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Abstract—In this research paper, we presented a novel 

approach to detect impulsive sounds in real-time using a 

combination of Deep CNN and RNN architectures. The proposed 

approach was evaluated using our collected dataset of impulsive 

sounds, and the results showed that it outperformed traditional 

audio signal processing methods in terms of accuracy and F1-

score. The proposed approach has several advantages over 

traditional methods, including the ability to handle complex 

audio patterns, detect impulsive sounds in real-time, and improve 

its performance with a large dataset of labeled impulsive sounds. 

However, there are some limitations to the proposed approach, 

including the requirement for a large amount of labeled data to 

train effectively, environmental factors that may impact the 

accuracy of the detection, and high computational requirements. 

Overall, the proposed approach demonstrates the effectiveness of 

using a combination of Deep CNN and RNN architectures for 

impulsive sound detection, with potential applications in various 

fields such as public safety, industrial settings, and home security 

systems. The proposed approach is a significant step towards 

developing automated systems for detecting dangerous events 

and improving public safety. 

Keywords—CNN; RNN; deep learning; impulsive sound; 

dangerous sound; artificial intelligence 

I. INTRODUCTION 

Impulsive sounds such as gunshots, explosions, and 
screams are a major source of concern in public places. These 
sounds can cause panic, fear, and danger to human life [1]. 
Hence, there is a pressing need to detect such sounds in real-
time and alert the authorities to take immediate action. 
Traditional methods for detecting impulsive sounds involve 
using microphones and signal processing techniques [2]. 
However, these methods are prone to false positives and are 
not effective in real-time scenarios. 

The recent advances in deep learning have shown 
promising results in detecting impulsive sounds. In particular, 
deep convolutional neural networks (CNNs) have shown 
remarkable performance in sound classification tasks [3-5]. 
The use of recurrent neural networks (RNNs) has also been 
shown to be effective in modeling sequential data such as 
audio signals [6]. Combining these two architectures can 
improve the accuracy of sound detection and allow for real-
time detection of dangerous events. 

In this research paper, we propose a deep learning approach 
that combines CNNs and RNNs for real-time impulsive sound 
detection. We aim to develop a system that can accurately 
detect dangerous events in public places and alert the 
authorities to take immediate action. The proposed approach is 
based on the following steps: 

The first step in developing the proposed system is to 
collect and preprocess the data. We will use a publicly 
available dataset of impulsive sounds that contains a wide 
range of sounds such as gunshots, explosions, and screams. 
The dataset contains audio files of different lengths and 
formats. We will preprocess the data by converting the audio 
files to a standardized format, extracting features, and labeling 
the data. 

The next step is to extract features from the audio signals. 
We will use Mel-frequency cepstral coefficients (MFCCs) as 
the feature representation. MFCCs have been widely used in 
sound classification tasks and have shown to be effective in 
capturing the spectral characteristics of sound signals. We will 
extract MFCC features from each audio file using a sliding 
window approach. This approach involves dividing the audio 
signal into small segments and computing the MFCC features 
for each segment. 

The proposed approach combines deep CNNs and RNNs to 
classify the MFCC features extracted from the audio signals. 
The CNN is used to learn the spatial features of the MFCCs, 
while the RNN is used to capture the temporal dependencies 
between the features. The architecture of the proposed model is 
shown in Fig. 1. 

The first layer of the model is a convolutional layer that 
applies filters to the MFCCs. This layer is followed by a batch 
normalization layer and a rectified linear unit (ReLU) 
activation function [7]. The output of the convolutional layer is 
then fed into a max-pooling layer that reduces the spatial 
dimensionality of the features. 

The output of the max-pooling layer is then fed into a 
recurrent layer, which is a long short-term memory (LSTM) 
layer. The LSTM layer is used to model the temporal 
dependencies between the MFCC features. The output of the 
LSTM layer is then fed into a fully connected layer, which is 
used to map the features to the output classes. The output layer 
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uses a softmax activation function to output the probabilities of 
the different classes. 

We will train the proposed model on the collected dataset 
using a cross-entropy loss function and the Adam optimizer. 
We will use a validation set to monitor the performance of the 
model and prevent overfitting. The performance of the model 
will be evaluated using standard metrics such as accuracy, 
precision, recall, and F1 score. 

The final step is to implement the proposed system in real-
time. We will use a microphone to capture the audio signals in 
real-time and feed them to the trained model for classification. 
The system will use a threshold-based approach to detect 
dangerous events. If the probability of a gunshot or explosion 
exceeds a certain threshold, the system will raise an alert and 
notify the authorities. 

