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Abstract—Deep learning object detection methods are usually 

based on anchor-free or anchor-based scheme for extracting 

object proposals and one-stage or two-stage structure for 

producing final predictions. As each scheme or structure has its 

own strength and weakness, combining their strength in a unified 

framework is an interesting research topic. However, this topic 

has not attracted much attention in recent years. This paper 

presents a two-stage object detection method that utilizes an 

anchor-free scheme for generating object proposals in the initial 

stage. For proposal generation, this paper employs an efficient 

anchor-free network for predicting object corners and assigns 

object proposals based on detected corners. For object 

prediction, an efficient detection network is designed to enhance 

both detection accuracy and speed. The detection network 

includes a lightweight binary classification subnetwork for 

removing most false positive object candidates and a light-head 

detection subnetwork for generating final predictions. 

Experimental results on the MS-COCO dataset demonstrate that 

the proposed method outperforms both anchor-free and two-

stage object detection baselines in terms of detection 

performance. 

Keywords—Object detection; deep learning; convolutional 

neural network; proposal generation network 

I. INTRODUCTION 

Object detection has seen significant advancements in 
recent years thanks to deep learning, particularly convolutional 
neural networks (CNN). According to the way of generating 
object proposals from input images, Current object detection 
techniques can be divided into two categories: anchor-based 
and anchor-free object detection methods. Anchor-based 
approaches consider each object as a rectangular bounding box 
on feature map. Features inside the bounding box are extracted 
and inputted into either a proposal generation network to 
generate proposals or a detection network to generate final 
outputs. To address the issue of scale variation, anchor-based 
methods define multiple bounding boxes with varying sizes 
and aspect ratios, enabling the network to detect objects of 
diverse sizes and proportions. The sizes and aspect ratios 
defined in anchor-based object detection approaches vary 
depending on the specific object and structure. Anchor-based 
schemes are dominant in early deep learning object detection 
methods since they are easy to implement and facilitate the 
learning process. However, object detection methods based on 
anchor-based scheme face another problem as they cannot 
detect objects with rare sizes/aspect ratios due to the limitation 
of anchor box sizes and ratios. 

On the other hand, anchor-free object detection approaches 
examine points (i.e., anchor points or keypoints) on feature 

map to predict objects. These approaches can be categorized 
into two categories: anchor points object detection approaches 
and keypoints object detection approaches. While object 
detection methods based on anchor points classify each point 
on feature map into object/background classes and predict the 
distances from the positive points to object borders, keypoint-
based object detection methods predict keypoints such as 
corner points or center points on feature map and group valid 
points to form objects. Compared to anchor points object 
detection methods, keypoints object detection methods usually 
have a more complicated structure and achieve better detection 
performance. However, they need an optimal grouping 
algorithm so that the network can efficiently group valid 
keypoints to form objects. 

Alternatively, according to the learning process, Current 
object detection techniques can be divided into two categories: 
one-stage and two-stage object detection methods. One-stage 
object detection techniques directly use the detection network 
on input feature maps to generate final outputs, whereas two-
stage object detection methods generate object proposals in the 
first stage, followed by the use of the detection network in the 
second stage to produce the final predictions. Since one-stage 
methods eliminate proposal generation process, they obtain fast 
processing speed. However, detection accuracy is typically 
improved through the use of two-stage methods [1], [2]. 

In recent years, many object detection structures followed 
the above schemes or structures have obtained great 
achievements [3], [4], [5]. In general, each of the above 
schemes or structures has its own strengths and weaknesses. 
Thus, combining the strength of these schemes or structures in 
a unified framework is an interesting topic. However, this topic 
has received limited attention from the academic community in 
recent years. This paper presents a novel object detection 
framework that combines the benefits of both an anchor-free 
approach and a two-stage structure. The proposed method uses 
an anchor-free object detection scheme to generate object 
proposals in the initial stage. To efficiently generate final 
predictions in the subsequent stage, an efficient detection 
network is designed. The efficient detection network includes a 
lightweight binary classification subnet and a light-head 
detection subnet. Experimental results on the MS-COCO 
dataset prove the effectiveness of the proposed method. 

