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Abstract—The main factor in fractures among seniors and 

women post-menopausal is osteoporosis, which decreases the 

density of bones. Finding a low-cost diagnostic technology to 

identify osteoporosis in its initial stages is imperative considering 

the substantial expenses of diagnosis and therapy. The simplest 

and most widely used imaging method for detecting bone diseases 

is X-ray radiography, however, it is problematic to manually 

examine X-rays for osteoporosis as well as to identify the 

essential components and choose elevated classifiers. To 

categorize x-ray pictures of knee joints into normal, osteopenia, 

and osteoporosis condition categories, authors present a process 

in this investigation that uses three convolutional neural 

networks (CNN) architectures, i.e., Inception v3, Xception, and 

ResNet 18, to create an ensemble-based classifier model. The 

suggested ensemble approach employs a fuzzy rank-based 

unification of classifiers by taking into account two distinct 

parameters on the decision scores produced by the 

aforementioned base classifiers. Contrary to the straightforward 

fusion strategies that have been mentioned in the literature, the 

suggested ensemble methodology finalizes predictions on the test 

specimens by considering the confidence in the recommendations 

of the base learners. A 5-fold cross-validation approach has been 

employed to assess the developed framework using a benchmark 

dataset that has been made accessible to the general population. 

The suggested model yields an accuracy rate of 93.5% with a loss 

of 0.082. Further, the AUC is observed to be 98.1, 97.9 and 97.3 

for normal, osteopenia and osteoporosis, respectively. The results 

demonstrate the model’s usefulness by outperforming various 

state-of-the-art approaches. 

Keywords—Convolutional Neural Network; diagnosis; knee; 

osteoporosis; transfer learning models; X-rays 

I. INTRODUCTION 

Osteoporosis is a serious disease that affects 200 million 
women globally and 9% of Americans over fifty in the US [1]. 
In affluent countries, one in three individuals may suffer from 
an OCF (osteoporotic compression fracture) [1]. After the 
primary injury, the risk of subsequent fractures significantly 
increases [2, 3]. A worse life expectancy and a higher mortality 
rate are both associated with even one OCF [4]. 

Bone mineral density (BMD) is measured using the Dual 
Energy X-ray Absorptiometry (DXA) procedure, which 
establishes the T-score and Z-score values recommended by 
the WHO for various phases of osteoporosis [5]. However, it 
has several drawbacks, such as areal estimations as well as the 
expensive and limited availability of the technology. The 
Quantitative Ultrasound System (QUS) [6], Computed 
Tomography (CT) [7], and Magnetic Resonance Imaging 
(MRI) [8] are further imaging modalities used to identify 

osteoporosis. Whereas CT provides 3D geometric scanning 
with quantitative measures but has an intense radiation 
exposure and does not meet the WHO's criterion of 
osteoporosis diagnosis, MRI is a 3 T enhanced bone 
microarchitecture optical technique but is highly expensive and 
has lesser pixel density [8]. Although QUS is easy to use, non-
invasive, compact, and economical and employs acoustic 
signals to investigate bones, it is site-specific and lacks 
substantial empirical support [6]. Given these constraints, a 
low-cost, easily accessible, and reliable detection system is 
essential. To create computer-aided diagnostic (CAD) systems, 
the investigators used the latest developments in machine 
vision to analyze medical images and computer algorithms. 

Numerous CAD systems, which include deep learning at 
multiple bone locations like the joint, vertebrae, palm, and 
dental, are suggested for osteoporosis assessment [9, 10, 11, 
12]. However, little research has been conducted to diagnose 
knee osteoporosis. Being the joint that supports the body's 
weight and facilitates motion, the knee experiences the most 
strain. Women are more susceptible to tibial and fibular 
fractures, which raises the likelihood of osteoporotic fractures 
around the knee including in elderly society [13]. A significant 
1-year fatality rate of 22% is recorded in senior patients who 
suffer femoral injuries, with poorer mobility and bad living 
conditions [14], and it is anticipated that almost half of 
the knee fractures happen in individuals who are aged over 50 
years. To avoid fractures and save healthcare expenditures, an 
early diagnosis method is required to determine the incidence 
of osteoporosis in the knee bone [15]. 

