]. In 
[42], the authors have proposed an augmented arithmetic 
optimization technique with the help of levy flight distribution 
and opposition based learning for data clustering. In [43], 
authors have combined it with chaotic maps, and PSO for text 
clustering. 

III. PROPOSED OLIBCO ALGORITHM FOR DATA 

CLUSTERING 

A. Mapping of OLIBCO for Clustering Problem 

The Bee Colony Optimization (BCO) algorithm [26] 
considers three kinds of bees, namely scout bees, employed 
bees, and onlooker bees. First, the scout bees move around the 
search space looking for food sources. After such sources 
found, the scout bees become employed bees; they evaluate the 
quality of the found food sources (the nectar amount); and back 
to their hive. The employed bees go to the dance floor one by 
one and show others the quality of the food source they 
discovered (through the waggle dance). This way, every 
employed bee recruits some onlooker bees and travel to the 
same source for food collection. Once the food from the source 
exhausted all these bees become scout bees. The complete set 
of possible food sources that artificial bees can explore 
represents the solution space. A bee moves in the solution 
space and discovers a food source as a candidate solution. 
Again, we know that the ultimate goal of a clustering problem 
is to find a set of mutually exclusive groups called clusters. 
Hence, a bee discovers a candidate solution (a set of clusters). 
That means every bee has a set of clusters and a set of 
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centroids as its identifier. For a multi-dimensional dataset 
containing K different classes of data objects, a clustering 
solution is a set of K clusters identified by K centroids 
(C1,C2,...,CK), where each Ci is an m-dimensional data object in 
the dataset. In OLIBCO, it is assumed that all the bees are of a 
similar category. Every bee goes out for discovering feasible 
solutions at the same time. They select some data objects from 
the dataset and add them to their respective clusters. After 
coming back to their hive they compare the solutions using an 
estimate „Sum of Intra Cluster Distances‟ (SICD). Thus, they 
find the local best solution. The SICD can be computed as 
follows [16,17]: 

     ∑ ∑         
 
   

 
    ,   (1) 

where d(c,o) is Euclidean distance between two n-
dimensional data objects c and o. The terms k, n, c, and o 
represent the number of clusters, number of data objects in 
each cluster, the cluster center and the data objects 
respectively. Finally, the local best is compared with the global 
best, update the global best if required, and continue to next 
iteration. 

B. Proposed OLIBCO Clustering Algorithm 

The OLIBCO is a population-based meta-heuristic 
optimization algorithm inspired by opposite bees. The opposite 
bees are capable to explore on the opposite side of the 
mainstream bees. They play an important role in improving the 
explorative power of the algorithm. The exploration is again 
powered by a steady-state algorithm which adds better particles 
into different clusters. The algorithm uses a probability-based 
selection approach to give every bee (both mainstream and 
opposite bees) a fair chance to become a recruiter, that 
provides diversity in solution. For further enhancement in 
exploitation, the algorithm uses the crossover and mutation 
concept in the local best solution. The high level flow diagram 
is shown in Fig. 1. The algorithm is presented in Algorithm 1 
and steps are explained in detail below. 

 
Fig. 1. Flow diagram of OLIBCO. 

1) Initialization: At first, the algorithm loads the data set 

D (an n × m matrix) into memory. Here, n is the number of 

data objects and m is the number of attributes. It takes number 

of bees (B), number of clusters (K), and maximum number of 

iteration (T) as input. The total number of bees B includes the 

number of mainstream and opposite bees both in an equal 

proportion. Every bee maintains K number of empty clusters 

in it. The algorithm initializes K random cluster centroids and 

finds its SICD value. In first step, it initializes B/2 number of 

mainstream bees with initial centroids. To avoid repetition in 

the data allocation it internally maintains an allocate array of 

size n. It is not an overhead for the algorithm because for 

setting the fields in an array take constant time. 
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2) Creation of opposite bees: Meta-heuristic optimization 

algorithms tend to make initial random guesses. The OLIBCO 

algorithm also initializes the mainstream bees randomly. If 

these mainstream bees span throughout the solution space then 

no need to worry. But there is a great possibility that they 

belong to a specific region of the solution space. If this is the 

case then exploration may confine to the same region or may 

not cover the complete solution space. In such cases, either the 

convergence rate is reduced or the solution evolves in a 

different direction and never comes near to optimal solution. 
Considering a large number of mainstream bees can be an 

idea to this end. But we have to keep in mind that more number 
of bees implies more exploration. But, more weightage on 
exploration does not help always; instead, it increases the time 
complexity. Therefore, we have to choose the number of bees 
carefully to keep balance between the exploration quality and 
exploration time. Again, we cannot give guaranty that all these 
bees will not be in the same area, because these are created 
randomly. 

