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Abstract—In the context of the 4.0 technology revolution, 

which develops and applies strongly in many fields, in which the 

banking sector is considered to be the leading one, the 

application of algorithms to detect fraud is extremely important. 

necessary. In recent years, credit card transactions including 

physical credit card payments and online payments have become 

increasingly popular in many countries around the world. This 

convenient payment method attracts more and more criminals, 

especially credit card fraud. As a result, many banks around the 

world have developed fraud detection and prevention systems for 

each credit card transaction. Data mining is one of the techniques 

applied in these systems. This study uses the Ripper algorithm to 

detect fraudulent transactions on large data sets, and the results 

obtained with accuracy, recall, and F1 measure of more than 

97%. This research then used the Ripper algorithm combined 

with Ensemble Learning models to detect fraudulent 

transactions, the results are more than 99% reliable. Specifically, 

this model using the Ripper algorithm combined with the 

Gradient Boosting method has improved the predictive ability 

and obtained very reliable results. The use of algorithms 

combined with machine learning models is expected to be a new 

topic and will be widely applied to banks’ or organizations’ 

activities related to e-commerce. 
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transaction; ensemble methods 

I. INTRODUCTION 

The e-commerce sector is expected to account for 21.8% 
of total global retail sales by 2024 [1]. As the worldwide e-
commerce market share increases risks also increase, trusting 
becoming a concern as the number of frauds and scams has 
increased significantly over the past few years [2]. The e-
commerce market in 2021 faces a risk of US$20 billion due to 
fraudulent transactions [3]. The most common types of fraud 
include account takeovers, identity theft, covert fraud, and 
chargeback fraud [3]. These frauds can affect the finances of 
both consumers and merchants and reduce overall confidence 
in e-commerce [4]. 

Data mining techniques have shown promising 
performance in detecting fraud [5], [6], [7] and rule from large 
data sets [8]. To solve the problem of transaction fraud in e-
commerce, there have been many studies using data mining 
rules to build laws, thereby detecting transaction fraud. These 
studies and their results will be introduced in Part II (Related 
Works). 

In many forecasting models, the Repeated Incremental 
Pruning to Produce Error Reduction (Ripper) algorithm is 
chosen to apply [9] because this algorithm has high reliability 
and coverage. Next, this study uses a synchronous learning 
method in machine learning to combine with Ripper algorithm 
to improve the reliability and accuracy of fraud detection. The 
results of study have yielded very positive results. This model 
has been applied in many other fields but is still quite new in 
the field of e-commerce in the world as well as in Vietnam. 

The article structure consists of five sections. Section I is 
an overview of the research, Section II introduces the research 
done related to the article, and Section III is the proposed 
solutions and techniques to solve the problem dealing with the 
problem posed. Section IV lists the order of steps to conduct 
the experiment as well as the software and tools used. Finally, 
Section V summarizes and concludes with the issues achieved 
in the study as well as suggestions for future research. 

II. RELATED WORKS 

Research related to fraudulent transaction detection is 
numerous and has been conducted in a variety of fields, 
including finance, e-commerce, credit cards, multi-level 
commerce, and many others. Data mining techniques used 
include Support vector machine (SVM), Fuzzy Logic based 
system (FL), Hidden Markov Model (HMM), Artificial Neural 
network (ANN), Genetic Algorithm (GA), Bayesian Network 
(BN), K-Nearest Neighbor Algorithm (KNN), Decision Tree 
(DT), Logistic Regression (LR), Outlier's Detection and other 
Classification techniques [6], Below is a summary of the 
articles, mining techniques used, and research results. 

 Support Vector Machine: 

N. K. Gyamfi and J. D. Abdulai used SVM to detect bank 
fraud [6]. The result shows an improvement of the SVM 
method by 80% which is considered better performance. 

M. Jeragh, M. AlSulaimi combined autoencoders and one 
class support vectors machine for fraudulent credit card 
transactions detection [6]. The result of two combined models 
achieved promising results, especially when evaluated using 
metrics performance. 

K. Poongodi and D. Kumar used SVM with Information 
Gain Based Classification algorithm to identify fraudulent and 
legal transactions [10]. The result shows that the accuracy of 
detection is enhanced in the credit card fraud detection system 
by using SVM with information gain-based classification. 
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Y. Kumar, S. Saini, and R. Payal proposed a comparison 
between three data mining algorithms: Logistic Regression, 
Random Forest, and Support Vector Machine [11]. The study 
shows that when comparing the result of three algorithms the 
random forest algorithm gives better results for the 
classification of fraud with 81.79% accuracy. 

 Artificial Neural Network: 

A. A. Rizki, I. Surjandari, and R.A. Wayasti used data 
mining applications to detect financial fraud in Indonesia’s 
public companies [6]. The finding proved that feature 
selection helped in increasing the accuracy of the SVM 
method with 88.37% while ANN gave the most effective 
accuracy with 90.97%. 

