
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

253 | P a g e

www.ijacsa.thesai.org

Opposition Learning Based Improved Bee Colony

Optimization (OLIBCO) Algorithm for Data

Clustering

Srikanta Kumar Sahoo
1
, Priyabrata Pattanaik

2
, Mihir Narayan Mohanty

3
, Dilip Kumar Mishra

4

Institute of Technical Education and Research, SOA deemed to be University, Bhubaneswar, India
1, 2, 3, 4

Abstract—Clustering of data in case of data mining has a

major role in recent research as well as data engineers. It

supports for classification and regression type of problems. It

needs to obtain the optimized clusters for such application. The

partitional clustering and meta-heuristic search techniques are

two helpful tools for this task. However the convergence rate is

one of the important factors at the time of optimization. In this

paper, authors have taken a data clustering approach with

improved bee colony algorithm and opposition based learning to

improve the rate of convergence and quality of clustering. It

introduces the opposite bees that are created using opposition

based learning to achieve better exploration. These opposite bees

occupy exactly the opposite position that of the mainstream bees

in the solution space. Both the mainstream and opposite bees

explore the solution space together with the help of Bee Colony

Optimization based clustering algorithm. This boosts the

explorative power of the algorithm and hence the convergence

rate. The algorithm uses a steady state selection procedure as a

tool for exploration. The crossover and mutation operation is

used to get balanced exploitations. This enables the algorithm to

avoid sticking in local optima. To justify the effectiveness of the

algorithm it is verified with the open datasets from the UCI

machine learning repository as the benchmark. The simulation

result shows that it performs better than some benchmark as well

as recently proposed algorithms in terms of convergence rate,

clustering quality, and exploration and exploitation capability.

Keywords—Bee colony optimization; BCO based clustering;

data clustering; partitional clustering; meta-heuristic search

I. INTRODUCTION

Clustering is one of several notable research areas in data
mining. It is an art of grouping elements with a goal that
elements in a cluster are dynamically similar compared to the
elements of other clusters [1]. There are two significant
variants of clustering principles, hierarchical and partitional
clustering [1,2,3]. The key issue with hierarchical clustering is
once the cluster arrangements are made it can‟t be altered, as a
result reallocation of elements is difficult. In this paper, our
focus is on partitional clustering. k-Means, k-Medoids, PAM,
and CLARA [4] are some examples of partitional clustering
techniques. Because of simplicity and relatively low time
complexity, the k-Means algorithm has gain popularity over
the years. But the results of the k-Means clustering largely
depend on the initially chosen centroids, and it usually
converges to local optima. It is also unable to handle higher
dimensional datasets.

To address this issue, several optimization techniques have
been proposed and found to be effective in this respect. Over
the last two decades several optimization based clustering
techniques proposed for different applications. Following are
some of them. The clustering applications based on Ant
Colony Optimization (ACO) introduced in [5,6,7] are based on
the foraging behavior of artificial ants. Particle Swarm
Optimization (PSO) based clustering algorithms that mimic a
flock of swarming particles' food-finding behavior are
presented in [8,9,10,11,12]. In [13,14,15,16,17], the Bee
Colony Optimization (BCO) based clustering methods are
proposed. These are modeled on the way artificial bees collect
food. The clustering methods based on Genetic Algorithms
(GA) proposed in [18,19,20] are motivated by biological
processes as crossing, mutation, and inheritance.

Despite the presence of several optimization techniques for
clustering new techniques are encouraged because every
technique has its pros and cons. For example; ACO has slow
convergence, falls in local optima, low similarity and high time
complexity [21]; PSO depends on predefined cluster centroids
and is trapped in local optima for higher dimensional datasets
[22]; BCO has a low convergence rate and imbalanced
exploration and exploitation [23]; and the slowness of genetic
algorithms (GA) is frequently questioned. Again, no technique
guarantees proper grouping for a wide variety of applications.
The overall study of the algorithms concludes that clustering a
wide verity of applications is still an open problem and new
algorithms are always appreciated. The new meta-heuristic
techniques for the clustering problem should address some of
the common issues such as dependency on the initial cluster
centroids, slow convergence rate, more emphasis on
exploration than exploitation, falling in local optima of larger
datasets, low accuracy, and higher computational complexity.
In recent years, many optimization techniques for clustering
problem proposed that successfully addressed these issues.
Some of these are discussed in related works section.

The rate of convergence of a clustering algorithm mainly
depends on the initially chosen centroids. The convergence rate
is faster if these initially chosen centroids are closer to the
optimal centroids. Otherwise, it takes a considerably large time
to converge. To improve the convergence rate and get better
clustering results keeping a balance between exploration and
exploitation in this paper, we have proposed an Opposition
Learning based Improved Bee Colony Optimization (OLIBCO)
algorithm for data clustering. The OLIBCO algorithm
considers an opposite set of bees along with the initially chosen

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

254 | P a g e

www.ijacsa.thesai.org

mainstream bees. First a set of mainstream bees initialized with
randomly selected centroids, then the corresponding opposite
bees are created with opposite centroids using opposition based
learning technique. Both the mainstream bees and opposite
bees explore the solution space together using Bee Colony
Optimization based clustering algorithm. This intensifies the
exploration, thereby helps in finding better cluster centroids at
an early stage of the solution. Every bee generates its cluster in
K (number of clusters) stages. In every stage, once a feasible
solution found the bees come back to hive to compare their
solution, thereby recruiter bees recruit their followers and go to
next stage. After all stages complete the best solution found
and remaining data objects allocated to this and referred as
local best. The local best considered to be the global best if it is
better than the previous global best. The use of opposition
based learning helps in getting faster convergence and the
crossover and mutation operations applied to the local best
helps in further exploitation of the result.