The structure of the article is presented as follows. 
Section II introduces recent related works. Section III provides 
details on the design of the proposed method. Section IV 
presents the experiments and results achieved by the method. 
Section V provides conclusions. 
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II. LITERATURE REVIEW 

A. Anchor-based Object Detection Methods 

Anchor-based object detection methods depict each object 
as an anchor bounding box on feature maps. To address the 
scale variation issue, these object detectors establish multiple 
anchor boxes at each location on the feature map. Each anchor 
box is linked to a scale and aspect ratio. In Faster R-CNN [3], 
three aspect ratios (128

2
, 256

2
, 512

2
) and three scales (1:1, 1:2, 

2:1) are employed in the definition of anchor boxes, yielding 
nine anchor boxes at each position on feature map. In FPN [4], 
since region proposal network is applied on the feature 
pyramid, anchor boxes at each spatial location of a feature 
level are defined using one scale and three aspect ratios. 
Anchor-based scheme has been employed in many deep object 
detection frameworks [5], [6], [7], [31]. However, anchor box 
scales and aspect ratios must be meticulously designed for the 
specific domain to ensure the detection network attains optimal 
detection performance. To eliminate problems caused by 
anchor box settings, various methods propose to replace the 
manual design of the anchor boxes by a deep network so that 
the shape of the anchors is automatically learned during 
training. For this purpose, MetaAnchor [8] developed a 
generator for anchor functions that maps a given prior 
bounding box to its corresponding anchor function. The anchor 
function generator is formed by a simple network and 
computed from customized prior bounding boxes, and thus it 
can be inserted into any deep learning object detection methods 
for joint optimization. The results show that MetaAnchor is 
more robust than manual design of anchor settings as it can 
detect objects with rare shapes. However, MetaAnchor obtains 
minor improvements on two-stage object detectors. Moreover, 
it requires customized prior bounding boxes to be chosen by 
handcraft and more computation for extra network. In [9], a 
novel anchor box optimization method is proposed. The 
training process employs the optimization technique based on 
localization loss to automatically learn the anchor shapes. In 
addition, soft assignment and online clustering scheme are 
introduced to warm up the anchor shapes. Recently, Sparse R-
CNN [10] represented object candidates by a limited set of 
bounding boxes that can be learned. These learnable bounding 
boxes represent the statistics of potential object locations 
within the training set. The back propagation algorithm will 
update the parameters of these adjustable bounding boxes 
during training. By eliminating the hand-designed anchor 
boxes, Sparse R-CNN strikes a favorable balance between 
accuracy, runtime, and training convergence performance. 

B. Anchor-free Object Detection Methods 

Anchor-free object detection methods employ points (i.e., 
anchor points or keypoints) for predicting objects. For this 
purpose, CornerNet [11] suggests detecting objects based on 
their top-left and bottom-right corners. For detecting corners, 
CornerNet employs a corner prediction network that includes a 
corner pooling layer for producing corner proposals, a heatmap 
generation layer for generating corner heatmaps, an offset 
generation layer for predicting corner offsets, and a network for 
calculating embeddings which are used to group valid corner 
points to form objects. Based on CornerNet, CenterNet [12] 
introduced an extra keypoint (i.e., center point) for predicting 
objects. A center pooling layer is also designed to enrich center 

and corner information, which improves the detection 
performance of CenterNet. Zhou et al. [35] utilized a single 
point at the center of the bounding box to represent objects, 
eliminating the need for the grouping stage in keypoint 
detectors like CornerNet and CenterNet. Peaks in the heatmaps 
generated by a keypoint estimation network are used to predict 
object center. In [13], representation of objects in input images 
is achieved through the use of a set of sample points that 
adaptively position themselves over the object. The sample 
points are learned through both object localization and 
recognition loss. Based on predicted sample points, converting 
functions are designed to form object bounding boxes. In [14], 
an object prediction mechanism utilizing a star-shaped 
bounding box is designed. The star-shaped bounding box 
employs features from nine fixed sampling points with 
deformable convolution [15] to represent a bounding box. This 
new bounding box design can incorporate both the geometry of 
the bounding box and its surrounding context, crucial for 
encoding any misalignment between the predicted and actual 
bounding box. 