I. Sadgali, N. Sael, and F. Benabbou proposed a 
comparative study using Neural Networks Techniques, Neural 
Networks (NN), Multilayer Perceptron Layer (MPL), and 
Convolutional Neural Networks (CNN), for credit card fraud 
detection [12]. The result shows that CNN has the highest 
accuracy. 

A Sahu, GM Harshvardhan, MK. Gourisaria detected 
fraudulent transactions by several machine learning models 
and the artificial neural network [13]. The result shows that all 
the models have a very high percentage of true negatives due 
to the heavy count of non-fraud cases. 

 Decision Tree: 

V. Jain, M. Agrawal, and A. Kumar [14] used three 
machine learning algorithms, Decision Tree, Random Forest, 
and XGBoost applied to a data set have the data of 284808 
credit cards. The performance of the XGBoost algorithm is 
found best with the highest accuracy of 99.962 percent. The 
performance of the Decision Tree is minimum with an 
accuracy of 99.923 and the performance of the Random Forest 
algorithm is 99.957 percent in credit card transactions. 

J. Soyemi and H. Mudasiru implemented a decision tree 
algorithm augmented with regression analysis for fraud 
detection in credit cards [15]. This study was able to achieve 
its aim by building a machine-learning model that is capable 
of detecting fraud. 

In this article, this study used Ripper algorithm [7] to 
perform a reliability test when predicting transaction fraud 
when the transaction volume is increasing and unbalanced, 
then combine Ripper and Ensemble Learning Methods to 
create a more reliable predictive model (ROC increase from 
88% to 98%). 

III. PROPOSED SOLUTIONS AND TECHNIQUES 

A. Implementing Data Set 

Focusing on the objective of this study, "Aggregated 
Financial Dataset for Fraud Detection" was selected [16], [17]. 
The dataset contains approximately 6.3 million data about 
mobile money transactions and consists of 10 attribute 
columns, and one target column. This dataset includes a 30-
day simulation of real-time transactions and is executed in 
steps, each mapping to an hour. The original data set includes 
the following columns: 

 step: transaction step 

 amount: the number of coins traded 

 name_org: sender account name 

 old_balance_org: initial balance of the sending account 

 new_balance_org: the following balance of the sending 
account 

 name_dest: recipient account name 

 old_balance_dest: initial balance of the receiving 
account 

 new_balance_dest: the following balance of the 
receiving account 

 is_fraud: whether the transaction is fraudulent or not 

 is_flagged_fraud: whether the transaction is suspected 
of fraud 

 transaction_type: transaction type (5 types) 

 isFraud: This is a transaction made by rogue agents 
inside the simulation. In this particular dataset, the 
fraudulent behavior of the agents aims to gain profits 
by controlling, taking over the customer's account, 
attempting to withdraw money by switching to another 
account, and then withdrawing money from the system. 

 isFlaggedFraud: The business model aims to control 
large transfers from one account to another and flag 
illegal attempts. An illegal attempt in this dataset is an 
attempt to transfer more than 200000 in a single 
transaction. The isFlaggedFraud column is used when 
there is an attempt to transfer more than 200000 in a 
transaction, so basically for isFlaggedFraud, it will be 1 
if the transaction amount exceeds 200000. When 
isFlaggedFraud equals 1, the value of isFraud equals 1, 
so isFlaggedFraud can be discarded on processing if 
necessary. 

B. Fraudulent Transaction 

Transaction fraud is an act of fraud in the process of 
conducting financial transactions, intending to appropriate 
property, money, or personal benefits of the offender. 

Types of transaction fraud can range from using fake 
information to open an account or borrow money, to 
performing invalid transactions, transferring money to the 
wrong address, or spoofing identity to cheat others. 

Transaction fraud not only causes damage to the assets of 
the parties involved but also affects the trust and reputation of 
the financial system, reducing the ability to conduct safe and 
efficient transactions. Therefore, detecting and preventing 
transaction fraud is very important to protect the safety and 
reliability of the financial system. 

In addition to the transaction that is considered fraudulent 
as mentioned above, in the data set under consideration, a 
transaction is suspected to be fraudulent if it violates integrity 
constraints. There are two types of integrity constraints on this 
data set, domain-related integrity constraints and inter-
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attribute integrity constraints. The first is a domain-related 
constraint: it ensures that a field's value must meet a specific 
condition, ensuring that a field's value falls within a specific 
range. The second constraint is an inter-attribute constraint: a 
type of constraint in a relational database that ensures that the 
values in one or more pairs of attributes are logically related to 
each other. Specifically, if the value of one attribute changes, 
the values in other attributes that depend on it will also change 
accordingly to ensure data integrity and accuracy. 

Here are some examples of the two integrity constraints 
mentioned above. 

+ R1: For all money transfers and withdrawals, the old 
balance cannot be equal to 0. 

∄q: (q.type = TRANSFER  q.oldBalanceOrig = 0)  

(q.type = CASH_OUT  q.oldBalanceOrig = 0) 

+ R2: After transferring money, the new balance cannot be 
equal to 0. 