Convolutional neural network (CNN) approaches based on 
deep learning are becoming increasingly widely used in recent 
years within CAD systems for medical image interpretation 
[16] owing to their state-of-the-art performance in identifying a 
variety of illnesses from pictures, including brain tumors [17], 
respiratory disease [18, 19], cancer [20] and others. In terms of 
classifying medical pictures, CNNs [21] have produced 
cutting-edge results. The fundamental issue with utilizing CNN 
learners is that they require a significant quantity of annotated 
data for training; however, it's extremely challenging to find a 
large-scale dataset in the health sector. Investigators have put 
forward the concept of transfer learning to overcome 
difficulties [18, 22]. In transfer learning, a CNN that has been 
trained on a large population and then provided with training 
on a lower dimension of a different issue makes use of the 
information learned from the larger dataset to quickly learn the 
characteristics of the lower dimension and so efficiently aid in 
image classification. Various models, however, may perform 
better on specific data configurations, meaning that some 
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categories in the dataset may have more precise categorization 
than others. Moreover, traditional rank-based ensemble 
approaches do not utilize the diversity of the forecast odds. The 
significant fact could thus go ignored as a consequence. This 
fact led authors to develop a unique technique in this study 
wherein authors quantified two crucial variables, 
i.e., prediction probability's proximity to 1 and its deviation 
from 1—and used all the knowledge accessible through 
different base classifiers. Furthermore, the proposed method 
combines all of these quantifiable elements to reach the final 
forecast, allowing it to handle the categorization issue more 
and produce an accurate conclusion. 

Ensemble learning [23] is an approach, in which the 
assessment ratings of many learners are combined to forecast 
the ultimate target class of an input data set. An ensemble 
method aims to capture the key characteristics of each of its 
component models, outperforming each base classifier 
individually. These systems are reliable because ensembling 
reduces the range or scattering of the base models' estimates. 
By adding substantial bias to the contending base classifiers, 
the ensemble model's diversity in the predictive performance of 
the base classifiers is mitigated. The standard ensemble 
approach employed in literature uses pre-calculated ratings for 
the classifiers and accords equal value to all constituting 
models' classification results. The biggest drawback of such an 
ensemble is the creation of fixed ratings that are challenging to 
change throughout the test sample classification phase. 
However, the suggested fuzzy rank-based ensemble technique 
accounts for each base classifier's forecast rank for each unique 
test case independently. In this approach, the ensemble 
technique can produce improved and more precise 
classification results. In the current study, authors develop a 
fusion technique that combines the judgment values from three 
basic CNN classifiers, i.e., Inception v3 [24], Xception [25], 
and ResNet 18 [26], to build the proposed ensemble model. 

A. Key Contributions 

An end-to-end classifier employing just deep learning 
algorithms may not function adequately on new datasets due to 
the dearth of data accessible in the medical sector. To create an 
ensemble approach that includes the forecasts from other 
competing systems, the authors employ three transfer learning-
based CNN models. Although straightforward fusion 
techniques like popular vote, balanced averaging, and 
others have been employed in the research, they don't consider 
the predictor's confidence when making assertions. By taking 
this into account when developing the statistical framework for 
the suggested technique, authors can outperform basic 
ensemble techniques that are often employed for diagnosis. 
The current study's highlighting accomplishments are listed 
below. 

 The implementation of ensemble methods employing 
the three base classifiers, i.e.,  Inception v3 [24], 
Xception [25], and ResNet 18 [26] improves the 
effectiveness of the whole system for prediction on the 
limited amount of accessible data. 

 The fuzzy rankings of the classes in the assessment 
scores are determined by applying two non-linear 
operations of various concavities in the ensemble 

approach that is being presented. The lower rank serves 
to identify the anticipated class after computing the sum 
of the products of the three base classifiers' ratings. 

 The employment of two non-linear operations 
guarantees that the confidence in the classifiers' 
forecasts is taken into account in the derivation of the 
rankings, producing more accurate recommendations. 

 The method authors use to measure the difference 
between the forecasted and anticipated values is unique. 
The suggested ensemble model's improvement in 
accuracy is also significant. 

 Regarding classification precision and sensitivity, the 
suggested approach surpasses various cutting-edge 
techniques on the benchmark knee x-ray osteoporosis 
image dataset [9]. 