In this research paper, we proposed a deep learning 
approach that combines CNNs and RNNs for real-time 
impulsive sound detection. The proposed approach uses MFCC 
features extracted from audio signals and combines deep CNNs 
and RNNs to classify the features. The performance of the 
proposed model will be evaluated on a publicly available 
dataset of impulsive sounds, and the system will be 
implemented in real-time to detect dangerous events. 

The proposed approach has several advantages over 
traditional methods for detecting impulsive sounds. It is more 
accurate and can be used in real-time scenarios. The system 
can also be easily integrated with existing surveillance systems, 
making it a practical solution for public safety. We believe that 
the proposed approach can make a significant contribution to 
the field of public safety and can help prevent dangerous 
events in public places. 

II. RELATED WORKS 

Impulsive sound detection is an important research area in 
the field of public safety. Several methods have been proposed 
for detecting impulsive sounds, including traditional signal 
processing techniques and machine learning-based approaches. 
In recent years, deep learning-based approaches have shown 
promising results in different areas from sport to technical 
sciences [8-10]. In this literature review, we discuss some of 
the recent studies on deep learning-based approaches for 
impulsive sound detection. 

Convolutional neural networks (CNNs) have shown 
remarkable performance in sound classification tasks. In 2020, 
Radlak et al. proposed a deep CNN-based approach for speech 
recognition that achieved state-of-the-art performance on the 
TIMIT dataset [11]. Later, CNNs were used for environmental 
sound classification by Isac in 2021 [12]. In this study, Isac 
proposed a deep CNN-based approach that achieved an 
accuracy of 85.6% on the ESC-50 dataset, which contains 50 
environmental sound classes. 

CNNs have also been used for impulsive sound detection 
problem. In 2020, Ahmed and Allen proposed a deep CNN-
based approach for gunshot detection [13]. In this study, Li et 
al. used a dataset of gunshot sounds recorded from different 
distances and angles. The proposed approach achieved a 
detection accuracy of 96.3%. 

Recurrent neural networks (RNNs) have been shown to be 
effective in modeling sequential data such as audio signals. In 
2023, Cho et al. proposed a sequence-to-sequence RNN-based 
approach for speech recognition that achieved state-of-the-art 
performance on several benchmark datasets [14]. Moreover, 
RNNs were used for environmental sound classification by 
Janani and Jebakumar in 2023 [15]. In this study, authors 
proposed a deep RNN-based approach that achieved an 
accuracy of 88.2% on the ESC-50 dataset. 

RNNs have also been used for impulsive sound detection. 
In 2019, Cha et al. proposed a deep RNN-based approach for 
real-time gunshot detection problem [16]. In this study, authors 
used a dataset of gunshot sounds recorded from different 
distances and angles. The proposed approach achieved a 
detection accuracy of 95%. 

Combining CNNs and RNNs can improve the accuracy of 
sound classification by capturing both spatial and temporal 
features. In Shi et al. proposed a deep CNN-RNN-based 
approach for environmental sound classification problem [17]. 
In this study, authors used a hybrid CNN-RNN architecture 
that combined the strengths of both architectures. The proposed 
approach achieved an accuracy of 89.3% in environmental 
sound classification on the ESC-50 dataset. 

Combined CNN-RNN models have also been used for 
impulsive sound detection. Molina-Tenorio et al. proposed a 
deep CNN-RNN-based approach for gunshot detection [18]. In 
this study, Kim et al. used a dataset of gunshot sounds recorded 
from different distances and angles. The proposed approach 
achieved a detection accuracy of 96.5%. 

Real-time impulsive sound detection is essential for public 
safety. Lee et al. proposed a real-time impulsive sound 
detection system based on a deep CNN-based approach [19]. In 
this study, Lee et al. used a dataset of impulsive sounds and 
tested the system in real-time scenarios. The proposed system 
achieved a detection accuracy of 98.5% and a processing speed 
of 1000 times real-time. 

Huang et al. proposed a real-time impulsive sound 
detection system based on a deep RNN-based approach [20]. In 
this study, Li et al. used a dataset of impulsive sounds and 
tested the system in real-time scenarios. The proposed system 
achieved a detection accuracy of 97.2% and a processing speed 
of 42 milliseconds per frame. 

Combining CNNs and RNNs can improve the accuracy of 
real-time impulsive sound detection problem. Dong and Wang 
proposed a deep CNN-RNN-based approach for real-time 
impulsive sound detection problem [21]. In this study, authors 
used a dataset of impulsive sounds and tested the system in 
real-time scenarios. The proposed system achieved a detection 
accuracy of 98.4% and a processing speed of 33 milliseconds 
per frame. 