An alternative approach is to use each point on the feature 
map for object prediction. For this purpose, FCOS [16] 
employs a fully convolutional network for classifying each 
location on feature map. For each positive point, FCOS 
predicts the distances from the location to the four sides of the 
bounding box. FCOS incorporates a center-ness branch to 
down-weight the scores of low-quality predicted bounding 
boxes generated by locations far from the center of an object, 
in order to remove them. Similar to FCOS, FoveaBox [17] 
presents an anchor-free framework that predicts category-
sensitive semantic maps for the presence of objects and 
generates category-agnostic bounding boxes for each potential 
object location. FoveaBox defines positive and negative 
training samples based on the fovea area, which is the center of 
the visual field with the highest resolution. Different from 
FCOS and FoveaBox, Zhu et al. [34] introduced a new feature 
selective anchor-free module (FSAF), which takes pixels on 
feature pyramid as inputs and directly feeds these pixels into 
two convolutional networks: a classification network for 
predicting class scores for each pixel and a regression network 
for producing offsets encoding the distances from the current 
pixel location to the top, left, bottom, and right boundaries of 
the target bounding box. Recently, SAPD [18] introduced an 
optimal training approach using two softening optimization 
techniques, soft-weighted anchor points and soft-selected 
pyramid levels. The soft-weighted anchor points technique 
adjusts the contribution of anchor points on the same pyramid 
level to the network loss based on their geometry relative to the 
instance box, while the soft-selected pyramid levels technique 
learns the participation level of each pyramid. The results show 
that SAPD balances speed and accuracy effectively. 

The above methods have their own strengths and 
weaknesses. Specifically, due to the limitation of anchor box 
sizes and ratios as well as the variability of object sizes, 
anchor-based object detection methods have limitations in 
detecting objects with various shapes. On the other hand, 
anchor-free object detection approaches have limitations in 
determining geometric relations between an object and nearby 
contextual information. This paper focuses on exploiting and 
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combining the strengths of the above methods. Based on that, a 
model is designed that can achieve better accuracy and 
execution speed. 

III. METHODOLOGY 

The proposed structure is described in this section. Initially, 
an evaluation of anchor-based and anchor-free methods for 
generating object proposals is conducted. Then, the specifics of 
each module in the proposed structure are depicted in 
subsequent subsections. 

 

Fig. 1. The flowchart of anchor-based object detection methods. 

C. Object Proposal Generation Methods 

As shown in Fig. 1, anchor-based object detection methods 
first depict each object as an anchor box B = {x, y, w, h} on 
feature maps, where the center point is represented by the 
coordinates (x, y), and the width and height of the object 
bounding box are (w, h). Then, the features within anchor box 
B are extracted and inputted into a deep network to generate 
object proposals (for two-stage approaches) or direct final 
predictions (for one-stage approaches). Anchor-based object 
detection techniques define a collection of anchor boxes at 
each position in a feature map in the input image to 
accommodate objects of varying size, position, and scale, 
enabling the model to detect all of them. In Faster R-CNN [3], 
the center of each anchor box corresponds to the center of the 
sliding window, and each is paired with a specific scale and 
aspect ratio. Faster R-CNN uses three aspect ratios (i.e., 1:1, 
1:2, 2:1) and three scales (i.e., 128

2
, 256

2
, 512

2
), which results 

in 9 anchor boxes at each position on feature map. Recently, 
the FPN [4] has established a single scale and three aspect 
ratios for each anchor location, utilizing the feature pyramid. 
When using anchor-based object detection methods, it is 
important to carefully design the number and shape of anchor 
boxes. Too few anchor boxes or inappropriate anchor shapes 
may be insufficient to cover a large range of objects in various 
sizes and ratios, which reduces the performance of proposal 
generation network or detection network. The top portion of 
Fig. 2 shows some examples where Faster R-CNN with 
anchor-based scheme faces difficulty in predicting objects with 
rare shapes since there are no defined ratios or scales that fit 
these objects. 