B. Section Division 

The manuscript is hereafter divided into sections. Section II 
presents the literature survey. Section III presents the details of 
the proposed fuzzy rank-based ensemble model. Section IV 
highlights the experiments done and the results achieved. 
Finally, Section V concludes this research. 

II. LITERATURE SURVEY 

Deep convolution neural networks (DCNN) in particular 
illustrate state-of-the-art achievements in illness identification 
[27]. Several investigators have developed an osteoporosis 
assessment method from various kinds of images with 
effectiveness using machine learning techniques [9]. The 
authors have covered the most recent advances in DCNN-
based osteoporosis assessment in this segment. Osteoporosis 
from phalanges has been detected using DCNN on X-ray scans 
[28]. Researchers acquired a decent identification rate using 
three-fold cross-validation for assessment. 

In [29], researchers used feature selection based on 
wrapping to compare several classification schemes for 
osteoporosis diagnosis. To identify osteoporotic fracture risk, 
Naoufami et al. [30] recommended DCNN in their study (VF). 
After using computed tomography scans to derive logical 
characteristics, the system's efficiency has been compared to 
that of working radiologists, and similar outcomes were 
obtained. DCNN was utilized by Derkatch et al. [31] to 
precisely identify vertebral fractures in DXA pictures. 
Krishnaraj et al. [32] used CT scans of the vertebrae to separate 
people into osteoporotic and non-osteoporotic groups. They 
acquired high accuracy while segmenting CT images using U-
net CNN. Fang et al. [33] also used vertebral CT scans to look 
for osteoporosis. They distinguished between normal and 
osteoporotic vertebrae using the DenseNet-121. The spine X-
ray characteristics have been retrieved by Lee et al. [34] using 
CNN architectures, and the results were then sent to classifiers 
for categorization. They used VGG for extracting features and 
random forest for classifying to reach the highest accuracy rate 
of 71%. Yasaka et al. [35] employed CT scans of the abdomen 
to estimate the BMD of the lumbar vertebrae. They discovered 
a strong association between the DXA BMD and the 
anticipated BMD from CNN. Sollmann et al. [36] examined 
CT images of the spine and used CNN to calculate the 
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volumetric bone mineral density. Researchers observed that 
CNN provides good diagnostic performance when they 
evaluated the findings of the volumetric bone mineral density 
acquired from conventional CT. 

By using a CNN and dental panoramic radiographs (DPRs), 
Lee et al. [37] have been able to detect osteoporosis from the 
tooth. This DCNN outperformed the outcomes of oral and 
maxillofacial radiologists. DPRs were employed by [38] to 
identify osteoporosis as well. To boost the CNN classifier's 
classification accuracy, they utilize the VGG-16 classifier and 
applied transfer learning to it. AlexNet Yu et al. [39] employed 
CNN to identify osteoporosis in dental panoramic radiography. 
They accurately divided the DPRs into osteoporotic and non-
osteoporotic groups; however, they didn't only include the 
osteopenia group. Sukegawa et al. [40] also investigated DPRs 
for osteoporosis detection using CNNs and showed good 
results. The recognition rate has been further enhanced by the 
addition of prognostic factors. Deniz et al. [41] examined the 
MRIs of the proximal femur to look for osteoporosis. To 
quantify fracture risk and evaluate the condition of the bone, 
they segmented the proximal femur using DCNN. 

Using X-ray scans of the pelvis, Liu et al. [42] identified 
osteoporosis. They derived the analytical expression from the 
softmax of the suggested U-net model, which employs X-rays 
to identify osteoporosis by analyzing the deep characteristics of 
the medullary joint. The photos of the osteoporosis and bone 
mass loss groups in this investigation are inadequately 
diagnosed. Utilizing CNN, Yamamoto et al. [43] identified 
osteoporosis in hip X-rays. Researchers discovered that adding 
clinical variables to the scans enhanced performance, with 
EfficeientNet CNN achieving the highest results. Tecle et al. 
employed the AlexNet Classifier to get an osteoporosis 
diagnosis [44]. They identified the osteoporotic and non-
osteoporotic scans from the segmented second metacarpal area 
using X-ray scans of the hand. He et al. [45] examined the knee 
X-rays and suggested using two radiographic criteria for 
assessing bone strength: cortical bone thickness and distal 
femoral cortex. To train the CNN networks, the BMD and T-
score values produced by the QUS method have been 
demonstrated to significantly correlate with these 
characteristics. Also when learned on a limited population, the 
CNN performs well because of transfer learning. 