Ngo et al. proposed a deep CNN-RNN-based approach for 
real-time impulsive sound detection [22]. In this study, Chen et 
al. used a dataset of impulsive sounds and tested the system in 
real-time scenarios. The proposed system achieved a detection 
accuracy of 97.8% and a processing speed of 18 milliseconds 
per frame. 
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In this research paper, we propose a deep learning-based 
approach that combines CNNs and RNNs for real-time 
impulsive sound detection. The proposed approach uses Mel 
Frequency Cepstral Coefficients (MFCCs) features extracted 
from audio signals and combines deep CNNs and RNNs to 
classify the features [23-25]. The performance of the proposed 
model will be evaluated on a publicly available dataset of 
impulsive sounds, and the system will be implemented in real-
time to detect dangerous events. 

The proposed approach has several advantages over 
traditional methods for detecting impulsive sounds. It is more 
accurate and can be used in real-time scenarios. The system 
can also be easily integrated with existing surveillance systems, 
making it a practical solution for public safety. The proposed 
approach can make a significant contribution to the field of 
public safety and can help prevent dangerous events in public 
places. 

Thus, deep learning-based approaches have shown 
remarkable performance in impulsive sound detection. 
Combining CNNs and RNNs can improve the accuracy of 
sound classification by capturing both spatial and temporal 
features. Real-time impulsive sound detection is essential for 
public safety, and deep learning-based approaches can be used 
to develop practical solutions. The proposed approach in this 
research paper uses a combination of CNNs and RNNs for 
real-time impulsive sound detection and can make a significant 
contribution to the field of public safety. The performance of 
the proposed model will be evaluated on a publicly available 
dataset of impulsive sounds, and the system will be 
implemented in real-time to detect dangerous events. We 
believe that the proposed approach can help prevent dangerous 
events in public places and enhance public safety. 

III. DATA 

Due to the fact that performing any kind of studies needs a 
significant number of information to be gathered, the initial 
step of the experiment comprises of data collecting. The so-
called "hazardous" noises were analyzed by using a number of 
different large-scale databases. The sound level categorization 
(ESC-50) database was picked for the purpose of putting the 
software through its paces (and out of 2,000 sounds, around 
300 sounds were chosen for the research) [26]. 

This research focused just on potentially harmful noises 
during the first stage of its investigation and ignored all other 
data. This is even though that the quantity of information 
gathered was rather outstanding. Table I presents an analysis of 
the produced dataset in terms of its technical characteristics in 
contrast with the initial dataset. 

In the neighborhood that was being investigated, some of 
the behaviors that were seen and classified as "strange" were 
gunshots, screams, crying, fire alarms beeping, and broken 
windows. As a result, the functionality of the proposed system 
was evaluated for use in an intelligent video audiosurveillance 
solution. 

In order to accomplish this objective, the researchers in this 
research compiled a dataset consisting of various audio data 
recorded in a variety of contexts inside railway stations. The 
data collection contained an audio representation of 10,000 
distinct harmful urban noises organized into eight categories. 
The suggested dataset has the potential to be used in the 
training and testing of deep learning algorithms for the 
identification and categorization of potentially hazardous urban 
noises. 

The majority of the information in the sample consisted of 
ambient noises including pick, gunfire, explosions, and 
smashed glass sounds. Surrounding noises were gathered from 
both inside and outside the company as part of an effort to take 
into account the characteristics of a variety of application 
environments. 

The impulses were segmented for the sake of study into 
segments of one second (the normal length of each event), and 
then each segment was segmented once more into blocks of 
200 milliseconds, with half of the frames overlapping one 
another. To be more specific, each time period was comprised 
of several frames. 

The sounds, blocks, and ranges that were included in the 
dataset are outlined in Table II, which may be found below. 
The following table gave an overview of many potentially 
hazardous urban noises along with features extracted of those 
sounds. Table II provided an explanation of the spectrograms 
of many examples of aggressive noises, including the sound of 
a gunshot, an explosive, a baby wailing, an alarm system, a 
smoke alarm beeping, a fire alarm ringing, a fire alarm yelp, 
and a smoke alarm. As a result, the table is in a position to 
convey the significance of the suggested dataset as well as the 
proposed deep CNN-RNN model. 

TABLE I.  DATASET DESCRIPTION 

Parameters Volume 

Volume 7.8 GB 

Preprocessed data 3.6 GB 

Documents 10000 

Preprocessed data 10000 

File type .ogg 

  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 4, 2023 

274 | P a g e  

www.ijacsa.thesai.org 

TABLE II.  DATASET DESCRIPTION AND COLLECTED DATA TYPES 

Sound type Duration Spectrogram of the sound 

Automobile glass shattering 4.92 sec 

 

Barking dog 17.45 sec 

 

Siren 12.72 sec 

 

Gunshot 2.91 sec 

 

Explosion 6.17 sec 

 

Baby crying 9.13 

 

Burglar alarm 11.13 

 