 

Fig. 2. Results of detection on the validation set of MS-COCO dataset. Top: 

Faster R-CNN with anchor-based scheme. Bottom: CornerNet with anchor-

free scheme. 

Alternatively, anchor-free methods use keypoints or 
anchor-points to depict an object. Methods based on keypoints 
first predict the locations of keypoints like corner or center 
points, and then use these keypoints to form an object 
bounding box by a grouping algorithm. On the contrary, 
anchor-point based methods first categorize each point on the 
feature map and then estimate the distances from the potential 
point to the four edges of the actual bounding box to produce 
object proposals. Since anchor-free methods eliminate all 
problems related to anchor box settings, they have a better 
ability of detecting objects, especially objects with rare shapes, 
which improves the recall rate. The bottom portion of Fig. 2 
shows some detection results of the CornerNet framework [11]. 
As shown, CornerNet with anchor-free scheme obtains better 
detection results compared with Faster R-CNN with anchor-
based scheme. However, anchor-free methods face another 
problem of forming an object candidate based on keypoints. 
Take CornerNet as an example, CornerNet determines an 
embedding vector for every identified corner, then groups the 
corners to create the object bounding box based on the 
distances between the embeddings. Due to the significant 
number of false positives produced by the corner detection 
network, determining an embedding vector for each detected 
corner may result in many false positive outcomes. As seen in 
Fig. 3, CornerNet generates some incorrect corner pairs 
because of similar appearance leading to similar embeddings. 

Based on the above analysis, this paper introduces an 
efficient object detection structure that inherits the merits of 
anchor-free scheme for producing object proposals and two-
stage structure for generating predictions. Based on anchor-free 
scheme, this paper designs an efficient two-stage object 
detection approach that eliminates the grouping stage, which 
hinders the detection performance of anchor-free object 
detection pipelines. The details of the proposed method are 
outlined in subsequent sections. 

 

Fig. 3. Results of CornerNet on the validation set of MS-COCO dataset 

showed some false corner pairs generated due to similarities in embeddings. 
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D. Overview of the Proposed Approach 

The structure of the proposed method is shown in Fig. 4. It 
integrates an anchor-free approach and a two-stage structure 
into a single object detection framework. The first stage 
generates object proposals, and the second stage produces 
predictions. The proposal generation network in the first stage 
is based on CornerNet [11]. Specifically, CornerNet employs 
input feature maps to predict top-left and bottom-right corner 
keypoints of the bounding box for objects. Based on the corner 
keypoints, object proposals are formed according to the corner 
locations and the corresponding classifying scores. Since there 
are many false positive object proposals generated by the first 
stage, an efficient detection network is designed in the second 
stage. Specifically, a lightweight classification subnet is first 
designed to remove most false positive object candidates. A 
detection subnet with light-head structure is then adopted to 
produce prediction results based on remaining object 
candidates. With the anchor-free scheme for proposal 
generation in the initial stage and an efficient detection 
structure in the following stage, the proposed approach 
integrates the merits of anchor-free scheme into a two-stage 
structure. The details of each module are depicted in the 
subsequent sections. 