The present work suggests an ensemble learning method 
where the eventual selection is reached after taking decisions 
from many models into account. Sarwar et al. [46] employed a 
mean likelihood-based ensemble, while Xue et al. [47] used a 
consensus voting-based ensemble approach to examine several 
straightforward fusion techniques. Nevertheless, these 
imprecise ensemble models utilize predetermined or constant 
weights linked to the base classifiers and do not allow for the 
predictability of results. In consideration of this, the authors 
provide a unique ensemble approach in this study that 
combines the decision ratings across three CNN-based base 
classifiers, Inception v3 [24], Xception [25], and ResNet 
18 [26], while also accounting for the base learners' level of 
confidence in their judgments. 

III. PROPOSED MODEL 

This section briefly discusses the base classifiers authors 
utilize and the essential customization authors perform to the 
fundamental models before going into more depth about how 
the suggested fuzzy rank-based fusion of the basis learners' 
confidence scores would be implemented. The goal in this case 
is to fully use all of the confidence factors produced by the 
basic classifiers by converting them into non-linear operations. 
One of the projected values indicates compliance with or 
proximity to 1, and the other one indicates divergence from 1. 
The standard ranking systems' flaw of not taking into account 
the aforementioned fact [48] and potentially producing 
inaccurate results is addressed by the suggested technique. 
Three base classifiers are used in the current work, and the 
clinical image dataset is used to test our methodology. In the 
beginning, authors train the base classifiers (personalization 
using pre-trained architectures learned on ImageNet [49]), and 
then we collect the confidence values. Then, to create non-
linear fuzzy rankings and a merged rating that allows us to 
calculate the overall divergence from the predicted, the authors 
translate the scores onto two distinct functions with distinct 
concavities. A lower deviation indicates greater assurance in a 
given class. The winning group is given the ultimate class 
value, and it has the lowest divergence value. The proposed 
model is presented in Fig. 1. 

A. Pre-Processing Input 

The data fed to the proposed model is pre-processed in two 
steps, i.e., normalization and data augmentation. 

 Normalization: Transforming picture data pixels to a 
specified range, such as (0, 1) or (-1, 1) is done through 
normalization. Most pictures have pixel values between 
0 and 255. Large values can impede or slow the training 
phase in CNN. Thus, image normalization is advised as 
a best practice so that the values of pixels vary from 0 
to 1. 

 Data Augmentation: When using CNN models, it is 
crucial to make sure the system receives enough 
training data. Data augmentation is the process of 
applying multiple adjustments to source photographs to 
produce several changed versions of the same image. 
However, because of the augmentation techniques 
utilized, each duplicate is unique in a certain manner 
from others. 

B. Base Classifiers 

The proposed model utilizes three pre-trained 
CNN architectures as base classifiers, i.e., Inception v3, 
Xception, and ResNet 18. 

 Inception v3: Among the most prevalent deep learning 
models is Inception v3, which is a member of the 
Inception group and makes use of several enhancements 
to address issues with earlier Inception models [50]. 
These enhancements involve using a supplementary 
classification model, factorized convolution operations, 
batch normalization, the RMSProp optimization 
method, and label smoothing. It creates feature maps in 
numerous aspects and layers from an input picture with 
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the proportions 299 × 299 x 3. The Inception v3 
inception block gives us the option to use many feature 
extraction filters from a unified feature space. For more 

thorough feature extraction, these characteristics with 
various filters are combined and transmitted to the 
following layer. 

 
Fig. 1. Proposed model. 

 Xception: The Inception v3 framework served as a 
basis for the Xception design created by Chollet et al. 
[25], which employs the same amount of design 
variables as the latter but does so more effectively. 
They demonstrated that the inception units fall in the 
center of a discrete spectrum, with pointwise 
convolutions and depth-wise separable convolutions at 
its two ends. To improve classification accuracy at the 
same computational load, they chose to substitute the 
inception modules with depth-wise separable 
convolutions. 

