
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

336 | P a g e

www.ijacsa.thesai.org

Detecting Fraud Transaction using Ripper Algorithm

Combines with Ensemble Learning Model

Vo Hoang Khang
1
, Cao Tung Anh

2
, Nguyen Dinh Thuan

3

Faculty of Information Technology, HUTECH University, Ho Chi Minh City, Vietnam
1, 2

Faculty of Information Systems-University of Information Technology,

Vietnam National University Ho Chi Minh City (VNUHCM - UIT), Ho Chi Minh City, Vietnam
3

Abstract—In the context of the 4.0 technology revolution,

which develops and applies strongly in many fields, in which the

banking sector is considered to be the leading one, the

application of algorithms to detect fraud is extremely important.

necessary. In recent years, credit card transactions including

physical credit card payments and online payments have become

increasingly popular in many countries around the world. This

convenient payment method attracts more and more criminals,

especially credit card fraud. As a result, many banks around the

world have developed fraud detection and prevention systems for

each credit card transaction. Data mining is one of the techniques

applied in these systems. This study uses the Ripper algorithm to

detect fraudulent transactions on large data sets, and the results

obtained with accuracy, recall, and F1 measure of more than

97%. This research then used the Ripper algorithm combined

with Ensemble Learning models to detect fraudulent

transactions, the results are more than 99% reliable. Specifically,

this model using the Ripper algorithm combined with the

Gradient Boosting method has improved the predictive ability

and obtained very reliable results. The use of algorithms

combined with machine learning models is expected to be a new

topic and will be widely applied to banks’ or organizations’

activities related to e-commerce.

Keywords—Financial fraud; data mining; credit card fraud;

transaction; ensemble methods

I. INTRODUCTION

The e-commerce sector is expected to account for 21.8%
of total global retail sales by 2024 [1]. As the worldwide e-
commerce market share increases risks also increase, trusting
becoming a concern as the number of frauds and scams has
increased significantly over the past few years [2]. The e-
commerce market in 2021 faces a risk of US$20 billion due to
fraudulent transactions [3]. The most common types of fraud
include account takeovers, identity theft, covert fraud, and
chargeback fraud [3]. These frauds can affect the finances of
both consumers and merchants and reduce overall confidence
in e-commerce [4].

Data mining techniques have shown promising
performance in detecting fraud [5], [6], [7] and rule from large
data sets [8]. To solve the problem of transaction fraud in e-
commerce, there have been many studies using data mining
rules to build laws, thereby detecting transaction fraud. These
studies and their results will be introduced in Part II (Related
Works).

In many forecasting models, the Repeated Incremental
Pruning to Produce Error Reduction (Ripper) algorithm is
chosen to apply [9] because this algorithm has high reliability
and coverage. Next, this study uses a synchronous learning
method in machine learning to combine with Ripper algorithm
to improve the reliability and accuracy of fraud detection. The
results of study have yielded very positive results. This model
has been applied in many other fields but is still quite new in
the field of e-commerce in the world as well as in Vietnam.

The article structure consists of five sections. Section I is
an overview of the research, Section II introduces the research
done related to the article, and Section III is the proposed
solutions and techniques to solve the problem dealing with the
problem posed. Section IV lists the order of steps to conduct
the experiment as well as the software and tools used. Finally,
Section V summarizes and concludes with the issues achieved
in the study as well as suggestions for future research.

II. RELATED WORKS

Research related to fraudulent transaction detection is
numerous and has been conducted in a variety of fields,
including finance, e-commerce, credit cards, multi-level
commerce, and many others. Data mining techniques used
include Support vector machine (SVM), Fuzzy Logic based
system (FL), Hidden Markov Model (HMM), Artificial Neural
network (ANN), Genetic Algorithm (GA), Bayesian Network
(BN), K-Nearest Neighbor Algorithm (KNN), Decision Tree
(DT), Logistic Regression (LR), Outlier's Detection and other
Classification techniques [6], Below is a summary of the
articles, mining techniques used, and research results.

 Support Vector Machine:

N. K. Gyamfi and J. D. Abdulai used SVM to detect bank
fraud [6]. The result shows an improvement of the SVM
method by 80% which is considered better performance.

M. Jeragh, M. AlSulaimi combined autoencoders and one
class support vectors machine for fraudulent credit card
transactions detection [6]. The result of two combined models
achieved promising results, especially when evaluated using
metrics performance.