E. CornerNet as Object Proposal Generation 

To obtain high recall rate for generating object proposals 
from input images, especially for objects with various shapes, 
this paper adopts CornerNet [11] as object proposal generation 
network. CornerNet identifies an object through two crucial 
keypoints - the top-left corner keypoint and the bottom-right 
corner keypoint. The structure of CornerNet, as depicted in 
Fig. 5, involves the utilization of the Hourglass model [19] to 
extract feature maps from input images. The Hourglass 
network initially processes input features through convolution 
and max pooling layers to reduce the resolution and then uses 
up-sampling, convolution layers, and skip layers to increase the 
resolution back to its original state. The Hourglass architecture 
combines both global and local features into a single structure. 
As in [11], this paper employs the Hourglass architecture with 

two Hourglass modules for extracting input features. The final 
layer of the Hourglass network is utilized for further prediction 
by using two prediction branches with identical structures. 
These prediction branches, based on the last feature map 
produced by Hourglass, detect the top-left and bottom-right 
corners. Each branch generates C channel heatmaps, where C 
represents the number of object categories. Each channel is a 
binary map that shows the locations of corners for each class. 
To refine the corner locations, each branch predicts offset 
values. A corner pooling module, consisting of two 3×3 
convolution layers followed by a corner pooling layer, is 
utilized in each branch to pool features from the Hourglass 
network. These features are then fed into a 3×3 convolution 
layer for projection. Finally, the output features are used to 
produce heatmaps and offsets through a series of 3×3 and 1×1 
convolution layers. It should be noted that since this paper 
adopts CornerNet for predicting corners, the embedding 
prediction branch in the original CornerNet is removed, thus 
reducing the computation of the proposed object proposal 
generation network. 

After getting proposal corners through the proposed 
CornerNet, this paper extracts K top-left and K bottom-right 
corners from the heatmaps generated by CornerNet (K = 50 in 
this paper). Then, each pair of top-left and bottom-right corners 
belonging to the same class, where the coordinates of top-left 
corner are smaller than that of bottom-right corner is used to 
define an object proposal. By using corner points to define 
object candidates, the proposed object proposal generation 
method can detect more objects, especially objects with 
arbitrary size, which are usually missed by anchor-based 
proposal generation method. As a result, the recall rate is 
significantly improved. However, defining object proposals 
based on this scheme leads to many false positive proposals as 
the corner keypoints of two different objects of the same class 
may define an object proposal (as shown in Fig. 3). To 
eliminate most false proposal candidates, this paper designs an 
efficient detection network which is elaborated in the next 
subsection. 

 

Fig. 4. The overall structure of the proposed model. 
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Fig. 5. The architecture of CornerNet used in this paper. 

F. Detection Network 

Since this paper employs CornerNet for generating object 
proposals, many false positive proposal candidates are 
produced. As a result, applying a heavy detection network for 
predicting objects based on a large number of object candidates 
is not efficient since it requires a huge amount of 
computational budget. In the paper, a high-performance 
detection network is proposed. The structure of the proposed 
network is depicted in Fig. 6. First, this paper employs a 
lightweight binary classification subnet to eliminate most of 
false positive proposal candidates. The lightweight binary 
classification subnet starts by applying a convolution layer to 
the final feature layer of the backbone to create a thin feature 
map with 32 channels. The RoIAlign layer [20] then creates the 
proposal feature map using the thin feature map and proposals 
from the proposed CornerNet. At the end of the lightweight 
binary classification subnet, a convolution layer followed by an 
average pooling layer computes the classification score for 
each proposal. To address the issue of imbalanced training 
samples, this paper implements a variation of focal loss [6] in 
the training process, which is illustrated as follows: 

         
 

 
∑     (1) 

   {
      

                  

  
                    

 (2) 

where   represents the number of positive samples,    is 
the objectness score of  -th proposal,      is the maximum IoU 
value between  -th proposal and all ground truth boxes.   and 
  are set at 0.7 and 2, respectively, in this paper. 

Next, since the lightweight binary classification subnet 
effectively eliminates most false positive proposal candidates, a 
light-head detection subnet is utilized to generate final 
predictions from the remaining proposals. This paper designs a 
light-head structure, similar to Light-Head R-CNN [21], in the 
final detection subnet for both classification and bounding box 
regression. The light-head detection subnet can improve 
computational speed without compromising the detection 
performance. As illustrated in Fig. 6, the first step is to apply a 
large separable convolution layer to the final feature layer of 
the backbone to improve these features while simultaneously 
decreasing the number of channels. Compared with 1×1 
convolution, large separable convolution is more efficient as it 
produces thin output features with more semantic information. 
Then, PSRoI Align [22] is adopted to produce fixed size 
features (i.e., 7×7×10) for remaining proposal candidates based 
on feature map generated by the large separable convolution 
layer. Here, the PSRoI Align is utilized as it reduces the 
number of channels in the output features. Finally, this paper 
uses a single 1024-dimensional fully connected layer followed 
by two parallel fully connected layers to produce the final 
classification and regression results. 