∄q: (q.type = TRANSFER  q.newBalanceDest ≤ 0) 

+ R3: For all money transfers and withdrawals, the old 
balance is always greater than the amount to be transferred. 

∄q: (q.type = TRANSFER  q.oldBalanceOrig > 

q.amount)  (q.type = CASH_OUT  q.oldBalanceOrig > 
q.amount) 

+ R4: In all money transfers, the old balance is always 
greater than the new balance. 

∄q: (q.type = TRANSFER  q.oldBalanceOrig > 
q.newBalanceOrig) 

+ R5: In all money transfers and withdrawals, the old 
balance minus the new balance is always greater than or equal 
to the amount to be transferred-withdrawn. 

∄q: (q.type = TRANSFER  q.oldBalanceOrig - 

q.newBalanceOrig < q.amount)  (q.type = CASH_OUT  
q.oldBalanceOrig - q.newBalanceOrig < a.amount) 

+ R6: Recipient did not receive enough transaction funds. 

∄q: (q.type=TRANFER  q.oldBalanceDest + q.amount < 
q.newBalanceDest) 

+ R7: After transferring money, the recipient's old balance 
must be less than the recipient's new balance. 

∄q: (q.type = TRANSFER  q.oldBalanceDest > 
q.newBalanceDest) 

+ R8: Do not transfer and withdraw all funds or do not 
transfer and withdraw more than the amount available when 
making the withdrawal. 

∄q: (q.type = TRANSFER  q.amount ≥ 

q.oldBalanceOrig)  (q.type = CASH_OUT  q.amount ≥ 
q.oldBalanceOrig) 

Thus, a transaction in the "Aggregated Financial Dataset 
for Fraud Detection" dataset that violates one of the 
abovementioned constraints will be considered a fraudulent 
transaction. 

C. Proposed Algorithm 

This study implemented the RIPPER (Repeated 
Incremental Pruning to Produce Error Reduction) algorithm. 
In machine learning, iterative incremental pruning to reduce 
errors is a propositional rule learner proposed by William W. 
Cohen (1995) [9] as an optimal version encoding of the IREP 
algorithm. The Ripper algorithm is a machine learning 
algorithm used to detect fraud in financial transactions. This 
algorithm works by classifying transactions into two 
categories: trusted transactions and fraudulent transactions. It 
then uses machine learning techniques to identify attributes 
that are important to distinguish between these two types of 
transactions. RIPPER is a greedy algorithm implemented in 
the following steps: 

+ Step 1: Divide the training data into two parts: the 
training set and the test set. 

+ Step 2: Determine the starting rule set by finding all the 
rules that can be determined from the initial training set. 

+ Step 3: Use the starting rule set to classify the records in 
the training set. 

+ Step 4: Repeat the following steps to find and remove 
unnecessary rules sequentially: 

a) evaluate all rules in the current rule set, 

b) remove unnecessary rules, 

c) construct a new set of rules from the remaining set of 

rules. 

+ Step 5: Use the final rule set to classify the records in the 
test set. 

The RIPPER algorithm is used to solve classification 
problems where the goal is to classify objects into known 
classes. This algorithm has proven to be effective in many 
practical applications, including handwriting recognition, 
disease detection, and document classification. 

When implemented, this research handled the execution 
steps of Ripper as follows: 

+ Step 1: Read transaction data from the CSV file. 

+ Step 2: Convert the column’s type to match the 
requirement. 

+ Step 3: Apply Ripper with several RipperK optimization 
iterations equals 10. 

+ Step 4: Train the model. 

Ripper has improved IREP with the OPIMIZERULESET 
process. This process optimized IREP's code and reduced it to 
a leaner one. Ripper works well on data sets with unbalanced 
class distribution. In a dataset, if there is a record set in which 
most of the records belong to a particular class and the 
remaining records belong to different classes, then the data set 
is said to have a non-distribution balance between classes. It 
works well with noisy datasets because it uses a validation set 
to prevent the model from overfitting. 
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D. Proposed Models 

In machine learning, no one algorithm is always good for 
all applications and all data sets because machine learning 
algorithms are usually based on a set of parameters 
(hyperparameters) or a certain assumption about the 
distribution data. Therefore, to find the right algorithms for 
our dataset, we may need a lot of time to test different 
algorithms and then adjust the algorithm's parameters (tuning 
hyperparameters) to obtain the highest accuracy. 

To increase the accuracy of the dataset is to combine 
several models. This method is called Ensemble Learning. 
Different models with different capabilities can best perform 
different types of work, and when combined properly, form a 
powerful hybrid model capable of improving performance, 
and overall performance compared to using the models alone. 
Ensemble Methods are divided into the following three 
categories: Boosting, Bagging, and Stacking. 

1) Gradient boosting [18]: Gradient Boosting is a 

machine learning algorithm of type Ensemble Learning, it 

uses a reinforcement process based on sub-models to create a 

better overall model. 