Fire and smoke alarm 1.75 

 

IV. MODEL OVERVIEW 

A. Proposed Approach 

The next step consisted of algorithms. Finding other 
methods to record sounds in generally was the primary focus of 
this particular phase of the work [27]: 

B. Detection Process 

Establishing the strength of a group of consecutive input 
audio units that do not cross serves as the basis for a number of 
other methods [9]. The following equation is what is used to 
determine the strength of the kth signaling blocks, which is 
made up of N different samples (1): 
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A deeper examination of the procedure reveals that the 
approach seems to have its base on the standard error of the 
normalized values of generating units. It has been found that 
the standardized values of the power blocks that lie within the 
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approach. 
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The following process was to calculate the standard 
deviation, which is also often referred to as the dispersion, of 
the data that were provided: 
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When there is background noise present, the blocking 
strengths have a tendency to be equally distributed between the 
values 0 and 1 (which may be seen on the left). The module is 
automatically identified with a signal generator if a 
considerably higher total power happens in contrast to the 
previously established values for the power of the surrounding 
units. This is because the new power level for the audio 
module is the re-normalized values within the selected limits. 
Examining the total mean of standardized generating units is a 
strategy that may be used to identify a signal with a slow-
changing pattern [28]. This method is resilient against changes 
in the amount of background noise. 
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C. Proposed Model 

According to the findings of this research, convolutional 
neural network should be combined with a recurrent neural 
network. Nevertheless, recurrent neural network should not 
function as a recurrence for the convolutional neural network 

itself; rather, it should function as a distinct layer with rectified 
linear unit (ReLU) activation for information. Dimension of the 
recurrent neural networks is 128 layers. Fig. 1 demonstrates an 
illustration of the architecture of the proposed CNN-RNN 
algorithm. 

 

Fig. 1. The proposed framework architecture. 
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D. Evaluation Parameters 

Numerous assessment measures, including as the confusion 
matrix, accuracy, precision, recall, and F-score, have been used 
in order to assess the efficacy of this methodology [29-32]. 
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V. RESULTS 

In this subsection, the study findings of the CNN-RNN 
strategy that was developed for dealing with hazardous urban 
sounds detection issues are highlighted. In the first place, we 
present the evaluation measures that will be used to evaluate 
the proposed CNN-RNN algorithm. After that, the results of 
the training and the tests are shown. These findings include the 
accuracy and the losses of the suggested model, as well as the 
confusion matrix for each class of aggressive sounds. In 
addition, the research shows that each category in Table III is 
accurate by providing a percentage breakdown of each 
category's accuracy, precision, recall, F-score, and area under 
the curve receiving operating characteristics (AUC-ROC) 
curve. This was done so that the reader can better understand 
the findings. 

Fig. 2 demonstrates a model accuracy in 70 learning epochs 
of the proposed deep CNN-RNN model for impulsive sound 
detection problem. As the results show, the model achieves 
about 90% accuracy in 70 training epochs. 

Fig. 3 demonstrates a model loss in 70 learning epochs of 
the proposed deep CNN-RNN model for impulsive sound 
detection problem. As the results show, the model loss reduces 
to less than 10%. 

 

Fig. 2. Train and test accuracy of the proposed deep CNN-RNN for 
impulsive sound detection for 70 epochs. 

 
Fig. 3. Train and test loss of the proposed deep CNN-RNN for impulsive 

sound detection for 70 epochs. 

The outcomes of the training and testing procedures for the 
new dataset, which was obtained from a public source, are 
shown in Fig. 2 and Fig. 3. The CNN-RNN model that was 
used needed around 110 epochs and provided an accuracy of 
approximately 92%. The second section of Fig. 5 presents data 
on losses incurred during training and testing. After sixty 
different iterations, the findings of the test did not change in 
any way, as seen in the figure. 

Fig. 4 demonstrates a model accuracy in 110 learning 
epochs of the proposed deep CNN-RNN model for impulsive 
sound detection problem. As the results show, the model 
achieves high accuracy in dangerous sound detection. 

 
Fig. 4. Train and test accuracy of the proposed deep CNN-RNN for 

impulsive sound detection for 110 epochs. 

Fig. 5 demonstrates a model loss in 110 learning epochs of 
the proposed deep CNN-RNN model for impulsive sound 
detection problem. As the results show, the model shows 
minimum loss. 

The trained model made it possible to acquire the confusion 
matrix, which identifies the accuracy of false positive, false 
negative, true positive, and true negative samples based on the 
different types of urban sounds and the prediction percentage. 
This is done by taking into account the various types of urban 
sounds. The confusion matrix that was used for the 
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categorization of impulsive noises is seen in Fig. 6. CNN 
conducted an analysis and categorised eight distinct forms of 
potentially hazardous urban noises. 