To address this issue OLIBCO creates an equal number of 
opposite bees in a different direction (that of mainstream bees). 
Fig. 2 displays two different scenarios, first Fig. 2(a) shows a 
case where all are mainstream bees and are chosen in the same 
region, and second Fig. 2(b) shows some mainstream bees and 
their opposite bees together span throughout the solution space. 
In the first case, the exploration confined to one part of the 
solution space, because the general tendency of a bee is to 
explore nearby regions. In the second case, no matter where the 
mainstream bees are allocated, the corresponding opposite bees 
will cover the other region. By this way, the bees (mainstream 
and opposite bees) span throughout the solution space. 

The OLIBCO algorithm creates the opposite bees after the 
initialization of mainstream bees using opposition based 
learning [44, 45]. A cluster center is a data vector from a 
dataset with m attribute. For all these attributes, the opposite 
values are computed using (2) [44, 45]. 

        ,   (2) 

where, p is a real number in the range [a,b] and p′ is it‟s 
opposite number. Once the opposite values found, we combine 
them to a data vector to represent a centroid. For example, 

 

Algorithm 1 OLIBCO Clustering Algorithm 

Require: Maximum number of iterations T, number of 

clusters K, number of artificial bees B, and dataset D, 

with n objects, each of them are of m dimensional 

Ensure: Classified objects as clusters 

1: Initialize all the B bees with K number of empty 

clusters and initialize Global Best (GB). 

2: for t = 1 to T do  

3:     if t = 1 then  

4:         Initialize K random cluster centroids, and find 

SICD value for it. 

5.     else 

6.            Consider the centroids of the global best 

solution. 

7:     end if  

8:    Randomly select K initial cluster centers for B/2 

number of mainstream bees.  

9:     Create another set of B/2 opposite bees bees   

10:   for k = 1 to K do            

11:       for b = 1 to B do        

12:            Use the steady state selection procedure to 

select a population of x data objects 

13:            Assign these data objects to the k
th

 cluster of 

the b
th

 bee 

14:            Calculate SICD value of the b
th

 bee. 

15:       end for                       

16:       for b = 1 to B do     

17:            Find the probability of stickiness (P) for the 

b
th

 bee 

18:           Generate a random number r in the range 0 to 

1.  

19:           if P < r then  

20:           Select a recruiter using roulette wheel 

selection technique and follow its solution.   

21:           end if  

22:        end for      

23:     Find the best partial solution (bee clusters 

with minimum SICD value).                  

24:    end for                          

25:  Allocate the left-over data objects to the local 

best solution, and update centroids.  
26:   Find the SICD value of the local best 
solution. 
27:  if Global best solution does not change for an 

adequate number of iterations t then 

28:  Perform crossover and mutation operation on 

the centroids of the local best solution, and find 

the SICD value.  

29:     Update the local best solution if the new 

result is better than the previous, otherwise 

discard the new result.  

30:    end if      

31:    Perform switching operation of data objects 

between the clusters of local best solution. 

32:    if t ≠ 1 then  

33:      if SICD value at iteration t<SICD value 

at iteration t-1 then 

34:         Update the global best solution with the 
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results of the local best solution. 

35:          end if  

36:    end if  

37: end for  

38: Return the global best solution. 

Consider the following mainstream bee and its opposite bee 
defined with three cluster centers. 