The rest part of the paper is organized as follows. The
related works is discussed in Section II. Section III presents the
proposed algorithm with complexity analysis. Section IV
shows the simulation and comparative analysis of the
algorithm for different applications. Finally, Section V presents
the conclusion and future work.

II. RELATED WORKS

Several new optimization techniques for the clustering
problem have been proposed over the years. The Ant Colony
Optimization (ACO) [24] is based on the foraging behavior of
artificial ants. In [5], an energy-efficient clustering routing
method based on the enhanced ACO algorithm introduced to
address the issue of energy consumption in UWSNs. For no-
wait flow shop scheduling, a hybrid ant colony algorithm based
on crossover and mutation mechanisms is developed with the
goal of minimizing the maximum completion time in [6]. To
find the ideal CH for an energy-efficient routing protocol in
WSN the Ant Colony Optimization (ACO) integrated
Glowworm Swarm Optimization (GSO) technique (ACI-GSO)
proposed in [7]. The Particle Swarm Optimization (PSO) is a
population-based heuristic search method proposed in [25]. In
order to achieve flawless clustering with balanced load and
energy-efficient optimization, the authors in [8] used a GWO-
PSO-based clustering method. For Cooperative PSO based
clustering, a new initialization approach has been put forth in
[9]. The suggested data clustering strategy in [10] is based on
the KDE and PSO clustering algorithm resolves the issues of
PSO-based clustering approaches. The work in [11] illustrates
a secure technique for clustering using Improved Particle
Swarm Optimization Algorithm in IoT. To get the best network
performance, a method based on GA and PSO is proposed in
[12] for the CH selection and to optimize the sink mobility.

The Bee Colony Optimization (BCO) is another meta-
heuristic algorithm inspired by the food collection strategy of
honey bee swarms [26]. An effective method for regularly
finding, aggregating, analyzing, and managing important data
on potential patients collected from the internet of medical
things is shown in [13]. The research [14] proposes a
revolutionary artificial bee colony approach for data clustering.
BCO+KM clustering is a hybrid data clustering algorithm,

which combines BCO and K-means proposed in [15]. In [16], a
data clustering approach proposed called Modified BCO
algorithm where a bee that is with a better fitness receives the
high preference. The study [17] proposes an enhanced bee
colony optimization algorithm with a document clustering
application. The work in [27] looks into the multi-objective
system reliability optimization problem using fuzzy
parameters. In recent years some other optimization techniques
proposed for different task. These include: Whale Optimization
Algorithm (WOA) [28,29], Cuckoo Search Optimization
(CSO) [30,31], Kho-Kho optimization algorithm [32], P-spline
based clustering [33], Moth-Flame Optimization (MFO)
algorithm [34], Brain Storm Optimization (BSO) algorithm
[35], and Class Topper Optimization (CTO) algorithm [36].

Opposition based learning is another helpful technique in
the field of optimization. There are several researches done in
the literature using opposition based learning for optimization
of different tasks. Some of them are given here. In [37], an
approach discussed for dividing the population into several
memeplexes using shuffled differential evolution. To improve
the convergence, the authors in [38], used this technique with
harmony search meta-heuristic optimization. In [39], the
authors have employed opposition-based learning to break
down a multi-objective optimization problem into a number of
scalar optimization sub-problems, which they are then
simultaneously optimizing with the evolutionary algorithm. To
overcome the limitations of PSO, the authors in [40], have
utilized the generalized opposition based learning. For data
clustering problems, the authors have used Chimp
Optimization Algorithm, Generalized Normal Distribution
Algorithm, and Opposition-Based Learning method in [41]. In
[42], the authors have proposed an augmented arithmetic
optimization technique with the help of levy flight distribution
and opposition based learning for data clustering. In [43],
authors have combined it with chaotic maps, and PSO for text
clustering.

III. PROPOSED OLIBCO ALGORITHM FOR DATA

CLUSTERING

A. Mapping of OLIBCO for Clustering Problem

The Bee Colony Optimization (BCO) algorithm [26]
considers three kinds of bees, namely scout bees, employed
bees, and onlooker bees. First, the scout bees move around the
search space looking for food sources. After such sources
found, the scout bees become employed bees; they evaluate the
quality of the found food sources (the nectar amount); and back
to their hive. The employed bees go to the dance floor one by
one and show others the quality of the food source they
discovered (through the waggle dance). This way, every
employed bee recruits some onlooker bees and travel to the
same source for food collection. Once the food from the source
exhausted all these bees become scout bees. The complete set
of possible food sources that artificial bees can explore
represents the solution space. A bee moves in the solution
space and discovers a food source as a candidate solution.
Again, we know that the ultimate goal of a clustering problem
is to find a set of mutually exclusive groups called clusters.
Hence, a bee discovers a candidate solution (a set of clusters).
That means every bee has a set of clusters and a set of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

255 | P a g e

www.ijacsa.thesai.org

centroids as its identifier. For a multi-dimensional dataset
containing K different classes of data objects, a clustering
solution is a set of K clusters identified by K centroids
(C1,C2,...,CK), where each Ci is an m-dimensional data object in
the dataset. In OLIBCO, it is assumed that all the bees are of a
similar category. Every bee goes out for discovering feasible
solutions at the same time. They select some data objects from
the dataset and add them to their respective clusters. After
coming back to their hive they compare the solutions using an
estimate „Sum of Intra Cluster Distances‟ (SICD). Thus, they
find the local best solution. The SICD can be computed as
follows [16,17]:

 ∑ ∑

 , (1)

where d(c,o) is Euclidean distance between two n-
dimensional data objects c and o. The terms k, n, c, and o
represent the number of clusters, number of data objects in
each cluster, the cluster center and the data objects
respectively. Finally, the local best is compared with the global
best, update the global best if required, and continue to next
iteration.