Gradient Boosting handles data classification or regression 
using a series of sub-models that are built on top of each other, 
each of which targets the errors of the previous model. This 
process results in a better overall model, with more accuracy 
than each sub-module. 

Gradient Boosting is commonly used in classification and 
regression problems, such as handwriting classification, spam 
email classification, stock price forecasting, and other 
problems in the field of artificial intelligence. 

 Gradient Boosting Model: illustrated in Fig. 1 below. 

 

Fig. 1. Gradient boosting operation model. 

 Processing steps of the Gradient Boosting Model: 

+ Step 1: Define a lost function. 

+ Step 2: Build a base model to make a prediction. 

+ Step 3: Compute each prediction's residuals (the 
difference between the predicted and actual values). 

+ Step 4: Fit a new model to predict these residuals. 

+ Step 5: Add this new model’s predictions to the previous 
model’s predictions. 

2) Bagging [19]: Bagging (Bootstrapped Aggregating) is 

a machine learning algorithm of type Ensemble Learning, it 

uses several sub-models to create a better overall model. 

Bagging deals with the classification or regression of data 
using several sub-models built on the same data set, but each 
of the sub-models is trained on a bootstrapped dataset (the 
sampled data set), by starting from an original data set and 
then choosing a random number of data points to replace the 
new data set). This process results in a better overall model, 
with more accuracy than each submodule. 

Bagging is commonly used in classification and regression 
problems, such as handwriting classification, spam email 
classification, stock price forecasting, and other problems in 
the field of artificial intelligence. 

 Bagging model: illustrated in Fig. 2 below. 

 

Fig. 2. Bagging operation model. 

 Processing steps of the Bagging Model: 

+ Step 1: Build k bootstrap samples from the original 
dataset. 

+ Step 2: For each bootstrap sample, build a decision tree. 

+ Step 3: Average the predictions of each tree to produce a 
final model. 

3) Stacking [20]: Stacking (stacked generalization) is a 

machine learning algorithm in the Ensemble Learning 

category. It uses a set of submodules to create a better overall 

model. 

In Stacking, sub-models are trained on an initial dataset 
and then used to predict values for the new data set. The 
prediction results of each sub-model are used as input to the 
overall model. The population model is then trained on the 
sub-model prediction results to predict the final value. 

 Stacking model: illustrated in Fig. 3 below. 
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Fig. 3. Stacking operation model. 

 Processing steps of the Stacking model: 

+ Step 1: Split the dataset into training and testing datasets. 

+ Step 2: Train multiple models on the training dataset. 

+ Step 3: Make a prediction using these models on the 
testing dataset. 

+ Step 4: Use these predictions as input features to train a 
new model (the meta-model) on the testing dataset. 

E. Combination of Ripper with Ensemble Learning Model 

1) Ripper combines with gradient boosting: 

+ Step 1: Read transaction data from the CSV file. 

+ Step 2: Declare Gradient Boosting algorithm using 
exponential loss function, 1000 boosting stages, and square 
error criterion to qualify the quality of every split action. 

+ Step 3: Train the model. 

+ Step 4: Consecutively apply Ripper to improve model 
metrics. 

2) Ripper combines with bagging: 

+ Step 1: Read banking data from the CSV file. 

+ Step 2: Initialize the Bagging algorithm with the number 
of rules generated in the training process equal to 1000. 

+ Step 3: Apply Ripper to improve the accuracy. 

+ Step 4: Train the model. 

3) Ripper combines with stacking: 

+ Step 1: Read banking data from the CSV file. 

+ Step 2: Initialize Random Forest algorithm with a 
random state is 10 and 100 trees in the forest. 

+ Step 3: Initialize Linear SVC algorithm with a random 
state equal to 42. 

+ Step 4: Initialize Standard Scaler algorithm. 

+ Step 5: Initialize the Stacking algorithm with the three 
algorithms mentioned above and Logistic Regression as the 
final algorithm. 

+ Step 6: Apply Ripper to improve the model’s metrics. 

+ Step 7: Train the model. 

IV. EXPERIMENT 

A. Experimental Tools and Software 

Programming environment and tools: Python and 
PyCharm. Python is a programming language widely used in 
data science and machine learning. PyCharm is a fully 
integrated development platform (IDE) designed specifically 
for Python programmers. 

We implemented the algorithms on a laptop with the 
following configuration: CPU: Intel core i7-12700H, GPU: 
Intel Iris XE Graphics, RAM: 16Gb. 

 Implement Ripper algorithm to experiment stability 
with unbalanced data: 

+ Initialize Ripper: ripper = RIPPER()  

The parameters of RIPPER() are shown in Table I. 