Beemainstream = ((c11, c12, ..., c1m),(c21, c22, ..., c2m), ...;  

Beeopposite = ((c′11, c′12, ..., c′1m),(c′21, c′22, ..., c′2m), ...; 

Here, cij and c′ij are the attributes of the centroids of 
mainstream bees and their opposite bees, that represents the j

th
 

attribute of the i
th
 cluster center. Every c′ij is generated using 

(2). Similarly, for all the centroids of each bee are found to 
create the corresponding opposite bees. Moreover, the number 
of mainstream bees, doubles the total number of bees. 
Therefore, we cannot create large number of mainstream bees 
initially. We have taken the total number of bees (B) as input 
parameter. First, B/2 number of mainstream bees initialized 
then another set of B/2 opposite bees generated. 

The algorithm runs for K (k=1,2,...,K) number of clusters. 
In each iteration, all the bees build one cluster (k

th
) at a time. 

So there is an inner loop that varies from (b=1 to B). For every 
bee b, the forward and backward passes generate the feasible 
solutions. After the outer loop (k loop) ends all the bees have a 
partial solution. Here each iteration of the outer loop (k loop) is 
considered as a stage. 

 
Fig. 2. Two different scenarios where (a) all bees are main stream bees 

chosen in same region (worst case) and (b) some mainstream and their 
opposite bees. 

3) Forward pass: Once the mainstream bees initialized 

and their opposite bees created, all of them start exploring the 

solution space. In this process, they select some data objects 

from the dataset D and add them into their respective clusters 

based on a fitness (SICD) value. The exploration process of 

each bee depends on this selection procedure. For this, the 

OLIBCO algorithm uses a steady state selection approach 

[35]. The steady state searching process starts with creating an 

initial population of x data objects. This step repeats for M 

number of times. Here, M represents the number of moves. In 

each move, the search process refines the data objects to 

create a better population of x data objects. More the number 

of moves (M), better the exploration. By increasing M the 

time complexity also increases. Again too small value of M 

implies less exploration that leads to slow convergence rate, 

so, it must be chosen carefully. After the forward pass 

completes, each bee has a feasible solution (a set of clusters). 

Now, all of them compute the strength of their solution using 

the SICD measure defined in (1). 

4) Backward pass: In the backward pass, bees return to 

their hive, and share the information about their generated 

solution. Depending on the strength of the solution, the bee 

determine whether it will continue with its solution and be 

available as a recruiter, or will adopt (follow) some other‟s 

solution. The following equation defines the probability of a 

bee sticking to its solution [16,17]. 

                         ,  (3) 

where b represents the current bee, k represents stage, and t 
represents iteration. Ob(k,t) represents the normalized value of 
SICD of b

th
 bee and is computed using the equation (4) [16,17]. 

        
                       

                         
 ,  (4) 

where SICDb is the SICD value of current bee b, SICDmax, 
and SICDmin represents the maximum and minimum value of 
the SICD. From (3), we can observe P (probability of 
stickiness) and Ob are inversely proportional to each other, and 
the value of Ob depends on SICDb. That means, when Ob 
increases the probability of a bee sticking to its solution 
decreases. The bee with smaller probability P may discard its 
solution and become a follower. If decision is to become a 
follower, then the bee will select another bee and adopts (copy) 
its solution. Every follower always wants to follow the best. 
This tendency of follower bees leads to local optima. The 
OLIBCO algorithm uses roulette wheel selection procedure 
[46] to avoid this. This gives every bee a fair chance to become 
a recruiter. It also gives diversity to the solution. This selection 
procedure first labels the surface of the wheel based on the 
proportion of the SICD values of each bee. Then the wheel 
spun. After it stops, the wheel pointer decides the result. 
Finally, the backward pass computes the SICD values of all the 
bees using (1). 

5) Allocation of remaining data objects: After all the 

stages are complete, each bee has a partial clustering solution. 

But there is a possibility that some data objects are not 

allocated to any of the partial solutions. These left-over 

(unallocated) data objects are allocated to the best partial 

solution (among all the bees) using a single pass of the k-

Means algorithm [47]. It takes the centroids of the best partial 

solution as initial cluster centroid and allocates the left-over 

data objects to the nearest cluster using the distance metric d. 

It also updates the centroids to the best candidate centroids. 

Note that we have used only one iteration of k-Means. 