B. Proposed OLIBCO Clustering Algorithm

The OLIBCO is a population-based meta-heuristic
optimization algorithm inspired by opposite bees. The opposite
bees are capable to explore on the opposite side of the
mainstream bees. They play an important role in improving the
explorative power of the algorithm. The exploration is again
powered by a steady-state algorithm which adds better particles
into different clusters. The algorithm uses a probability-based
selection approach to give every bee (both mainstream and
opposite bees) a fair chance to become a recruiter, that
provides diversity in solution. For further enhancement in
exploitation, the algorithm uses the crossover and mutation
concept in the local best solution. The high level flow diagram
is shown in Fig. 1. The algorithm is presented in Algorithm 1
and steps are explained in detail below.

Fig. 1. Flow diagram of OLIBCO.

1) Initialization: At first, the algorithm loads the data set

D (an n × m matrix) into memory. Here, n is the number of

data objects and m is the number of attributes. It takes number

of bees (B), number of clusters (K), and maximum number of

iteration (T) as input. The total number of bees B includes the

number of mainstream and opposite bees both in an equal

proportion. Every bee maintains K number of empty clusters

in it. The algorithm initializes K random cluster centroids and

finds its SICD value. In first step, it initializes B/2 number of

mainstream bees with initial centroids. To avoid repetition in

the data allocation it internally maintains an allocate array of

size n. It is not an overhead for the algorithm because for

setting the fields in an array take constant time.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

256 | P a g e

www.ijacsa.thesai.org

2) Creation of opposite bees: Meta-heuristic optimization

algorithms tend to make initial random guesses. The OLIBCO

algorithm also initializes the mainstream bees randomly. If

these mainstream bees span throughout the solution space then

no need to worry. But there is a great possibility that they

belong to a specific region of the solution space. If this is the

case then exploration may confine to the same region or may

not cover the complete solution space. In such cases, either the

convergence rate is reduced or the solution evolves in a

different direction and never comes near to optimal solution.
Considering a large number of mainstream bees can be an

idea to this end. But we have to keep in mind that more number
of bees implies more exploration. But, more weightage on
exploration does not help always; instead, it increases the time
complexity. Therefore, we have to choose the number of bees
carefully to keep balance between the exploration quality and
exploration time. Again, we cannot give guaranty that all these
bees will not be in the same area, because these are created
randomly.

To address this issue OLIBCO creates an equal number of
opposite bees in a different direction (that of mainstream bees).
Fig. 2 displays two different scenarios, first Fig. 2(a) shows a
case where all are mainstream bees and are chosen in the same
region, and second Fig. 2(b) shows some mainstream bees and
their opposite bees together span throughout the solution space.
In the first case, the exploration confined to one part of the
solution space, because the general tendency of a bee is to
explore nearby regions. In the second case, no matter where the
mainstream bees are allocated, the corresponding opposite bees
will cover the other region. By this way, the bees (mainstream
and opposite bees) span throughout the solution space.

The OLIBCO algorithm creates the opposite bees after the
initialization of mainstream bees using opposition based
learning [44, 45]. A cluster center is a data vector from a
dataset with m attribute. For all these attributes, the opposite
values are computed using (2) [44, 45].

 , (2)

where, p is a real number in the range [a,b] and p′ is it‟s
opposite number. Once the opposite values found, we combine
them to a data vector to represent a centroid. For example,

Algorithm 1 OLIBCO Clustering Algorithm

Require: Maximum number of iterations T, number of

clusters K, number of artificial bees B, and dataset D,

with n objects, each of them are of m dimensional

Ensure: Classified objects as clusters

1: Initialize all the B bees with K number of empty

clusters and initialize Global Best (GB).

2: for t = 1 to T do

3: if t = 1 then

4: Initialize K random cluster centroids, and find

SICD value for it.

5. else

6. Consider the centroids of the global best

solution.

7: end if

8: Randomly select K initial cluster centers for B/2

number of mainstream bees.

9: Create another set of B/2 opposite bees bees

10: for k = 1 to K do

11: for b = 1 to B do

12: Use the steady state selection procedure to

select a population of x data objects

13: Assign these data objects to the k
th

 cluster of

the b
th

 bee

14: Calculate SICD value of the b
th

 bee.

15: end for

16: for b = 1 to B do

17: Find the probability of stickiness (P) for the

b
th

 bee

18: Generate a random number r in the range 0 to

1.

19: if P < r then

20: Select a recruiter using roulette wheel

selection technique and follow its solution.

21: end if

22: end for

23: Find the best partial solution (bee clusters

with minimum SICD value).

24: end for

25: Allocate the left-over data objects to the local

best solution, and update centroids.
26: Find the SICD value of the local best
solution.
27: if Global best solution does not change for an

adequate number of iterations t then

28: Perform crossover and mutation operation on

the centroids of the local best solution, and find

the SICD value.