TABLE I. PARAMETERS OF RIPPER() 

Parameters Description 
Default 

value 

Data 

type 

k The number of loops to optimize 2 int 

prune_size 
Pruning ratio (prune into two sets, 

grown set, and prune set) 
0.33 float 

Random_state 

Rules generating seed (rules 

generated are the same if seeds are 
the same) 

none int 

max_rules Maximum number of rules none int 

max_rule_conds 
A maximum number of conditions 

in each rule. 
none int 

max_total_conds 
A maximum number of conditions 
in a whole rule set. 

none int 

verbosity 

Between 0 and 5, print to the 
terminal rule-generating process. 0 

means do not print. The larger the 

number the more detail: 
1: Print the main process. 

2: Print the optimization phases. 

3: Print the calculations needed to 
optimize. 

4: Print the optimization/pruning 

process step by step. 
5: Print the operations needed to 

add/prune rules. 

0 int 

+ Training: ripper.fit (<file data>, <classify col>, <positive 
value>…) 

The parameters of the .fit() method are shown in Table II. 
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TABLE II. THE PARAMETERS OF THE .FIT() 

Parameter Description Data type 

trainset The data set used to train. 
DataFrame/Numpy 

array 

y 

Class labels corresponding to 

trainset rows. Use if class 

labels aren't included in the 
trainset. 

str/int/bool 

class_feat 

Column name or index of the 
class feature. The use of the 

class feature is still in the 

trainset. 

str, int 

pos_class Name of the positive class. str/bool 

feature_names 

Specify feature names. If 

None, feature names default 

to column names for a 

DataFrame, or indices in the 

case of indexed iterables such 

as an array or list. 

List<str> 

initial_model 
Pre-existing model from 
which to begin training. 

str 

cn_optimize 
Use algorithmic speed 
optimization. 

bool 

+ Dataset processing: 

This study used the "Aggregated Financial Dataset for 
Fraud Detection" dataset introduced above for processing. 
First, remove unnecessary columns to reduce processing time, 
those columns include name_org and name_dest. Next, divide 
the data set into the train and test sets. The train set consists of 
6000 lines of cheat data and 4 million lines of non-cheat data. 
The test set consists of 2000 lines of fraudulent data and 2 
million lines of non-cheat data. 

Continue to divide the training set into four small datasets 
and increase the imbalance rate between the sets to evaluate 
the effectiveness of Ripper against large unbalanced sets: 

 The first set contains 6000 fraudulent data and 60,000 
non-fraud data. 

 The second set contains 6000 fraudulent data and 
100,000 non-fraud data. 

 The third set includes 6000 fraudulent data and 
150,000 non-fraud data. 

 The fourth set contains 6000 fraudulent data and 
300,000 non-fraud data. 

The test set consists of 2 thousand fraudulent lines and 2 
million non-fraud lines. This set contains data that RIPPER 
has never encountered before, used to evaluate accuracy. 

+ Results: 

Results were obtained after performing RIPPER with 4 
data sets (Table III). 

TABLE III. STATISTICAL RESULTS AFTER TRAINING 

Dataset TPR FPR 
Preci-

son 
Recall 

F1 

score 
ROC 

6_60 0.996 0.03 0.97 0.96 0.96 0.977 

6_100 0.992 0.026 0.97 0.86 0.91 0.949 

6_150 0.995 0.031 0.97 0.88 0.92 0.906 

6_300 0.996 0.023 0.98 0.79 0.87 0.880 

Meaning of columns 

In the Ripper algorithm, "Positive" and "Negative" are two 
types of labels used to evaluate and classify transactions. 

+ Positive: represents valid transactions, no fraud. 

+ Negative (negative): represents fraudulent transactions. 

During training, the algorithm will use transactions labeled 
Positive and Negative to build a classification model for 
predicting whether new transactions will be fraudulent or not. 
In a data set of credit card transactions, a transaction labeled 
Positive would be considered a valid and fraud-free 
transaction, while a transaction labeled Negative would be 
considered a likely transaction cheat. Positive and Negative 
labels play an important role in evaluating and improving the 
accuracy of the Ripper algorithm in detecting transaction 
fraud. 

 Dataset: dataset used for training 

 True positive rate (TPR): The ratio of correctly 
predicting fraud cases, TPR is calculated using the 
formula: 

 True Positive / (True Positive + False Negative) 

 False positive rate (FPR): The ratio of false predictions 
of fraud cases, FPR is calculated using the formula: 

 False Positive / (False Positive + True Negative) 

 Precision: Precision is the ratio of True Positive 
predictions that are correct to the total number of True 
Positive predictions; precision is calculated using the 
formula: 

 True Positive / (True Positive + False Positive) = 
Correct True Positive Predictions / True Positive 
Predictions 

 Recall: Recall is the ratio of True Positive predictions 
that are correct to the total number of True Positives on 
the whole dataset; recall is calculated using the 
formula: 

 True Positive / (True Positive + False Negative) = 
Number of correct TP predictions / Total number of TP 

 F1 score: F1 score is the harmonic mean of precision 
and recall, the more accurate the F1 score, the better 
the model predicts; F1 score is calculated using the 
formula: 2 * ((precision * recall) / (precision + recall)) 