 ResNet 18: ResNet, also known as Residual Network, 
is a structure that employs residual mapping and is 
particularly successful against the "degradation 
problem" in convolutional models. It was first presented 
in 2015. The CNN model's optimization process is 
enhanced by the residual learning technique. The 
ResNet-18 has been pre-trained on the ImageNet 
dataset, like the majority of widely used image-
processing CNN models. It accepts photos with a 3 × 
224 × 224 size as input, which is smaller than the 
inception v3 model's input size. The residual network 
might score higher the denser it is. The ResNet model is 
implemented at many depths, including ResNet-18, 
ResNet-34, ResNet-50, ResNet-101, and ResNet-110. 

C. Fuzzy Rank Unification 

The confidence score generated by various base classifiers 
is fused using fuzzy rank-based unification. To give rankings 
to the class likelihood forecasted by a base classifier, authors 

employ a fuzzy ranking-based technique in which the 
likelihood scores are exposed to two non-linear operations: the 
exponential operation (Eq. (1)) and the hyperbolic tangent 

operation (Eq. (2)). Let    
  

 be the confidence ratings for a 

base classifier, „cf‟ corresponding to the output class, „op‟. 

              
   ∑  

  
  

        

   (1) 

               (
   ∑    

  
          

 
) (2) 

The two non-linear operators double the scores they 
provided. The same steps are done for every base learner, and 
the final scores are calculated by adding the rank products from 
every predictor. Authors employ two distinct operations with 
various concavities so that their outputs might be 

complementary. In this investigation,      
   ∑ 

  
  

 has a 
concave downhill shape in the range [0, 1]. The output 
rank1 value will attempt to shift towards 1 due to its negative 

slope in the [0, 1] range.         (
   ∑   

  
  

 
) is concave 

uphill in this definition [0, 1]. The resulting rank value will 
attempt to shift towards 0 due to its positive gradient in the [0, 
1] range. About a specific confidence score acquired from a 
base classifier, the rank value is the result of incentive and 
divergence. Fusion comprises combining the several rankings 
connected to identification and selecting an alternate rank that 
will help make the ultimate choice using Eq. (3). 
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       ∑                     (3) 

The major goal of employing two rankings is to take into 
account how closely and how far the predominant 
classification result deviates from the predicted outcome. 
Lower product value and a good result are correlated with 
reduced deviation. The final result of the ensemble classifier is 
therefore the class with the least value under this sum of 
products of rankings. The author's objective is to lower this 
product since the two non-linear operations have opposing 
concavities in the domain [0, 1]. As a consequence, a strong 
confidence rating leads the ranking of one operation to increase 
and the ranking of the other operation to decrease. This sum of 
products produces a lower result when a prediction's 
confidence rating is elevated. The rank calculated using Eq. 
(3) can be used to determine the final grade for each class. 
Using Eq. (4), the class with the lowest fused rank is identified 
and declared as the winner. 

                               (4) 

IV. EXPERIMENTS AND RESULTS 

A. Environmental Setup & Dataset 

The authors developed a model to separate individuals 
with X-ray scans into normal, osteopenia, and osteoporotic 
groups. This scenario has been simulated using the Python 
language. The systems, procedures, modules, and resources of 
TensorFlow 2.0 have been created by the authors using an 
open-source deep learning methodology (plus Keras). Python 
has been utilized to complete the analysis. The tests were run 
on Google Collaboratory using a Tesla K80 GPU graphics 
card, an Intel i7-core CPU running at 3.6GHz, 16GB of 
Memory, and the 64-bit version of Windows 11. 

The dataset has been obtained from Mendeley data that [9] 
contributed, and it has been released in August 2021. The 
dataset includes x-rays from 240 subjects, of whom 37 had 
normal bone density (with 18 men and 19 women), 154 had 
osteopenia (with 59 men and 95 women), and 49 had 
osteoporotic bone density (with 31 men and 18 women). Data 
augmentation in Python has been employed to statistically 
augment the dataset pictures. After statistical augmentation, the 
dataset now includes 323 patient radiographs of normal, 
323 osteopenia, and 323 osteoporosis knee x-rays. 

B. Performance Evaluation Metrics 

The datasets provided for X-ray scans are used by the 
authors to assess the effectiveness of the suggested models as 
they study the classification of normal, osteopenia, and 
osteoporotic patients. The authors focus on four characteristics 
that are typical of CNNs for each structure, i.e., accuracy 
curve, loss curve, confusion matrix, and area under the curve 
(AUC). 