29: Update the local best solution if the new

result is better than the previous, otherwise

discard the new result.

30: end if

31: Perform switching operation of data objects

between the clusters of local best solution.

32: if t ≠ 1 then

33: if SICD value at iteration t<SICD value

at iteration t-1 then

34: Update the global best solution with the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

257 | P a g e

www.ijacsa.thesai.org

results of the local best solution.

35: end if

36: end if

37: end for

38: Return the global best solution.

Consider the following mainstream bee and its opposite bee
defined with three cluster centers.

Beemainstream = ((c11, c12, ..., c1m),(c21, c22, ..., c2m), ...;

Beeopposite = ((c′11, c′12, ..., c′1m),(c′21, c′22, ..., c′2m), ...;

Here, cij and c′ij are the attributes of the centroids of
mainstream bees and their opposite bees, that represents the j

th

attribute of the i
th
 cluster center. Every c′ij is generated using

(2). Similarly, for all the centroids of each bee are found to
create the corresponding opposite bees. Moreover, the number
of mainstream bees, doubles the total number of bees.
Therefore, we cannot create large number of mainstream bees
initially. We have taken the total number of bees (B) as input
parameter. First, B/2 number of mainstream bees initialized
then another set of B/2 opposite bees generated.

The algorithm runs for K (k=1,2,...,K) number of clusters.
In each iteration, all the bees build one cluster (k

th
) at a time.

So there is an inner loop that varies from (b=1 to B). For every
bee b, the forward and backward passes generate the feasible
solutions. After the outer loop (k loop) ends all the bees have a
partial solution. Here each iteration of the outer loop (k loop) is
considered as a stage.

Fig. 2. Two different scenarios where (a) all bees are main stream bees

chosen in same region (worst case) and (b) some mainstream and their
opposite bees.

3) Forward pass: Once the mainstream bees initialized

and their opposite bees created, all of them start exploring the

solution space. In this process, they select some data objects

from the dataset D and add them into their respective clusters

based on a fitness (SICD) value. The exploration process of

each bee depends on this selection procedure. For this, the

OLIBCO algorithm uses a steady state selection approach

[35]. The steady state searching process starts with creating an

initial population of x data objects. This step repeats for M

number of times. Here, M represents the number of moves. In

each move, the search process refines the data objects to

create a better population of x data objects. More the number

of moves (M), better the exploration. By increasing M the

time complexity also increases. Again too small value of M

implies less exploration that leads to slow convergence rate,

so, it must be chosen carefully. After the forward pass

completes, each bee has a feasible solution (a set of clusters).

Now, all of them compute the strength of their solution using

the SICD measure defined in (1).

4) Backward pass: In the backward pass, bees return to

their hive, and share the information about their generated

solution. Depending on the strength of the solution, the bee

determine whether it will continue with its solution and be

available as a recruiter, or will adopt (follow) some other‟s

solution. The following equation defines the probability of a

bee sticking to its solution [16,17].

 , (3)

where b represents the current bee, k represents stage, and t
represents iteration. Ob(k,t) represents the normalized value of
SICD of b

th
 bee and is computed using the equation (4) [16,17].

 , (4)

where SICDb is the SICD value of current bee b, SICDmax,
and SICDmin represents the maximum and minimum value of
the SICD. From (3), we can observe P (probability of
stickiness) and Ob are inversely proportional to each other, and
the value of Ob depends on SICDb. That means, when Ob
increases the probability of a bee sticking to its solution
decreases. The bee with smaller probability P may discard its
solution and become a follower. If decision is to become a
follower, then the bee will select another bee and adopts (copy)
its solution. Every follower always wants to follow the best.
This tendency of follower bees leads to local optima. The
OLIBCO algorithm uses roulette wheel selection procedure
[46] to avoid this. This gives every bee a fair chance to become
a recruiter. It also gives diversity to the solution. This selection
procedure first labels the surface of the wheel based on the
proportion of the SICD values of each bee. Then the wheel
spun. After it stops, the wheel pointer decides the result.
Finally, the backward pass computes the SICD values of all the
bees using (1).

5) Allocation of remaining data objects: After all the

stages are complete, each bee has a partial clustering solution.

But there is a possibility that some data objects are not

allocated to any of the partial solutions. These left-over

(unallocated) data objects are allocated to the best partial

solution (among all the bees) using a single pass of the k-

Means algorithm [47]. It takes the centroids of the best partial

solution as initial cluster centroid and allocates the left-over

data objects to the nearest cluster using the distance metric d.

It also updates the centroids to the best candidate centroids.

Note that we have used only one iteration of k-Means.

6) Crossover and mutation operation: The opposite bees

and steady state selection procedure provides faster

convergence. But after this, there is a possibility that the

solution does not update for a longer period of time. It may

have been trapped in a local optima. To take it out from the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

258 | P a g e

www.ijacsa.thesai.org

trapped region (if there is any possibility) the algorithm

applies the crossover and mutation [48] operation on the

cluster centroids. Moreover, swapping should be between

similar type attributes. We have used a one point crossover for

swapping later half m/2 attributes of the consecutive centroids.

We can do this swapping in any combination. As part of

mutation operation, some or all the attributes of a centroid is

substituted by another set of closer values. The main aim of

the mutation step in our algorithm is to move the centroids in

nearby locations to check the existence of any better solution.

After the new centroids generated the SICD of the solution is

computed again. If this new solution is better than the current

local best, then the local best solution is updated.