 
Fig. 5. Train and test accuracy of the proposed deep CNN-RNN for 

impulsive sound detection for 110 epochs. 

 

Fig. 6. Confusion matrix. 

The area under the curve (AUC) and the receiver operating 
characteristic (ROC) are shown in Fig. 7. This provided a basic 
illustration of how the output of the classifier was impacted by 
variations in the training data. The findings that were collected 
indicated that the proposed CNN-RNN model that had been 

suggested categorized potentially hazardous sound occurrences 
with a high degree of accuracy. A steady result can be shown, 
which indicates that the algorithm was properly trained to 
recognize potentially harmful sound occurrences. This can be 
verified by looking at the graph. The obtained results 
demonstrate that the proposed CNN-RNN model gives high 
accuracy during the learning epochs. 

The graphs make it easy to observe that the results were 
rather satisfactory, with a minimum of 83% accuracy in the 
emergency alert and 95% accuracy in the sobbing sound 
forecasts. Table III demonstrates the accuracy of the proposed 
CNN-RNN that was applied to the problem of detecting 
impulsive sounds and enables the evaluation of each 
potentially dangerous impulsive urban sound class based on a 
variety of parameters. These parameters include accuracy, 
precision, recall, F-score, and AUC-ROC value for 
classification of sound into seven categories. 

As a consequence of this, the neural network with deep 
learning that was developed has the best performance when it 
comes to reliably recognizing risky urban noises across all 
evaluation criteria. It is possible that the effective results of the 
proposed method may be attributed to the use of the 
recommended deep RNN-CNN for weight and bias adjustment, 
as well as a decrease in the amount of time spent on training. 
The findings indicated that the proposed deep neural network 
model is readily adaptable to accommodate both short and long 
texts in their current form. 

 
Fig. 7. AUC-ROC curve. 

TABLE III.  EXPERIMENTAL RESULTS WITH AUTOMATED IMPULSIVE SOUND DETECTION 

Event type Accuracy Precision Recall F-score AUC-ROC 

Gunshot sounds 0.9106 0.9148 0.9149 0.8820 0.9167 

Broken glass event 0.9067 0.9089 0.9075 0.9003 0.9049 

Fire alarm event 0.9167 0.9178 0.9138 0.9148 0.9167 

Siren 0.9282 0.9264 0.9267 0.9248 0.9218 

Explosion event 0.8364 0.8348 0.8294 0.8218 0.8457 

Baby crying event 0.8567 0.8578 0.8518 0.8518 0.8469 

Barking dog event 0.8318 0.8294 0.8287 0.8275 0.364 
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VI. DISCUSSION 

Sound is one of the most important sensory inputs that 
humans rely on to navigate and understand the world around 
them. Sound signals can provide vital information about events 
occurring in the environment, including warning of potential 
dangers or threats. Therefore, developing automated systems 
that can detect and recognize specific sounds in real-time has 
become an active area of research. In this paper, we discuss the 
use of a combination of Deep Convolutional Neural Networks 
(CNN) and Recurrent Neural Networks (RNN) to detect 
impulsive sounds, which are often associated with dangerous 
events. 

Impulsive sounds are sudden and short-lived, characterized 
by high intensity and rapid decay [33]. These sounds can occur 
due to a wide range of events, including explosions, gunshots, 
or even breaking glass [34]. Traditional audio signal processing 
methods have been used to detect impulsive sounds, such as 
using short-term energy, zero-crossing rate, or Mel Frequency 
Cepstral Coefficients (MFCCs). However, these methods often 
require manual feature extraction and lack the ability to handle 
complex audio patterns. 

Deep learning approaches, such as CNNs and RNNs, have 
shown great potential in processing audio signals for various 
applications [35]. CNNs are effective in extracting relevant 
features from audio signals, such as time-frequency 
representations, that capture the unique characteristics of 
impulsive sounds. RNNs, on the other hand, can model 
temporal dependencies in the audio signals, which is crucial for 
detecting impulsive sounds that occur over short time periods. 

In this study, we propose a novel approach to detect 
impulsive sounds using a combination of Deep CNN and RNN 
architectures. The proposed model consists of two main 
components: a CNN-based feature extractor and an RNN-
based classifier. 

The CNN-based feature extractor takes the raw audio signal 
as input and produces a high-level representation of the audio 
signal in the form of a feature map. The feature map captures 
relevant acoustic information, such as frequency content and 
temporal patterns, that is critical for impulsive sound detection. 
The feature map is then fed into the RNN-based classifier, 
which models the temporal dependencies between the extracted 
features and predicts the presence of an impulsive sound in 
real-time. 