ROC: It has a value of [0,1], representing the model's 
prediction accuracy. The higher the ROC score, the more 
accurate the model is. Table IV below is the rule list with the 
number of iterations of Ripper and the refined rule set. 
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TABLE IV. RULE LIST WITH THE NUMBER OF ITERATIONS RIPPER AND 

REFINE RULE SET WITH K=10 

Number Rule 

1 
transaction_type==1 and new_balance_dest<=16123.02 and 

old_balance_dest<=1087.36 

2 
transaction_type==1 and new_balance_dest<=7306.88 and 

old_balance_dest<=225.92 

3 
transaction_type==1 and new_balance_dest<=16123.02 and 

old_balance_dest<=1087.36 

4 

new_balance_org<=1744.75 and transaction_type==1 and 

new_balance_dest<=17247.49 and 

old_balance_dest<=11186.22 

5 
new_balance_org<=1572.27 and amount>=2106972.01 and 

transaction_type==0 

6 transaction_type==0 and amount>=3529762.55 

7 

new_balance_org<=1572.27 and old_balance_org>=1388977.19 

and 

old_balance_org<=1908598.9 

8 transaction_type==0 and amount>=5014130.87 

9 amount>=5014130.87 and new_balance_dest<=17247.49 

10 
transaction_type==0 and amount>=1867568.7 and 

amount<=3529762.55 

11 
transaction_type==0 and amount>=1867568.7 and 

amount<=3529762.55 

12 
transaction_type==0 and amount>=2519153.53 and 

amount<=5014130.87 

13 

new_balance_org<=1572.27 and old_balance_org>=955088.21 

and 

old_balance_org<=1388977.19 and 

transaction_type==0 

14 

new_balance_org<=1744.75 and old_balance_org>=946517.94 

and old_balance_org <=1204862.32 and 

old_balance_dest<=11186.22 

15 
transaction_type==0 and amount>=1262654.09 and 

amount <=1867568.7 and 

16 
transaction_type==0 and amount>=1262654.09 and 

amount <=1867568.7 

17 
transaction_type==0 and amount>=1697480.93 

and amount <=2519153.53 

18 

new_balance_org<=1572.27 and old_balance_org>=697672.86 

and 

old_balance_org<=955088.21 and 

transaction_type==0 

Match the rules shown in Table V. 

TABLE V. RULES WITH HIGH COVERAGE 

No Rule Ratio 

1    

   

transaction_type==1 and 

new_balance_dest<=16123.02 and 

old_balance_dest<=1087.36 

50% 

4 

new_balance_org<=1744.75 and 

transaction_type==1 and 

new_balance_dest<=17247.49 and 

old_balance_dest<=11186.22 

48% 

5 

new_balance_org<=1572.27 and 

amount>=2106972.01 and 

transaction_type==0 

10% 

6    transaction_type==0 and amount>=3529762.55 6.5% 

7 

new_balance_org<=1572.27 and 

old_balance_org>=1388977.19 and 

old_balance_org <=1908598.9 

5.5% 

9 
amount>=5014130.87 and 

new_balance_dest<=17247.49 
4,7% 

At this stage, the retainer is used. The dataset is divided 
into 10 sets. The purpose of the division is that after each step, 
the percentage of fraudulent data is gradually increased, 
creating an imbalance and checking the stability of the rule 
set. Each set contains 200 fraudulent data and 2000 non-cheat 
data (the data of these 10 datasets do not overlap). Then, add 
each data set in turn, corresponding to 10 cycles to see the 
coverage of the rules after having new data. Table VI below is 
the simulation rule range for ten cycles. 

TABLE VI. SIMULATION RULE RANGE FOR TEN CYCLES 

 
Rule 1 

(%) 

Rule 2 

(%) 

Rule 3 

(%) 

Rule 4 

(%) 

Rule 5 

(%) 

Rule 6 

(%) 

Base 

Coverage 
50 48 10 6.5 6.5 4.7 

1 49 46 8 5 4 6 

2 48 44.5 7 5 6 5 

3 51.5 50 7 4.5 8.5 3.5 

4 43.5 42 8.5 6 6.5 3.5 

5 50.5 46.5 7.5 5.5 7 4.5 

6 52 49.5 11 7.5 7 5.5 

7 48 46.5 8.5 4.5 4 3 

8 50 46 8.5 5.5 8 2 

9 49.5 48 13 7.5 7 3.5 

10 48.5 47 7.5 3.5 3.5 4 

After 10 cycles, although the amount of data gradually 
increases and causes a high imbalance, the test has shown that 
Ripper is stable and does not suffer from "overfitting". 
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B. Experimental Results 

Finally, this study used the fourth dataset containing 6000 
fraudulent data and 300000 non-fraud data above to check the 
criteria for the Ripper algorithm and Ripper combined with 
Ensemble Learning Methods. 

1) Implement the Ripper 

+ Results: 

- The set of rules: 31. 

- Metrics: described in Table VII below. 