K. Poongodi and D. Kumar used SVM with Information
Gain Based Classification algorithm to identify fraudulent and
legal transactions [10]. The result shows that the accuracy of
detection is enhanced in the credit card fraud detection system
by using SVM with information gain-based classification.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

337 | P a g e

www.ijacsa.thesai.org

Y. Kumar, S. Saini, and R. Payal proposed a comparison
between three data mining algorithms: Logistic Regression,
Random Forest, and Support Vector Machine [11]. The study
shows that when comparing the result of three algorithms the
random forest algorithm gives better results for the
classification of fraud with 81.79% accuracy.

 Artificial Neural Network:

A. A. Rizki, I. Surjandari, and R.A. Wayasti used data
mining applications to detect financial fraud in Indonesia’s
public companies [6]. The finding proved that feature
selection helped in increasing the accuracy of the SVM
method with 88.37% while ANN gave the most effective
accuracy with 90.97%.

I. Sadgali, N. Sael, and F. Benabbou proposed a
comparative study using Neural Networks Techniques, Neural
Networks (NN), Multilayer Perceptron Layer (MPL), and
Convolutional Neural Networks (CNN), for credit card fraud
detection [12]. The result shows that CNN has the highest
accuracy.

A Sahu, GM Harshvardhan, MK. Gourisaria detected
fraudulent transactions by several machine learning models
and the artificial neural network [13]. The result shows that all
the models have a very high percentage of true negatives due
to the heavy count of non-fraud cases.

 Decision Tree:

V. Jain, M. Agrawal, and A. Kumar [14] used three
machine learning algorithms, Decision Tree, Random Forest,
and XGBoost applied to a data set have the data of 284808
credit cards. The performance of the XGBoost algorithm is
found best with the highest accuracy of 99.962 percent. The
performance of the Decision Tree is minimum with an
accuracy of 99.923 and the performance of the Random Forest
algorithm is 99.957 percent in credit card transactions.

J. Soyemi and H. Mudasiru implemented a decision tree
algorithm augmented with regression analysis for fraud
detection in credit cards [15]. This study was able to achieve
its aim by building a machine-learning model that is capable
of detecting fraud.

In this article, this study used Ripper algorithm [7] to
perform a reliability test when predicting transaction fraud
when the transaction volume is increasing and unbalanced,
then combine Ripper and Ensemble Learning Methods to
create a more reliable predictive model (ROC increase from
88% to 98%).

III. PROPOSED SOLUTIONS AND TECHNIQUES

A. Implementing Data Set

Focusing on the objective of this study, "Aggregated
Financial Dataset for Fraud Detection" was selected [16], [17].
The dataset contains approximately 6.3 million data about
mobile money transactions and consists of 10 attribute
columns, and one target column. This dataset includes a 30-
day simulation of real-time transactions and is executed in
steps, each mapping to an hour. The original data set includes
the following columns:

 step: transaction step

 amount: the number of coins traded

 name_org: sender account name

 old_balance_org: initial balance of the sending account

 new_balance_org: the following balance of the sending
account

 name_dest: recipient account name

 old_balance_dest: initial balance of the receiving
account

 new_balance_dest: the following balance of the
receiving account

 is_fraud: whether the transaction is fraudulent or not

 is_flagged_fraud: whether the transaction is suspected
of fraud

 transaction_type: transaction type (5 types)

 isFraud: This is a transaction made by rogue agents
inside the simulation. In this particular dataset, the
fraudulent behavior of the agents aims to gain profits
by controlling, taking over the customer's account,
attempting to withdraw money by switching to another
account, and then withdrawing money from the system.

 isFlaggedFraud: The business model aims to control
large transfers from one account to another and flag
illegal attempts. An illegal attempt in this dataset is an
attempt to transfer more than 200000 in a single
transaction. The isFlaggedFraud column is used when
there is an attempt to transfer more than 200000 in a
transaction, so basically for isFlaggedFraud, it will be 1
if the transaction amount exceeds 200000. When
isFlaggedFraud equals 1, the value of isFraud equals 1,
so isFlaggedFraud can be discarded on processing if
necessary.

B. Fraudulent Transaction

Transaction fraud is an act of fraud in the process of
conducting financial transactions, intending to appropriate
property, money, or personal benefits of the offender.

Types of transaction fraud can range from using fake
information to open an account or borrow money, to
performing invalid transactions, transferring money to the
wrong address, or spoofing identity to cheat others.