 

Fig. 6. The structure of the proposed detection network. 
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By designing an efficient detection network with two 
prediction steps, most of false positive object candidates are 
removed by the classifier, and remaining object candidates are 
efficiently predicted by the detection subnet. The detection 
subnet with light-head structure can enhance the detection 
speed without compromising the detection performance. The 
experimental results demonstrate that this design is more 
efficient than using a heavy detection network directly as the 
detection network. 

IV. RESULTS 

A. Implementation Details 

This paper uses the MS-COCO dataset [23] to evaluate the 
proposed model, which contains 80 object categories. The 
images in the dataset are divided into three sets, with 80K 
images for training, 40K images for validation, and 20K 
images for testing. In accordance with the standard protocol 
[4], [6], this paper trains the proposed model using all images 
in the training set and 35K images from the validation set. To 
evaluate the detection performance, the paper reports the 
results on the test-dev set, which are submitted to an external 
evaluation server. 

For evaluation metrics, this paper follows metrics defined 
in the MS-COCO dataset for evaluating object detection tasks. 
To be more specific, this paper uses the average precision 
(AP), AP50, AP75, APS, APM, and APL as evaluation metrics. 
AP is the average precision over 80 categories under multiple 
IoU values (i.e., 0.5:0.05:0.95). AP is considered the key 
metric when assessing object detection techniques on the MS-
COCO dataset. AP50 and AP75 are AP computed at a specific 
IoU threshold value. APS, APM, and APL are AP computed 
based on object sizes (APS for objects with area < 32

2
, APM for 

objects with 32
2
 < area < 96

2
, and APL for objects with area > 

96
2
). 

The proposed network is designed based on Pytorch [24] 
and open-source object detection toolbox mmdetection [25]. 
The object proposal generation network is adopted from 
CornerNet [11], where the stacked Hourglass networks with 
104 layers and the corner detection network are trained on the 
MS-COCO dataset. As in [11], the input size of the network is 
set to 511×511 during the training process. The proposed 
network is trained end-to-end with the full training loss as 
follow: 

                                            (3) 

where         and          are the variant of focal loss and 

the smooth    loss, respectively;         is the variant of focal 
loss for training the binary classification subnet;         and 
         are the cross-entropy loss and the smooth    loss, 

respectively, for training the light-head detection network. For 
computationally efficient reasons, this paper uses Adam 
optimizer [26] to optimize the training loss. The Adam 
optimizer is a widely used optimization algorithm in the deep 
learning domain and is straightforward to implement. The 

proposed network is trained for 100K iterations on Nvidia RTX 
3070 GPU. 

During the inference process, this paper adopts a 
confidence threshold of 0.3 to remove false positive proposal 
candidates by the binary classification subnet. In addition, Soft-
NMS [27] is employed after the light-head detection network 
to eliminate redundant boxes, and the top 150 scoring boxes 
are selected for evaluation. 