6) Crossover and mutation operation: The opposite bees 

and steady state selection procedure provides faster 

convergence. But after this, there is a possibility that the 

solution does not update for a longer period of time. It may 

have been trapped in a local optima. To take it out from the 
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trapped region (if there is any possibility) the algorithm 

applies the crossover and mutation [48] operation on the 

cluster centroids. Moreover, swapping should be between 

similar type attributes. We have used a one point crossover for 

swapping later half m/2 attributes of the consecutive centroids. 

We can do this swapping in any combination. As part of 

mutation operation, some or all the attributes of a centroid is 

substituted by another set of closer values. The main aim of 

the mutation step in our algorithm is to move the centroids in 

nearby locations to check the existence of any better solution. 

After the new centroids generated the SICD of the solution is 

computed again. If this new solution is better than the current 

local best, then the local best solution is updated. 

7) Switching operation of data objects: In the previous 

steps at the allocation of remaining data objects and crossover 

and mutation, somehow the centroids are updated. As the data 

objects are assigned to the specific cluster based on Euclidian 

distance with the centroids, after centroids update, there may 

be some data objects wrongly placed in a cluster. The 

switching operation of data objects allows them to move to 

other clusters where its strength is better than the current one. 

The chance of switching is more for the data objects located in 

the boundary region of the cluster. This switching operation 

helps in further improvements in the result, thereby 

contributes to the faster convergence rate of the algorithm. 

8) Global best update: The algorithm runs for T number 

of iterations. In each iteration, it finds a solution (local best). If 

the SICD value of the solution at iteration t (SICDt) is less 

than the SICD value of the global best solution at iteration t-1 

(SICDt−1) then it updates the global best solution to the 

solution found in the current iteration. Then it continues to the 

next iteration with updated global best. 

C. Asymptotic Analysis of OLIBCO Clustering Algorithm 

The time complexity of an algorithm is a function of input 
parameters. This function can be generated by computing the 
sum of the number of times each step of the algorithm 
executes. Table I shows the step counts for each individual 
steps of the OLIBCO clustering algorithm. Thus, the time 
complexity function of the algorithm is: 

f(T, K, B) = (Mx + x + 10)TKB + 7TK + (11 + c1)T + 1 

We can observe that in step 12 a factor of Mx multiplied 
with TKB. This is because in the forward pass the bees create a 
population of x (fixed) data objects. For this, they are allowed 
to make M number of moves in the solution space. With an 
increased number of moves M, the exploration time also 
increases, without much difference in the strength of the 
solution (after a certain point). Keeping this in mind, we have 
fixed the number of moves M. In step 25, a constant factor c1 is 
multiplied; because the number of left-over data objects is 
unknown. As most of them are assigned to different clusters of 
different bees in the forward pass, it must be in small numbers 
(so considered as a constant). The step 28 performs crossover 
and mutation. As it operates between K cluster centers, both 
these operations step count is TK and for SICD computation it 
is T. Now, the time complexity function can be rewritten as: 

f(T, K, B) = y1TKB + 7TK + y2T + 1 

Clearly, the highest growing term in this function is TKB. 
Hence, ignoring the constant factor the time complexity of the 
algorithm is O(TKB). Moreover, the data set dimensions (n × 
m) also has an important role, which is not considered above. 
Table I shows the step counts without considering dimension 
of the dataset n and m. Considering the dataset dimensions the 
time complexity of the algorithm becomes O(TKBmn). 

TABLE I.  STEP COUNTS OF THE OLIBCO ALGORITHM 

Step 

Number 

Count Step 

Number 

Count 

1 1 18 T × K × B 

2 T+1 19 T × K × B 

3 T 20 T × K × B (worst 

case) 

4 1 23 T × K 

6 T-1 25 T × c1 

8 T × K × B/2 26 T 

9 T × K × B/2 27 T 

10 T × (K + 1) 28 T × (2K + 1) (worst 

case) 

11 T × K × (B + 1) 29 T (worst case) 

12 T × K × B × (M × 

x) 

31 T × K 

13 T × K × B × x 32 T 

14 T × K × B 33 T – 1 

16 T × K × (B + 1) 34 T – 1 

17 T × K × B 38 1 

IV. SIMULATION AND COMPARATIVE ANALYSIS 

The algorithm is implemented in Java with required 
parameters D, B, K and T. To realize the performance of the 
OLIBCO algorithm, we have analyzed it concerning different 
applications. The benchmark datasets from the UCI machine 
learning repository used for analysis purposes are shown in 
Table II. Validation of the performance is done through an 
analysis of SICD values for different applications by varying 
the number of bees B and the number of moves M, followed by 
a comparative study of SICD values with some existing 
optimization techniques for clustering. The results presented 
here are the average of 25 random instances of executions. 