7) Switching operation of data objects: In the previous

steps at the allocation of remaining data objects and crossover

and mutation, somehow the centroids are updated. As the data

objects are assigned to the specific cluster based on Euclidian

distance with the centroids, after centroids update, there may

be some data objects wrongly placed in a cluster. The

switching operation of data objects allows them to move to

other clusters where its strength is better than the current one.

The chance of switching is more for the data objects located in

the boundary region of the cluster. This switching operation

helps in further improvements in the result, thereby

contributes to the faster convergence rate of the algorithm.

8) Global best update: The algorithm runs for T number

of iterations. In each iteration, it finds a solution (local best). If

the SICD value of the solution at iteration t (SICDt) is less

than the SICD value of the global best solution at iteration t-1

(SICDt−1) then it updates the global best solution to the

solution found in the current iteration. Then it continues to the

next iteration with updated global best.

C. Asymptotic Analysis of OLIBCO Clustering Algorithm

The time complexity of an algorithm is a function of input
parameters. This function can be generated by computing the
sum of the number of times each step of the algorithm
executes. Table I shows the step counts for each individual
steps of the OLIBCO clustering algorithm. Thus, the time
complexity function of the algorithm is:

f(T, K, B) = (Mx + x + 10)TKB + 7TK + (11 + c1)T + 1

We can observe that in step 12 a factor of Mx multiplied
with TKB. This is because in the forward pass the bees create a
population of x (fixed) data objects. For this, they are allowed
to make M number of moves in the solution space. With an
increased number of moves M, the exploration time also
increases, without much difference in the strength of the
solution (after a certain point). Keeping this in mind, we have
fixed the number of moves M. In step 25, a constant factor c1 is
multiplied; because the number of left-over data objects is
unknown. As most of them are assigned to different clusters of
different bees in the forward pass, it must be in small numbers
(so considered as a constant). The step 28 performs crossover
and mutation. As it operates between K cluster centers, both
these operations step count is TK and for SICD computation it
is T. Now, the time complexity function can be rewritten as:

f(T, K, B) = y1TKB + 7TK + y2T + 1

Clearly, the highest growing term in this function is TKB.
Hence, ignoring the constant factor the time complexity of the
algorithm is O(TKB). Moreover, the data set dimensions (n ×
m) also has an important role, which is not considered above.
Table I shows the step counts without considering dimension
of the dataset n and m. Considering the dataset dimensions the
time complexity of the algorithm becomes O(TKBmn).

TABLE I. STEP COUNTS OF THE OLIBCO ALGORITHM

Step

Number

Count Step

Number

Count

1 1 18 T × K × B

2 T+1 19 T × K × B

3 T 20 T × K × B (worst

case)

4 1 23 T × K

6 T-1 25 T × c1

8 T × K × B/2 26 T

9 T × K × B/2 27 T

10 T × (K + 1) 28 T × (2K + 1) (worst

case)

11 T × K × (B + 1) 29 T (worst case)

12 T × K × B × (M ×

x)

31 T × K

13 T × K × B × x 32 T

14 T × K × B 33 T – 1

16 T × K × (B + 1) 34 T – 1

17 T × K × B 38 1

IV. SIMULATION AND COMPARATIVE ANALYSIS

The algorithm is implemented in Java with required
parameters D, B, K and T. To realize the performance of the
OLIBCO algorithm, we have analyzed it concerning different
applications. The benchmark datasets from the UCI machine
learning repository used for analysis purposes are shown in
Table II. Validation of the performance is done through an
analysis of SICD values for different applications by varying
the number of bees B and the number of moves M, followed by
a comparative study of SICD values with some existing
optimization techniques for clustering. The results presented
here are the average of 25 random instances of executions.

TABLE II. SPECIFICATION OF THE DATASETS USED

Datasets Number of

clusters

Number of

attributes

Number of data

objects

Iris 3 4 150 (50, 50, 50)

Glass 6 9 214 (70, 76, 17, 13,
9, 29)

Cancer 2 9 683 (444, 239)

CMC 3 9 1473 (629, 334, 510)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

259 | P a g e

www.ijacsa.thesai.org

TABLE III. SICD VALUES BASED ON DIFFERENT NUMBERS OF BEES B0

Application Number of bees SICD

Iris

4 97.10

10 96.90

14 96.77

18 96.80

Glass

4 226.19

10 224.09

14 224.67

18 224.34

Cancer

4 2985.65

10 2980.32

14 2977.09

18 2983.93

CMC

4 5682.67

10 5676.97

14 5678.07

18 5684.89

Fig. 3. SICD analysis of (a) Cancer dataset, (b) CMC dataset by varying

number of moves.

Fig. 4. Convergence graph of (a) Iris, (b) Glass, (c) Cancer, (d) CMC

datasets.

Table III shows the SICD analysis for different applications
on varying B. We found that the selection of the number of
bees has a large impact on the SICD value of the clusters. A
small number of bees indicate less exploration. That means
there is a chance that some areas of solution space will remain
unexplored, which may give poor results. This fact can be
observed from the table when B=4. On the other hand, a large
number of bees indicate too much exploration. Though the
increased number of bees provides diversity, it comes with
increased exploration time. Again it may not improve the
results drastically (Table III, B=18). Therefore, compromising
time complexity is not a good idea.