The accuracy curves of the model show how well it is 
acquiring and interpreting. The discrepancy between training 
and testing accuracy is a metric of overfitting. The training 
time and model orientation are shown by the loss graphs. A 
significant gap between both the training and testing 
graphs illustrates the learning spectrum with training. A 
confusion matrix expresses a way of how well a classifier 

performs in a group of testing datasets when the input variables 
are already known. Four essential terms are connected to every 
confusion matrix. [51]. 

 True Positives [TP]: These are instances where the 
affected person had the ailment despite the prediction 
being "yes". 

 True Negatives [TN]: According to estimates, the 
answer is "no" and the samples are not contaminated. 

 False Positives [FP]: The ailment is presumed to be 
present, although the patients do not. A Type I mistake 
may be used to describe this. 

 False Negatives [FN]: Even though the model 
recommends "no", the condition still exists in persons. 
These are referred to as Type II mistakes. It is 
frequently used to represent crucial prediction statistics, 
enabling analysis and identifying relevant experimental 
patterns easier. 

AUC is a productivity statistic that incorporates all feasible 
classification levels. One method of examining AUC is to 
assess the probability that the model ranks a random 
positive instance stronger than a random counter-example. The 
possibility of a random positive instance being positioned in 
front of a counterpoint chosen at random is represented by the 
AUC. The range of the AUC value is 0 to 1. The AUC of a 
framework with 100% erroneous estimates is 0.0, while the 
AUC of a system with 100% accurate estimates is 1.0. 

C. Implementation 

The proposed ensemble model is compared with the 
individual underlying base classifiers, i.e., Inception V3, 
Xception, and ResNet-18. The findings (classification accuracy 
and loss) for the underlying datasets for knee osteoporosis used 
in this work are shown in Table I, Fig. 2 (accuracy curve) and 
Fig. 3 (loss curve) by the individual base classifiers and 
proposed ensemble framework. The outcomes show that the 
suggested model performs well in terms of classification 
accuracy. The underlying dataset has a training duration per 
fold of 30 minutes. 

Fig. 4 displays the confusion matrices that the individual 
base classifiers and developed ensemble models on the dataset 
utilized in this study have been able to produce. Fig. 5 displays 
the AUC of the proposed model. The suggested ensemble 
model may be employed as a plug-and-play paradigm in which 
new test pictures are fed into the model to provide forecasts 
using the ensemble method, ultimately assisting the expert 
doctors in making a more rapid and precise judgment. 

TABLE I.  COMPARISON WITH STATE-OF-THE-ART METHODS 

Model Accuracy Loss 

Inception V3 89.8 0.217 

Xception 90.9 0.208 

Resnet-18 91.4 0.207 

Proposed Model 93.5 0.082 
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Fig. 2. Accuracy of various models. 

 

Fig. 3. Loss of various models. 
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Fig. 4. Confusion Matrices of various models. 

 
Fig. 5. AUC for the proposed model; class 0 represents normal, class 1 

represents osteopenia, and class 2 represents osteoporosis. 

V. CONCLUSION AND FUTURE WORK 

The suggested model provides the best results of 93.5% 
classification accuracy while assessing osteoporosis knee X-
ray dataset classification, which justifies the proposed model's 
efficacy. Further, the AUC is observed to be 98.1, 97.9 and 
97.3 for normal, osteopenia and osteoporosis, respectively. 
Osteoporosis is a chronic illness that affects people around the 
globe and can result in long-term loss of mobility, physical 
injuries, excruciating pain, and even early mortality. In this 
study, the authors provide a framework for classifying pictures 
of normal, osteopenia, and osteoporosis by combining three 
conventional CNN-based classifiers. Two non-linear factors 
that serve to account for the base learners' level of confidence 
in their forecasts are used by the proposed ensemble model to 
construct rankings of the classification models. 

The quick detection tool created for testing osteoporosis 
may operate like a plug-and-play paradigm with minimum 
assistance from experienced physicians, making it appropriate 
for use in the field. Due to insufficient picture quality or the 
existence of overlapping cells, the suggested ensemble model 
had difficulty correctly classifying a few images. So, the 
authors intend to tackle the requirement for picture pre-
processing in the future. For separating overlapping cells, 
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authors may use image enhancement methods or cell slicing. 
To perform the ensemble, authors may additionally take into 
account ensembles of distinct base learners and investigate 
various rank-generating procedures. 
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