TABLE II.  SPECIFICATION OF THE DATASETS USED 

Datasets Number of 

clusters 

Number of 

attributes 

Number of data 

objects 

Iris 3 4 150 (50, 50, 50) 

Glass 6 9 214 (70, 76, 17, 13, 
9, 29) 

Cancer 2 9 683 (444, 239) 

CMC 3 9 1473 (629, 334, 510) 
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TABLE III.  SICD VALUES BASED ON DIFFERENT NUMBERS OF BEES B0 

Application Number of bees SICD 

Iris 

4 97.10 

10 96.90 

14 96.77 

18 96.80 

Glass 

4 226.19 

10 224.09 

14 224.67 

18 224.34 

Cancer 

4 2985.65 

10 2980.32 

14 2977.09 

18 2983.93 

CMC 

4 5682.67 

10 5676.97 

14 5678.07 

18 5684.89 

 
Fig. 3. SICD analysis of (a) Cancer dataset, (b) CMC dataset by varying 

number of moves. 

 

Fig. 4. Convergence graph of (a) Iris, (b) Glass, (c) Cancer, (d) CMC 

datasets. 

Table III shows the SICD analysis for different applications 
on varying B. We found that the selection of the number of 
bees has a large impact on the SICD value of the clusters. A 
small number of bees indicate less exploration. That means 
there is a chance that some areas of solution space will remain 
unexplored, which may give poor results. This fact can be 
observed from the table when B=4. On the other hand, a large 
number of bees indicate too much exploration. Though the 
increased number of bees provides diversity, it comes with 
increased exploration time. Again it may not improve the 
results drastically (Table III, B=18). Therefore, compromising 
time complexity is not a good idea. 

The steady-state selection procedure provides exploration 
power to the bees. Here in every move, the bee tries to improve 
its generated solution strength by placing a weaker data object 
with another stronger data object. Thus, the number of moves 
M (that a bee does) has also a huge impact on the algorithm‟s 
performance. Less number of bees has to make a large number 
of moves to explore the solution space whereas a large number 
of bees can handle it with comparatively less number of moves. 
Fig. 3 presents the SICD values of the generated clustering 
solution of the Cancer dataset by varying number of moves and 
keeping the number of bees (B) and initial population size (x) 
fixed. From the implementation results, we observed that when 
M is small the generated SICD value is high. With increased M 
value the SICD decreases and after a certain number of moves, 
it does not change much. The larger the initial population size 
x, the number of moves required is more. Depending on the 
dataset used the value of x can vary. 

In optimization algorithms, the convergence rate is an 
important factor to analyze the performance. Fig. 4 displays the 
convergence analysis of the algorithm made for datasets used 
by varying the number of bees. Fig. 4 also shows that after the 
initial faster convergence the graph remains constant. The 
reason is that it is trapped in local optima (for the current 
centroid, it is the best result). The cross over and mutation 
operations are used in the algorithm to check this scenario and 
exploit the result if there is any possibility of improvement. 
This fact can be observed in B=10, and B=14 of Fig. 4(a), 4(c), 
B=4 of Fig. 4(b) and B=18 of Fig. 4(d). 