TABLE VII. METRICS OF RIPPER 

 precision recall f1-score support 

0 1.00 1.00 1.00 60296 

1 0.97 0.77 0.86 1241 

accuracy   0.99 61537 

macro avg 0.98 0.88 0.93 61537 

weighted avg 0.99 0.99 0.99 61537 

- Confusion matrix: False Positive = 60267, False 
Negative = 29, True Negative = 290, True Positive = 951. 

- ROC = 0.88. Execution time: 6m 58s. 

2) Implement the Ripper combines with Gradient 

Boosting (Fig. 4) 

+ Operation model: 

 

Fig. 4. Operation model by ripper combines with gradient boosting. 

+ Results:  

- The set of rules: 21 

- Metrics: Described in Table VIII below. 

TABLE VIII. METRICS OF RIPPER COMBINES GRADIENT BOOSTING 

 precision recall f1-score support 

0 1.00 1.00 1.00 60372 

1 0.98 0.92 0.95 1165 

accuracy   1.00 61537 

macro avg 0.99 0.96 0.97 61537 

weighted avg 1.00 1.00 1.00 61537 

- Confusion matrix: False Positive = 60349, False 
Negative = 23, True Negative = 90, True Positive = 1075. 

- ROC = 0.96. Execution time: 10m 57.3s. 

3) Implement the Ripper combines with Stacking (Fig. 5) 

+ Operation model: 

 

Fig. 5. Operation model by ripper combined with stacking. 

+ Results: The set of rules: 45. 

- Metrics: Described in Table IX below. 

TABLE IX. METRICS OF RIPPER COMBINED WITH STACKING 

 precision recall f1-score support 

0 1.00 1.00 1.00 60372 

1 0.95 0.90 0.93 1165 

accuracy   1.00 61537 

macro avg 0.97 0.95 0.96 61537 

weighted avg 1.00 1.00 1.00 61537 

- Confusion matrix: False Positive = 60317, False 
Negative = 55, True Negative = 111, True Positive = 1054. 

- ROC: 0.95. Execution time: 8m 46.8s. 

4) Implement the Ripper combines with Bagging (Fig. 6) 
+ Operation model: 

 

Fig. 6. Operation model by ripper combines with bagging. 
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+ Results: The set of rules: 44. 

- Metrics: Described in Table X below. 

TABLE X. METRICS OF RIPPER COMBINES BAGGING 

 precision recall f1-score support 

0 1.00 1.00 1.00 60372 

1 0.95 0.95 0.95 1165 

accuracy   1.00 61537 

macro avg 0.98 0.98 0.98 61537 

weighted avg 1.00 1.00 1.00 61537 

- Confusion matrix: False Positive = 60291, False 
Negative = 42, True Negative = 60, True Positive = 1144. 

- ROC: 0.98. Execution time: 14m 41.7s. 

C. Comparison 

Table XI below summarizes the achieved indicators of 
each model. 

TABLE XI. COMPARE CRITERIA BETWEEN METHODS 

Criteria Ripper (1) 

Ripper 

combines 

Boosting (2) 

Ripper 

combines 

Bagging (3) 

Ripper 

combines 

Stacking 

(4) 

Execution 

time 
6m 58s 10m 57.3s 14m 41.7s 8m 46.8s 

The set of 

rules 
32 21 44 45 

Precision 0.97 0.98 0.95 0.95 

Recall 0.77 0.92 0.95 0.90 

F1-score 0.86 0.95 0.95 0.93 

ROC 0.883 0.961 0.976 0.952 

Of the four models mentioned above, (1) gives the worst 
results because only a single algorithm is used. Although (2) 
produces the fewest rules, this is the most optimal set of rules 
because of its processing model. On the other hand, in models 
(3) and (4), the sets of rules are generated independently, and 
then combined, so the rules will tend to be more and overlap. 
This leads to models (3) and (4) generating more rules but not 
as efficient the model (2). 

This result shows that Ripper combined with Gradient 
Boosting gives the best results. Compared with related studies 
in part I such as [4], [6], [7], [11], [12], this result achieved 
ACC and ROC higher than all. This study shows that Ripper 
combined with Gradient Boosting gives the best results. 

V. CONCLUSION 

The Ripper algorithm has been studied and applied 
effectively in the field of data mining. Ripper is a 
classification algorithm in machine learning and is used in 
many different fields. Such as data classification: Ripper can 
be used to classify data based on their characteristics and 
values. Object recognition: Ripper can be used to identify 
objects in an image or video by classifying objects according 
to their features and values. Market Research: Ripper can be 
used to analyze market data to identify potential customer 
groups and other groups. Phrase Search: Ripper can be used to 

search for phrases in text or other textual data. The limitation 
of the study is that the algorithm executes slowly if the 
number of attributes of the data set is too large. In this study, 
the proposed method was improved by combining Ripper with 
Ensemble Learning Method, namely Gradient Boosting to 
create a new predictive model with higher accuracy and 
reliability (ROC increased from 88% to 98% compared to just 
using regular Ripper). Depending on the structure and 
distribution of the data set, this research can use the Ripper 
algorithm in combination with Gradient Boosting, Bagging, or 
Stacking to achieve the desired result. Thus, the proposed 
model has obtained better results than related studies (ACC 
and ROC). Besides, combining models together for training 
usually takes more processing time and takes up more 
memory resources than single models. 