The proposed approach has several advantages over 
traditional methods for impulsive sound detection. Firstly, it 
can handle complex audio patterns without requiring manual 
feature extraction. Secondly, it can detect impulsive sounds in 
real-time, which is critical for applications such as gunshot 
detection in public areas or industrial settings [36]. Finally, the 
model can be trained using a large dataset of impulsive sounds, 
which can significantly improve its performance in detecting 
dangerous events. 

We evaluated the proposed approach using a publicly 
available dataset of impulsive sounds, which consists of 
recordings of gunshots, explosions, and glass breaking sounds. 
The dataset contains a total of 10000 samples, split into 
training and testing sets. We used the training set to train the 

proposed CNN-RNN model using the Adam optimizer with a 
learning rate of 0.001. 

We compared the performance of the proposed approach 
with several traditional audio signal processing methods, 
including short-term energy and MFCCs. The results showed 
that the proposed approach outperformed all traditional 
methods, achieving an accuracy of 96.7% and a F1-score of 
0.96. The traditional methods, on the other hand, achieved an 
accuracy of 88.5% and a F1-score of 0.87. 

In this paper, we presented a novel approach to detect 
impulsive sounds in real-time using a combination of Deep 
CNN and RNN architectures. The proposed approach can 
handle complex audio patterns, detect impulsive sounds in real-
time, and achieve high accuracy and F1-scores. The proposed 
approach has potential applications in various fields, including 
public safety, industrial settings, and home security systems. 

However, there are some limitations to the proposed 
approach. Firstly, the model requires a large amount of labeled 
data to train effectively, which may not always be available in 
some applications. Secondly, the model's performance may be 
affected by environmental factors, such as background noise or 
reverberation, which can negatively impact the accuracy of the 
detection. Finally, the computational requirements of the model 
may be high, making it challenging to deploy on resource-
limited devices. 

In future work, we plan to investigate the use of transfer 
learning to improve the performance of the proposed approach 
when labeled data is limited. Additionally, we will explore the 
use of advanced feature extraction techniques, such as Mel-
scale Spectrogram, to enhance the performance of the CNN-
RNN model in noisy environments. Finally, we will investigate 
the use of lightweight neural networks, such as MobileNet and 
SqueezeNet, to improve the computational efficiency of the 
model for real-time applications. 

In conclusion, the proposed approach demonstrates the 
effectiveness of using a combination of Deep CNN and RNN 
architectures for impulsive sound detection. The model can 
achieve high accuracy and F1-scores, and has the potential to 
be used in various applications where real-time impulsive 
sound detection is critical. The proposed approach is a 
significant step towards developing automated systems for 
detecting dangerous events and improving public safety. 

VII. CONCLUSION 

In this research paper, we presented a novel approach to 
detect impulsive sounds in real-time using a combination of 
Deep CNN and RNN architectures. The proposed approach 
was evaluated using a publicly available dataset of impulsive 
sounds, and the results showed that it outperformed traditional 
audio signal processing methods in terms of accuracy and F1-
score. 

The proposed approach has several advantages over 
traditional methods, including the ability to handle complex 
audio patterns, detect impulsive sounds in real-time, and 
improve its performance with a large dataset of labeled 
impulsive sounds. However, there are some limitations to the 
proposed approach, including the requirement for a large 
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amount of labeled data to train effectively, environmental 
factors that may impact the accuracy of the detection, and high 
computational requirements. 

In future work, we plan to investigate the use of transfer 
learning and advanced feature extraction techniques to improve 
the performance of the proposed approach. We also aim to 
explore the use of lightweight neural networks to improve the 
computational efficiency of the model for real-time 
applications. 

Overall, the proposed approach demonstrates the 
effectiveness of using a combination of Deep CNN and RNN 
architectures for impulsive sound detection, with potential 
applications in various fields such as public safety, industrial 
settings, and home security systems. The proposed approach is 
a significant step towards developing automated systems for 
detecting dangerous events and improving public safety. 

ACKNOWLEDGMENTS 

The paper is funded by the project, “Design and 
implementation of real-time safety ensuring system in the 
indoor environment by applying machine learning techniques”. 
IRN: AP14971555. 

REFERENCES 

[1] Zhu, S., Guendel, R. G., Yarovoy, A., & Fioranelli, F. (2022). 
Continuous Human Activity Recognition With Distributed Radar Sensor 
Networks and CNN–RNN Architectures. IEEE Transactions on 
Geoscience and Remote Sensing, 60, 1-15. 

[2] Yan, W., Wang, J., Lu, S., Zhou, M., & Peng, X. (2023). A Review of 
Real-Time Fault Diagnosis Methods for Industrial Smart Manufacturing. 
Processes, 11(2), 369. 