The steady-state selection procedure provides exploration
power to the bees. Here in every move, the bee tries to improve
its generated solution strength by placing a weaker data object
with another stronger data object. Thus, the number of moves
M (that a bee does) has also a huge impact on the algorithm‟s
performance. Less number of bees has to make a large number
of moves to explore the solution space whereas a large number
of bees can handle it with comparatively less number of moves.
Fig. 3 presents the SICD values of the generated clustering
solution of the Cancer dataset by varying number of moves and
keeping the number of bees (B) and initial population size (x)
fixed. From the implementation results, we observed that when
M is small the generated SICD value is high. With increased M
value the SICD decreases and after a certain number of moves,
it does not change much. The larger the initial population size
x, the number of moves required is more. Depending on the
dataset used the value of x can vary.

In optimization algorithms, the convergence rate is an
important factor to analyze the performance. Fig. 4 displays the
convergence analysis of the algorithm made for datasets used
by varying the number of bees. Fig. 4 also shows that after the
initial faster convergence the graph remains constant. The
reason is that it is trapped in local optima (for the current
centroid, it is the best result). The cross over and mutation
operations are used in the algorithm to check this scenario and
exploit the result if there is any possibility of improvement.
This fact can be observed in B=10, and B=14 of Fig. 4(a), 4(c),
B=4 of Fig. 4(b) and B=18 of Fig. 4(d).

Finally, we have made a comparison of the SICD value of
the clustering solution for some existing algorithms in Table
IV. The OLIBCO algorithm out performs k-Means and
Classical PSO algorithm for Iris, Glass, Cancer, and CMC
datasets except for the best cases of classical PSO of Iris
dataset and k-Means of Glass dataset. The comparison is also
made with IBCOCLUST [17], KIBCLUST [17], Hybrid I [17],
Hybrid II [17], MBCO [16], MKCLUST [16], and
KMCLUST[16]. It is found that for Iris dataset OLIBCO
performs better than IBCOCLUST and the results are near to
others. For Glass dataset, the average case SICD is better than
IBCOCLUST, KIBCLUST, Hybrid I and MBCO, whereas on
best case, it is better than MBCO, MKCLUST and
KMCLUST. For Cancer dataset, the OLIBCO gives better
results compared to others except average case of IBCLUST
and Hybrid II and worst case of MBCO and MKCLUST.
Again, for CMC dataset, OLIBCO outperforms MBCO,
MKCLUST and KMCLUST.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

260 | P a g e

www.ijacsa.thesai.org

Here we have observed that for all the applications, the
algorithm converges to a certain level quickly, then it keep on
exploiting the solution before final convergence result. Clearly,
the OLIBCO algorithm has a faster convergence rate. The

results show that OLIBCO outperforms some of the existing
algorithms in terms of SICD. Hence, gives better clustering
result.

TABLE IV. A COMPARATIVE ANALYSIS OF SICD VALUES WITH SOME EXISTING ALGORITHMS

Application

s

Measur

e

k-

Means

[16,17]

Classica

l PSO

[16,17]

IBCOCLUS

T [17]

KIBCLUS

T [17]

Hybrid

I [17]

Hybrid

II [17]

MBCO

[16]

MKCLUS

T [16]

KMCLUS

T [16]

OLIBC

O

Iris

Best 97.33 96.01 97.22 96.40 96.33 95.10 94.14 95.01 95.19 96.77

Avg 106.05 100.01 97.27 96.40 96.38 95.14 96.03 96.01 95.98 96.77

Worst 120.45 117.81 - - - - 104.22 201.00 200.10 97.88

Glass

Best 215.68 270.12 214.85 217.97 214.78 214.71 215.00 215.00 215.23 220.14

Avg 260.40 289.31 225.19 226.34 226.59 221.50 225.00 220.00 221.00 224.30

Worst - 332.00 - - - - 230.00 333.00 332.00 281.17

Cancer

Best 2987.0

0

2974.14 2976.22 2980.15 2976.2

4

2976.1

1

2965.2

5

2969.01 2971.01 2962.31

Avg 2988.3

0

3329.22 2976.89 2980.15 2977.5

9

2976.2

4

2990.2

5

2985.23 2995.43 2977.43

Worst 3521.5
0

- - - - - 3001.0
1

3076.10 3180.01 3083.83

CMC

Best 5842.2

0

5694.07 - - - - 5680.1

2

5678.20 5678.40 5649.76

Avg 5893.6
0

5729.11 - - - - 5685.2
1

5684.80 5684.60 5678.42

Worst 5934.4

0

5880.02 - - - - 5798.2

0

5790.21 5689.70 5750.66

V. CONCLUSION AND FUTURE WORK

In this paper, a new OLIBCO algorithm is proposed as a
potential solution for biomedical data clustering. It uses the
opposite bees to shield the other directions of mainstream bees.
This enhances the quality of the exploration result, thereby
improving the convergence rate. The crossover and mutation
operations along with the switching operation allow further
exploitation of the solution and avoid being stuck in local
optima. For validation of the clustering result, we have applied
it for different benchmark applications from the UCI machine
learning repository. The simulation results show that the
algorithm has a faster convergence rate and possible
exploitations. It is also observed that the algorithm converges
to a certain level within 50 to 100 iterations for all the datasets
used. After an initial faster convergence it gives enough chance
for exploitations. From the analysis of results, it is clear that by
adopting an optimal number of bees B and the number of
moves M for exploration the algorithm give better
performances. Further from the algorithm it is observed that
there is better performance with a similar level of time
complexity. The comparison made with different existing
algorithms proves the proposed OLIBCO algorithm‟s efficacy.
Further investigations for higher dimensional datasets need to
be explored in the future. The algorithm should be tested in
different real-life applications of science and technology.