Finally, we have made a comparison of the SICD value of 
the clustering solution for some existing algorithms in Table 
IV. The OLIBCO algorithm out performs k-Means and 
Classical PSO algorithm for Iris, Glass, Cancer, and CMC 
datasets except for the best cases of classical PSO of Iris 
dataset and k-Means of Glass dataset. The comparison is also 
made with IBCOCLUST [17], KIBCLUST [17], Hybrid I [17], 
Hybrid II [17], MBCO [16], MKCLUST [16], and 
KMCLUST[16]. It is found that for Iris dataset OLIBCO 
performs better than IBCOCLUST and the results are near to 
others. For Glass dataset, the average case SICD is better than 
IBCOCLUST, KIBCLUST, Hybrid I and MBCO, whereas on 
best case, it is better than MBCO, MKCLUST and 
KMCLUST. For Cancer dataset, the OLIBCO gives better 
results compared to others except average case of IBCLUST 
and Hybrid II and worst case of MBCO and MKCLUST. 
Again, for CMC dataset, OLIBCO outperforms MBCO, 
MKCLUST and KMCLUST. 
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Here we have observed that for all the applications, the 
algorithm converges to a certain level quickly, then it keep on 
exploiting the solution before final convergence result. Clearly, 
the OLIBCO algorithm has a faster convergence rate. The 

results show that OLIBCO outperforms some of the existing 
algorithms in terms of SICD. Hence, gives better clustering 
result. 

TABLE IV.  A COMPARATIVE ANALYSIS OF SICD VALUES WITH SOME EXISTING ALGORITHMS 

Application

s 

Measur

e 

k-

Means 

[16,17] 

Classica

l PSO 

[16,17] 

IBCOCLUS

T [17] 

KIBCLUS

T [17] 

Hybrid 

I [17] 

Hybrid 

II [17] 

MBCO 

[16] 

MKCLUS

T [16] 

KMCLUS

T [16] 

OLIBC

O 

Iris 

Best 97.33 96.01 97.22 96.40 96.33 95.10 94.14 95.01 95.19 96.77 

Avg 106.05 100.01 97.27 96.40 96.38 95.14 96.03 96.01 95.98 96.77 

Worst 120.45 117.81 - - - - 104.22 201.00 200.10 97.88 

Glass 

Best 215.68 270.12 214.85 217.97 214.78 214.71 215.00 215.00 215.23 220.14 

Avg 260.40 289.31 225.19 226.34 226.59 221.50 225.00 220.00 221.00 224.30 

Worst - 332.00 - - - - 230.00 333.00 332.00 281.17 

Cancer 

Best 2987.0

0 

2974.14 2976.22 2980.15 2976.2

4 

2976.1

1 

2965.2

5 

2969.01 2971.01 2962.31 

Avg 2988.3

0 

3329.22 2976.89 2980.15 2977.5

9 

2976.2

4 

2990.2

5 

2985.23 2995.43 2977.43 

Worst 3521.5
0 

- - - - - 3001.0
1 

3076.10 3180.01 3083.83 

CMC 

Best 5842.2

0 

5694.07 - - - - 5680.1

2 

5678.20 5678.40 5649.76 

Avg 5893.6
0 

5729.11 - - - - 5685.2
1 

5684.80 5684.60 5678.42 

Worst 5934.4

0 

5880.02 - - - - 5798.2

0 

5790.21 5689.70 5750.66 

V. CONCLUSION AND FUTURE WORK 

In this paper, a new OLIBCO algorithm is proposed as a 
potential solution for biomedical data clustering. It uses the 
opposite bees to shield the other directions of mainstream bees. 
This enhances the quality of the exploration result, thereby 
improving the convergence rate. The crossover and mutation 
operations along with the switching operation allow further 
exploitation of the solution and avoid being stuck in local 
optima. For validation of the clustering result, we have applied 
it for different benchmark applications from the UCI machine 
learning repository. The simulation results show that the 
algorithm has a faster convergence rate and possible 
exploitations. It is also observed that the algorithm converges 
to a certain level within 50 to 100 iterations for all the datasets 
used. After an initial faster convergence it gives enough chance 
for exploitations. From the analysis of results, it is clear that by 
adopting an optimal number of bees B and the number of 
moves M for exploration the algorithm give better 
performances. Further from the algorithm it is observed that 
there is better performance with a similar level of time 
complexity. The comparison made with different existing 
algorithms proves the proposed OLIBCO algorithm‟s efficacy. 
Further investigations for higher dimensional datasets need to 
be explored in the future. The algorithm should be tested in 
different real-life applications of science and technology. 
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