[3] Anikiev, D., Birnie, C., bin Waheed, U., Alkhalifah, T., Gu, C., 
Verschuur, D. J., & Eisner, L. (2023). Machine learning in microseismic 
monitoring. Earth-Science Reviews, 104371. 

[4] Omarov, B., Suliman, A., Tsoy, A. Parallel backpropagation neural 
network training for face recognition (2016) Far East Journal of 
Electronics and Communications, 16 (4), pp. 801-808. doi: 
10.17654/EC016040801. 

[5] Omarov, B., Altayeva, A., Suleimenov, Z., Im Cho, Y., & Omarov, B. 
(2017, April). Design of fuzzy logic based controller for energy efficient 
operation in smart buildings. In 2017 First IEEE International 
Conference on Robotic Computing (IRC) (pp. 346-351). IEEE. 

[6] Selim, B., Alam, M. S., Kaddoum, G., AlKhodary, M. T., & Agba, B. L. 
(2020, June). A deep learning approach for the estimation of Middleton 
class-A Impulsive noise parameters. In ICC 2020-2020 IEEE 
International Conference on Communications (ICC) (pp. 1-6). IEEE. 

[7] Yang, Y., Zhou, Y., Yue, X., Zhang, G., Wen, X., Ma, B., ... & Chen, L. 
(2023). Real-time detection of crop rows in maize fields based on 
autonomous extraction of ROI. Expert Systems with Applications, 213, 
118826. 

[8] Omarov, B., Orazbaev, E., Baimukhanbetov, B., Abusseitov, B., 
Khudiyarov, G., & Anarbayev, A. (2017). Test battery for 
comprehensive control in the training system of highly Skilled Wrestlers 
of Kazakhstan on National wrestling “Kazaksha Kuresi”. Man In India, 
97(11), 453-462. 

[9] Sultanovich, O. B., Ergeshovich, S. E., Duisenbekovich, O. E., 
Balabekovna, K. B., Nagashbek, K. Z., & Nurlakovich, K. A. (2016). 
National Sports in the Sphere of Physical Culture as a Means of Forming 
Professional Competence of Future Coach Instructors. Indian Journal of 
Science and Technology, 9(5), 87605-87605. 

[10] Kaldarova, B., Omarov, B., Zhaidakbayeva, L., Tursynbayev, A., 
Beissenova, G., Kurmanbayev, B., & Anarbayev, A. (2023). Applying 
Game-based Learning to a Primary School Class in Computer Science 

Terminology Learning. In Frontiers in Education (Vol. 8, p. 26). 
Frontiers. 

[11] Isac, A., Selim, B., Sobhanigavgani, Z., Kaddoum, G., & Tatipamula, 
M. (2021, December). Impulsive noise parameter estimation: A deep 
CNN-LSTM network approach. In 2021 4th International Conference on 
Advanced Communication Technologies and Networking (CommNet) 
(pp. 1-6). IEEE. 

[12] Radlak, K., Malinski, L., & Smolka, B. (2020). Deep learning based 
switching filter for impulsive noise removal in color images. Sensors, 
20(10), 2782. 

[13] Ahmed, I., & Allen, E. J. (2020, May). Deep learning based diversity 
combining for generic noise and interference. In 2020 IEEE 91st 
Vehicular Technology Conference (VTC2020-Spring) (pp. 1-4). IEEE. 

[14] Cho, J., Kim, S., & Hwang, I. (2023). Active Voice Amplifier: On-
Device Noisy Environment-Aware Solution for Dialogue Enhancement 
in Real Time. Journal of the Audio Engineering Society, 71(3), 129-137. 

[15] Janani, M., & Jebakumar, R. (2023). Detection and classification of 
groundnut leaf nutrient level extraction in RGB images. Advances in 
Engineering Software, 175, 103320. 

[16] Cha, Y. J., Mostafavi, A., & Benipal, S. S. (2023). DNoiseNet: Deep 
learning-based feedback active noise control in various noisy 
environments. Engineering Applications of Artificial Intelligence, 121, 
105971. 

[17] Shi, D., Šabanovič, E., Rizzetto, L., Skrickij, V., Oliverio, R., Kaviani, 
N., ... & Hecht, M. (2022). Deep learning based virtual point tracking for 
real-time target-less dynamic displacement measurement in railway 
applications. Mechanical Systems and Signal Processing, 166, 108482. 

[18] Molina-Tenorio, Y., Prieto-Guerrero, A., & Aguilar-Gonzalez, R. 
(2021). Real-time implementation of multiband spectrum sensing using 
SDR technology. Sensors, 21(10), 3506. 

[19] Lee, G. T., Nam, H., Kim, S. H., Choi, S. M., Kim, Y., & Park, Y. H. 
(2022). Deep learning based cough detection camera using enhanced 
features. Expert Systems with Applications, 206, 117811. 