REFERENCES

[1] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques.
Elsevier, 2011.

[2] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern
recognition letters, vol. 31, no. 8, pp. 651–666, 2010.

[3] Li, Xiaorong, and Zhinian Shu. "Research on Big Data Text Clustering
Algorithm Based on Swarm Intelligence." Wireless Communications
and Mobile Computing 2022 (2022).

[4] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE
Transactions on neural networks, vol. 16, no. 3, pp. 645–678, 2005.

[5] X. Xiao and H. Huang, “A clustering routing algorithm based on
improved ant colony optimization algorithms for underwater wireless
sensor networks,” Algorithms, vol. 13, no. 10, p. 250, 2020.

[6] O. Engin and A. G¨u¸cl¨u, “A new hybrid ant colony optimization
algorithm for solving the no-wait flow shop scheduling problems,”
Applied Soft Computing, vol. 72, pp. 166–176, 2018.

[7] D. L. Reddy, C. Puttamadappa, and H. Suresh, “Merged glowworm
swarm with ant colony optimization for energy efficient clustering and
routing in wireless sensor network,” Pervasive and Mobile Computing,
vol. 71, p. 101338, 2021.

[8] J. S. Raj, “Machine learning based resourceful clustering with load
optimization for wireless sensor networks,” Journal of Ubiquitous
Computing and Communication Technologies (UCCT), vol. 2, no. 01,
pp. 29–38, 2020.

[9] S. Choudhary, S. Sugumaran, A. Belazi, and A. A. A. El-Latif, “Linearly
decreasing inertia weight pso and improved weight factor-based
clustering algorithm for wireless sensor networks,” Journal of Ambient
Intelligence and Humanized Computing, pp. 1– 19, 2021.

[10] M. Alswaitti, M. Albughdadi, and N. A. M. Isa, “Density-based particle
swarm optimization algorithm for data clustering,” Expert Systems with
Applications, vol. 91, pp. 170–186, 2018.

[11] Bao, Zhanbiao. "Secure Clustering Strategy Based on Improved Particle
Swarm Optimization Algorithm in Internet of Things." Computational
Intelligence and Neuroscience 2022 (2022).

[12] B. M. Sahoo, H. M. Pandey, and T. Amgoth, “Gapso-h: A hybrid
approach towards optimizing the cluster based routing in wireless sensor
network,” Swarm and Evolutionary Computation, vol. 60, p. 100772,
2021.

[13] E. El-Shafeiy, K. M. Sallam, R. K. Chakrabortty, and A. A. Abohany,
“A clustering based swarm intelligence optimization technique for the
internet of medical things,” Expert Systems with Applications, vol. 173,
p. 114648, 2021.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

261 | P a g e

www.ijacsa.thesai.org

[14] F. Zabihi and B. Nasiri, “A novel history-driven artificial bee colony
algorithm for data clustering,” Applied Soft Computing, vol. 71, pp.
226–241, 2018.

[15] J. Revathi, V. Eswaramurthy, and P. Padmavathi, “Hybrid data
clustering approaches using bacterial colony optimization and k-means,”
in IOP Conference Series: Materials Science and Engineering, vol. 1070,
no. 1. IOP Publishing, 2021, p. 012064.

[16] P. Das, D. K. Das, and S. Dey, “A modified bee colony optimization
(mbco) and its hybridization with k-means for an application to data
clustering,” Applied Soft Computing, vol. 70, pp. 590–603, 2018.

[17] R. Forsati, A. Keikha, and M. Shamsfard, “An improved bee colony
optimization algorithm with an application to document clustering,”
Neurocomputing, vol. 159, pp. 9–26, 2015.

[18] B. N. Chebouba, M. A. Mellal, and S. Adjerid, “Fuzzy multiobjective
system reliability optimization by genetic algorithms and clustering
analysis,” Quality and Reliability Engineering International, vol. 37, no.
4, pp. 1484–1503, 2021.

[19] S. Verma, N. Sood, and A. K. Sharma, “Genetic algorithm-based
optimized cluster head selection for single and multiple data sinks in
heterogeneous wireless sensor network,” Applied Soft Computing, vol.
85, p. 105788, 2019.

[20] M. Alswaitti, M. Albughdadi, and N. A. M. Isa, “Variance-based
differential evolution algorithm with an optional crossover for data
clustering,” Applied Soft Computing, vol. 80, pp. 1–17, 2019.

[21] A. M. Jabbar, K. R. Ku-Mahamud, and R. Sagban, “Ant-based sorting
and aco-based clustering approaches: A review,” in 2018 IEEE
Symposium on Computer Applications & Industrial Electronics
(ISCAIE). IEEE, 2018, pp. 217–223.

[22] W. Liu, Z. Wang, X. Liu, N. Zeng, and D. Bell, “A novel particle swarm
optimization approach for patient clustering from emergency
departments,” IEEE Transactions on Evolutionary Computation, vol. 23,
no. 4, pp. 632–644, 2018.

[23] H. Hakli and M. S. Kiran, “An improved artificial bee colony algorithm
for balancing local and global search behaviors in continuous
optimization,” International Journal of Machine Learning and
Cybernetics, pp. 1–26, 2020.

[24] Dorigo, Marco, Mauro Birattari, and Thomas Stutzle. "Ant colony
optimization." IEEE computational intelligence magazine 1.4 pp. 28-39,
2006.