B. Detection Results on the MS COCO Dataset 

The detection accuracy of the proposed method is shown in 
Table I alongside recent state-of-the-art object detection 
methods, both anchor-based and anchor-free pipelines, on the 
MS-COCO test-dev set. The results in the table demonstrate 
that the proposed model significantly outperforms the 
CornerNet baseline model [11]. To be more specific, the 
proposed model improves AP, AP50, AP75, APS, APM, and APL 
by 6.8, 11.0, 10.7, 7.6, 8.7, and 8.1 points, respectively, 
compared with CornerNet on the same backbone network and 
input size. The results show that the combining of the binary 
classifier and the light-head detection network are very 
efficient for removing false positive object candidates and 
predicting remaining object candidates. Compared with Faster 
R-CNN using ResNet-101 backbone, which is a popular two-
stage anchor-based object detection framework, the proposed 
model also achieves significantly higher detection accuracy. 
The proposed network improves AP, AP50, AP75, APS, APM, 
and APL by 11.2, 8.3, 14.9, 8.5, 12.5, and 14.2 points, 
respectively, compared with Faster R-CNN using ResNet-101 
backbone. The results demonstrate that using an anchor-free 
approach to generate object proposals and designing a suitable 
detection network can enhance object detection performance. 
As seen in Table I, the proposed model also outperforms both 
anchor-based and anchor-free models while using lower input 
resolution. Moreover, as APS, APM, and APL denote AP for 
predicting objects at different sizes, the results in Table I reveal 
that the proposed model has improved performance in 
detecting medium and large objects compared to small ones. 
To be more specific, compared with CornerNet, the proposed 
model improves APS, APM, and APL by 7.6, 8.7, and 8.1 points, 
respectively. This result shows that the proposed network has 
difficulty in detecting small objects since predicting small 
objects requires richer semantic information features, which 
can be achieved by employing feature pyramids. 

Table II shows the inference speed of the proposed model 
and several efficient methods on the MS-COCO dataset. All 
methods are implemented on Nvidia RTX 3070 GPU. As 
demonstrated in Table II, the proposed model obtains 2.8 fps 
on the MS-COCO dataset with input resolution 511×511, 
which is comparable to the speed of the baseline CornerNet. 
The results shown in Table II also indicate that Faster R-CNN 
and FCOS have better speed, however, the proposed method 
achieves a better detection accuracy as shown in Table I. This 
demonstrates that the proposed method strikes a good balance 
between inference speed and detection accuracy. 
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TABLE I. EVALUATION OF THE PROPOSED METHOD AGAINST RECENT OBJECT DETECTION TECHNIQUES ON THE MS-COCO TEST-DEV SET IN TERMS OF 