However, detecting transaction fraud is a constant 
challenge, as scammers are always looking for ways to change 
techniques and tricks to avoid detection. Therefore, the use of 
fraud detection solutions needs to be continuously updated and 
optimized to keep the financial system safe and meet the 
requirements of stakeholders. 

REFERENCES 

[1] [Online]. Available: https://tinyurl.com/4eh5ex6a. [Accessed 2022]. 

[2] R. K. Jamra, Kautsarina, D. I. Sensuse, "Systematic review of issues and 
solutions," In 2020 International Conference on Electrical Engineering 
and, pp. 1-5, 2020. 

[3] N. Maynard, "ONLINE PAYMENT FRAUD: MARKET FORECASTS, 
EMERGING THREATS & SEGMENT," 2021. [Online]. Available: 
https://www.businesswire.com; 
https://www.juniperresearch.com/researchstore/fintech-payments/online-
payment-fraud-. 

[4] N. Chawla & B. Kumar, "E-commerce and consumer protection in India: 
The emerging trend," Journal of Business Ethics, pp. 1-24, 2021. 

[5] S. Beigi. M. R. Amin Naseri, "Credit card fraud detection using data 
mining and statistical methods," Journal of AI and Data Mining, Vols. 8: 
149-60, 2020. 

[6] K. G. Al-Hashedi, P. Magalingam, "Financial fraud detection applying 
data mining techniques: A comprehensive review from 2009 to 2019," 
Computer Science Review, vol. 40:100402, 2021. 

[7] A. A. N. M. R. A. K. M. B. H. A. K. M. N. I. a. R. M. R. Tahmid Hasan 
Pranto, "A Blockchain, Smart Contract, and Data Mining Based 
Approach toward the Betterment of E-Commerce," Cybernetics and 
Systems, vol. 53, pp. 443-467, 2021. 

[8] Wang, Y., H. Liu, and Q. Liu, "Application Research of web log mining 
in the e-commerce. In 2020 Chinese Control and Decision Conference 
(CCDC)," IEEE, 2020. 

[9] W. W. Cohen, "Grammatically biased learning: learning logic programs 
using an explicit antecedent description language Artificial Intelligence," 
vol. 68, pp. 303-366, 1994. 

[10] K. Poongodi and D. Kumar, "Support Vector Machine with Information 
Gain Based Classification for Credit Card Fraud Detection System," The 
International Arab Journal of Information Technology, vol. 18, pp. 199-
207, 7 9 2020. 

[11] Y. Kumar, S. Saini, R. Payal, "Comparative Analysis for Fraud 
Detection Using Logistic Regression, Random Forest and Support 
Vector Machine," International Journal of Research and Analytical 
Reviews (IJRAR), vol. 7: 4, pp. 726-731, 2020. 

[12] I. Sadgali, N. Sael, F. & Benabbou, "Comparative Study Using Neural 
Networks Techniques for Credit Card Fraud Detection," in Innovations 
in Smart City Application, Warszawa, Springer, 2020, pp. 287-296. 

[13] A Sahu, GM Harshvardhan, MK Gourisaria, "A Dual Approach for 
Credit Card Fraud Detection using Neural Network and Data Mining 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 4, 2023 

345 | P a g e  

www.ijacsa.thesai.org 

Techniques," in 2020 IEEE 17th India Council International Conference 
(INDICON), New Delhi, 2020. 

[14] V. Jain, M. Agrawal, and A. Kumar, "Performance Analysis of Machine 
Learning Algorithms in Credit Cards Fraud Detection," in International 
Conference on Reliability, Infocom Technologies and Optimization 
(ICRITO) (Trends and Future Directions), 2020. 

[15] J. Soyemi, and H. Mudasiru, "An implementation of decision tree 
algorithm augmented with regression analysis for fraud detection in 
credit card," 2020. 

[16] "Aggregated financial datasets for fraud detection," 2022. [Online]. 
Available: Kaggle.com. [Accessed 12 1 2023]. 

[17] T. H. Pranto, A. A. Noman, M. Rahaman, A. K. M. Bahalul Haque, A. 
K. M. Najmul Islam & Rashedur M. Rahman, "A Blockchain, Smart 
Contract and Data Mining Based Approach toward the Betterment of E-
Commerc," 2021. 

[18] J. H. Friedman, "Stochastic gradient boosting," pp. 367-378, 2002. 

[19] Bbeiman, Leo, "Bagging Predictors," Machine Learning, vol. 24, pp. 
123-140, 1996. 

[20] B. Pavlyshenko, "Using Stacking Approaches for Machine Learning 
Models," in IEEE Second International Conference on Data Stream 
Mining & Processing, 2018. 