[20] Huang, Q., Ding, H., & Razmjooy, N. (2023). Optimal deep learning 
neural network using ISSA for diagnosing the oral cancer. Biomedical 
Signal Processing and Control, 84, 104749. 

[21] Dong, Z., & Wang, X. (2023). An improved deep neural network 
method for an athlete's human motion posture recognition. International 
Journal of Information and Communication Technology, 22(1), 45-59. 

[22] Ngo, T. D., Bui, T. T., Pham, T. M., Thai, H. T., Nguyen, G. L., & 
Nguyen, T. N. (2021). Image deconvolution for optical small satellite 
with deep learning and real-time GPU acceleration. Journal of Real-
Time Image Processing, 18(5), 1697-1710. 

[23] Zhao, Z., Lv, N., Xiao, R., Liu, Q., & Chen, S. (2023). Recognition of 
penetration states based on arc sound of interest using VGG-SE network 
during pulsed GTAW process. Journal of Manufacturing Processes, 87, 
81-96. 

[24] Omarov, B., Altayeva, A., Turganbayeva, A., Abdulkarimova, G., 
Gusmanova, F., Sarbasova, A., ... & Omarov, N. (2019). Agent based 
modeling of smart grids in smart cities. In Electronic Governance and 
Open Society: Challenges in Eurasia: 5th International Conference, 
EGOSE 2018, St. Petersburg, Russia, November 14-16, 2018, Revised 
Selected Papers 5 (pp. 3-13). Springer International Publishing. 

[25] Tong, B., Chen, W., Li, C., Du, L., Xiao, Z., & Zhang, D. (2022). An 
Improved Approach for Real-Time Taillight Intention Detection by 
Intelligent Vehicles. Machines, 10(8), 626. 

[26] Shi, J., Li, J., Usmani, A. S., Zhu, Y., Chen, G., & Yang, D. (2021). 
Probabilistic real-time deep-water natural gas hydrate dispersion 
modeling by using a novel hybrid deep learning approach. Energy, 219, 
119572. 

[27] Wang, H., Zheng, J., & Xiang, J. (2023). Online bearing fault diagnosis 
using numerical simulation models and machine learning classifications. 
Reliability Engineering & System Safety, 234, 109142. 

[28] Bajzik, J., Prinosil, J., & Koniar, D. (2020, June). Gunshot detection 
using convolutional neural networks. In 2020 24th International 
Conference Electronics (pp. 1-5). IEEE. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 4, 2023 

280 | P a g e  

www.ijacsa.thesai.org 

[29] Cho, J., Kim, S., & Hwang, I. (2023). Active Voice Amplifier: On-
Device Noisy Environment-Aware Solution for Dialogue Enhancement 
in Real Time. Journal of the Audio Engineering Society, 71(3), 129-137. 

[30] Ostasevicius, V., Karpavicius, P., Paulauskaite-Taraseviciene, A., 
Jurenas, V., Mystkowski, A., Cesnavicius, R., & Kizauskiene, L. (2021). 
A machine learning approach for wear monitoring of end mill by self-
powering wireless sensor nodes. Sensors, 21(9), 3137. 

[31] Mohanan, R., Jacob, J., & King, G. G. (2023, March). A CNN-Based 
Underage Driver Detection System. In Proceedings of Fourth 
International Conference on Communication, Computing and 
Electronics Systems: ICCCES 2022 (pp. 941-954). Singapore: Springer 
Nature Singapore. 

[32] Fang, W., Zhuo, W., Song, Y., Yan, J., Zhou, T., & Qin, J. (2023). 
Δfree-LSTM: An error distribution free deep learning for short-term 
traffic flow forecasting. Neurocomputing. 

[33] Mao, N., Azman, A. N., Ding, G., Jin, Y., Kang, C., & Kim, H. B. 
(2022). Black-box real-time identification of sub-regime of gas-liquid 
flow using Ultrasound Doppler Velocimetry with deep learning. Energy, 
239, 122319. 

[34] Yu, M., Kim, N., Jung, Y., & Lee, S. (2020). A frame detection method 
for real-time hand gesture recognition systems using CW-radar. Sensors, 
20(8), 2321. 

[35] Liang, Y., Li, L., Yi, Y., & Liu, L. (2022, May). Real-time machine 
learning for symbol detection in MIMO-OFDM systems. In IEEE 
INFOCOM 2022-IEEE Conference on Computer Communications (pp. 
2068-2077). IEEE. 

[36] Albertin, U., Pedone, G., Brossa, M., Squillero, G., & Chiaberge, M. 
(2023). A Real-Time Novelty Recognition Framework Based on 
Machine Learning for Fault Detection. Algorithms, 16(2), 61. 

 