DETECTION ACCURACY 

Method Backbone network Input resolution AP AP50 AP75 APS APM APL 

Anchor-based methods         

Faster R-CNN [3] ResNet-101 600×1000 36.2 59.1 39.0 18.2 39.0 48.2 

Light-Head R-CNN [21] ShuffleNetV2 800×1200 23.7      

ThunderNet [28] SNet535 320×320 28.1 46.2 29.6 - - - 

RetinaNet [6] ResNet-101 800×1200 39.1 59.1 42.3 21.8 42.7 50.2 

Mask R-CNN [20] ResNext-101 800×1200 39.8 62.3 43.4 22.1 43.2 51.2 

TridentDet [29] ResNet-101 800×1200 42.7 63.6 46.5 23.9 46.6 56.6 

YOLOv4 [30] Darknet-53 608×608 43.5 65.7 47.3 26.7 46.7 53.3 

Cascade R-CNN [32] ResNet-101 800×1200 42.8 62.1 46.3 23.7 45.5 55.2 

FFAD [33] ResNet-101 800×1333 44.1 62.2 47.9 27.4 47.6 56.7 

Anchor-free methods         

FCOS [16] ResNext-101 800×1024 44.7 64.1 48.4 27.6 47.5 55.6 

CornerNet [11] Hourglass-104 511×511 40.6 56.4 43.2 19.1 42.8 54.3 

CenterNet [12] Hourglass-104 511×511 44.9 62.4 48.1 25.6 47.4 57.4 

FoveaBox [17] ResNext-101 800×1024 42.1 61.9 45.2 24.9 46.8 55.6 

SAPD [18] ResNext-101 800×1024 45.4 65.6 48.9 27.3 48.7 56.8 

Proposed method Hourglass-104 511×511 47.4 67.4 53.9 26.7 51.5 62.4 

TABLE II. THE INFERENCE SPEED OF THE PROPOSED MODEL AND 

SEVERAL EFFICIENT METHODS ON THE MS-COCO DATASET 

Method 
Backbone 

network 
Input resolution FPS 

Faster R-CNN [3] ResNext-101 600×1000 4.2 

CornerNet [11] Hourglass-104 511×511 3.0 

CenterNet [12] Hourglass-104 511×511 2.6 

FCOS [16] ResNext-101 800×1024 4.1 

Proposed 

method 
Hourglass-104 511×511 2.8 

C. Ablation Study on Detection Network 

To assess the efficacy of the proposed detection network 
for anchor-free proposal generation scheme, this paper 
examines the detection performance of several structures on 
the MS-COCO validation set. First, the original R-CNN 
detection head [3] is applied on the last backbone feature layer 
to produce final predictions based on object proposals 
produced by the proposed CornerNet. The proposed CornerNet 
extracts 50 top-left corner points and 50 bottom-right corner 
points based on the heatmaps to form object proposals. The R-
CNN architecture consists of two fully connected layers with 
4096 neurons each, featuring ReLU activations, followed by 
two additional fully connected layers for performing 
classification and regression tasks. Second, the proposed 
lightweight binary classification subnet is applied to remove 
false positive proposals. This binary classification takes 
7×7×32 feature maps generated by a RoIAlign layer as inputs. 
Remaining proposals are fed into the original R-CNN detection 
head to output final predictions. Finally, the proposed light-
head detection subnet is applied on the last backbone feature 
layer to produce predictions without the lightweight binary 

classification subnet. It should be noted that a large separable 
convolution layer is employed to reduce the feature map 
channels to 490 before feeding to the light-head detection 
subnet. For all experiments, this paper employs the same input 
resolution at 511×511 for fair comparison. Table III illustrates 
the detection performance of the proposed structures. As 
demonstrated in Table III, directly applying the R-CNN subnet 
on object proposals generated by the proposed CornerNet does 
not improve AP as many false positive proposals hinder the 
classification ability of R-CNN. When employing the binary 
classification subnet before the R-CNN subnet, the detection 
performance is improved. However, the detection speed is 
reduced as this structure uses a heavy detection head for 
prediction. On the other hand, using the light-head detection 
subnet after the binary classification subnet improves both the 
detection performance and speed. The result shows that the 
proposed detection network with a binary classification subnet 
and a light-head detection subnet obtains the best trade-off 
between detection accuracy and speed. 

TABLE III. EVALUATION OF VARIOUS DESIGNS ON THE MS-COCO 

VALIDATION SET IN TERMS OF THEIR DETECTION ABILITY 

Method Input resolution AP FPS 

CornerNet [11] 511×511 41.0 3.0 

CornerNet + R-CNN 511×511 40.8 2.1 

CornerNet + binary classifier + 

R-CNN 
511×511 46.4 1.6 

CornerNet + light-head 
detection subnet 

511×511 41.1 3.8 

CornerNet + binary classifier + 

light-head detection subnet 
511×511 46.8 2.8 
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V. CONCLUSIONS 

This paper presents a new object detection framework that 
combines the benefits of anchor-free and two-stage 
approaches. In the first stage, an anchor-free scheme is 
designed to generate object proposals. In the second stage, an 
efficient detection network comprised of a lightweight binary 
classification subnetwork for reducing false positive object 
proposals and a light-head detection subnetwork for final 
predictions is utilized. The proposed model was tested on the 
MS-COCO dataset and achieved the best balance between 
speed and accuracy compared to state-of-the-art anchor-based 
and anchor-free object detection methods. Specifically, the 
proposed model obtains 47.4 of AP on the MS-COCO test-dev 
set, which surpasses both anchor-free and one-stage model 
baselines. The focus of this study was on efficiency, and thus 
techniques for improving accuracy, such as combining 
different network layers or using multi-layer predictions, were 
not explored. As a result, the model struggles with detecting 
small objects. Future work will focus on improving the 
detection of small objects by replacing the backbone network 
with a feature pyramid network. 
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