[25] Kennedy, J., and R. Eberhart. "Particle swarm optimization In:
Proceedings of ICNN 95-International Conference on Neural Networks,
1942–1948." IEEE, Perth. https://doi. org/10.1109/icnn (1995).

[26] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for
numerical function optimization: artificial bee colony (abc) algorithm,”
Journal of global optimization, vol. 39, no. 3, pp. 459–471, 2007.

[27] Chebouba, Billal Nazim, Mohamed Arezki Mellal, and Smail Adjerid.
"Fuzzy multiobjective system reliability optimization by genetic
algorithms and clustering analysis." Quality and Reliability Engineering
International 37.4, pp. 1484-1503, 2021.

[28] S. M. Bozorgi, M. R. Hajiabadi, A. A. R. Hosseinabadi, and A. K.
Sangaiah, “Clustering based on whale optimization algorithm for iot
over wireless nodes,” Soft Computing, vol. 25, no. 7, pp. 5663–5682,
2021.

[29] Singh, Hakam, et al. "An enhanced whale optimization algorithm for
clustering." Multimedia Tools and Applications 82.3, pp. 4599-4618,
2023.

[30] S. I. Boushaki, N. Kamel, and O. Bendjeghaba, “A new quantum chaotic
cuckoo search algorithm for data clustering,” Expert Systems with
Applications, vol. 96, pp. 358–372, 2018.

[31] N. Mittal, S. Singh, U. Singh, and R. Salgotra, “Trust-aware energy-
efficient stable clustering approach using fuzzy type-2 cuckoo search
optimization algorithm for wireless sensor networks,” Wireless
Networks, vol. 27, no. 1, pp. 151–174, 2021.

[32] A. Srivastava and D. K. Das, “A new kho-kho optimization algorithm:
An application to solve combined emission economic dispatch and
combined heat and power economic dispatch problem,” Engineering
Applications of Artificial Intelligence, vol. 94, p. 103763, 2020.

[33] C. Iorio, G. Frasso, A. D‟Ambrosio, and R. Siciliano, “A p-spline based
clustering approach for portfolio selection,” Expert Systems with
Applications, vol. 95, pp. 88–103, 2018.

[34] Y. Xu, H. Chen, A. A. Heidari, J. Luo, Q. Zhang, X. Zhao, and C. Li,
“An efficient chaotic mutative moth-flame-inspired optimizer for global
optimization tasks,” Expert Systems with Applications, vol. 129, pp.
135–155, 2019.

[35] F. Pourpanah, Y. Shi, C. P. Lim, Q. Hao, and C. J. Tan, “Feature
selection based on brain storm optimization for data classification,”
Applied Soft Computing, vol. 80, pp. 761–775, 2019.

[36] P. Das, D. K. Das, and S. Dey, “A new class topper optimization
algorithm with an application to data clustering,” IEEE Transactions on
Emerging Topics in Computing, 2018.

[37] Ahandani, Morteza Alinia, and Hosein Alavi-Rad. "Opposition-based
learning in the shuffled differential evolution algorithm."Soft
computing 16.8, pp. 1303-1337, 2012.

[38] Gao, X. Z., et al. "A hybrid optimization method of harmony search and
opposition-based learning." Engineering Optimization 44.8, pp. 895-
914, 2012.

[39] Ma, Xiaoliang, et al. "MOEA/D with opposition-based learning for
multiobjective optimization problem." Neurocomputing 146, pp. 48-64,
2014.

[40] Wang, Hui, et al. "Enhancing particle swarm optimization using
generalized opposition-based learning." Information sciences 181.20, pp.
4699-4714, 2011.

[41] Boroujeni, Sayed Pedram Haeri, and Elnaz Pashaei. "A Hybrid Chimp
Optimization Algorithm and Generalized Normal Distribution
Algorithm with Opposition-Based Learning Strategy for Solving Data
Clustering Problems." arXiv preprint arXiv:2302.08623 (2023).

[42] Abualigah, Laith, et al. "Augmented arithmetic optimization algorithm
using opposite-based learning and lévy flight distribution for global
optimization and data clustering." Journal of Intelligent
Manufacturing (2022): 1-39.

[43] Bharti, Kusum Kumari, and Pramod Kumar Singh. "Opposition chaotic
fitness mutation based adaptive inertia weight BPSO for feature
selection in text clustering." Applied Soft Computing 43 (2016): 20-34.

[44] Tizhoosh, Hamid R. "Opposition-based learning: a new scheme for
machine intelligence." International conference on computational
intelligence for modelling, control and automation and international
conference on intelligent agents, web technologies and internet
commerce (CIMCA-IAWTIC'06). Vol. 1. IEEE, 2005.

[45] S. Dhargupta, M. Ghosh, S. Mirjalili, and R. Sarkar, “Selective
opposition based grey wolf optimization,” Expert Systems with
Applications, p. 113389, 2020.

[46] A. Aibinu, H. B. Salau, N. A. Rahman, M. Nwohu, and C. Akachukwu,
“A novel clustering based genetic algorithm for route optimization,”
Engineering Science and Technology, an International Journal, vol. 19,
no. 4, pp. 2022–2034, 2016.

[47] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering
algorithm,” Pattern recognition, vol. 36, no. 2, pp. 451–461, 2003.

[48] D. E. Goldenberg, “Genetic algorithms in search, optimization and
machine learning,” 1989.