Transaction fraud not only causes damage to the assets of
the parties involved but also affects the trust and reputation of
the financial system, reducing the ability to conduct safe and
efficient transactions. Therefore, detecting and preventing
transaction fraud is very important to protect the safety and
reliability of the financial system.

In addition to the transaction that is considered fraudulent
as mentioned above, in the data set under consideration, a
transaction is suspected to be fraudulent if it violates integrity
constraints. There are two types of integrity constraints on this
data set, domain-related integrity constraints and inter-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

338 | P a g e

www.ijacsa.thesai.org

attribute integrity constraints. The first is a domain-related
constraint: it ensures that a field's value must meet a specific
condition, ensuring that a field's value falls within a specific
range. The second constraint is an inter-attribute constraint: a
type of constraint in a relational database that ensures that the
values in one or more pairs of attributes are logically related to
each other. Specifically, if the value of one attribute changes,
the values in other attributes that depend on it will also change
accordingly to ensure data integrity and accuracy.

Here are some examples of the two integrity constraints
mentioned above.

+ R1: For all money transfers and withdrawals, the old
balance cannot be equal to 0.

∄q: (q.type = TRANSFER q.oldBalanceOrig = 0)

(q.type = CASH_OUT q.oldBalanceOrig = 0)

+ R2: After transferring money, the new balance cannot be
equal to 0.

∄q: (q.type = TRANSFER q.newBalanceDest ≤ 0)

+ R3: For all money transfers and withdrawals, the old
balance is always greater than the amount to be transferred.

∄q: (q.type = TRANSFER q.oldBalanceOrig >

q.amount) (q.type = CASH_OUT q.oldBalanceOrig >
q.amount)

+ R4: In all money transfers, the old balance is always
greater than the new balance.

∄q: (q.type = TRANSFER q.oldBalanceOrig >
q.newBalanceOrig)

+ R5: In all money transfers and withdrawals, the old
balance minus the new balance is always greater than or equal
to the amount to be transferred-withdrawn.

∄q: (q.type = TRANSFER q.oldBalanceOrig -

q.newBalanceOrig < q.amount) (q.type = CASH_OUT
q.oldBalanceOrig - q.newBalanceOrig < a.amount)

+ R6: Recipient did not receive enough transaction funds.

∄q: (q.type=TRANFER q.oldBalanceDest + q.amount <
q.newBalanceDest)

+ R7: After transferring money, the recipient's old balance
must be less than the recipient's new balance.

∄q: (q.type = TRANSFER q.oldBalanceDest >
q.newBalanceDest)

+ R8: Do not transfer and withdraw all funds or do not
transfer and withdraw more than the amount available when
making the withdrawal.

∄q: (q.type = TRANSFER q.amount ≥

q.oldBalanceOrig) (q.type = CASH_OUT q.amount ≥
q.oldBalanceOrig)

Thus, a transaction in the "Aggregated Financial Dataset
for Fraud Detection" dataset that violates one of the
abovementioned constraints will be considered a fraudulent
transaction.

C. Proposed Algorithm

This study implemented the RIPPER (Repeated
Incremental Pruning to Produce Error Reduction) algorithm.
In machine learning, iterative incremental pruning to reduce
errors is a propositional rule learner proposed by William W.
Cohen (1995) [9] as an optimal version encoding of the IREP
algorithm. The Ripper algorithm is a machine learning
algorithm used to detect fraud in financial transactions. This
algorithm works by classifying transactions into two
categories: trusted transactions and fraudulent transactions. It
then uses machine learning techniques to identify attributes
that are important to distinguish between these two types of
transactions. RIPPER is a greedy algorithm implemented in
the following steps:

+ Step 1: Divide the training data into two parts: the
training set and the test set.

+ Step 2: Determine the starting rule set by finding all the
rules that can be determined from the initial training set.

+ Step 3: Use the starting rule set to classify the records in
the training set.

+ Step 4: Repeat the following steps to find and remove
unnecessary rules sequentially:

a) evaluate all rules in the current rule set,

b) remove unnecessary rules,

c) construct a new set of rules from the remaining set of

rules.

+ Step 5: Use the final rule set to classify the records in the
test set.

The RIPPER algorithm is used to solve classification
problems where the goal is to classify objects into known
classes. This algorithm has proven to be effective in many
practical applications, including handwriting recognition,
disease detection, and document classification.

When implemented, this research handled the execution
steps of Ripper as follows:

+ Step 1: Read transaction data from the CSV file.

+ Step 2: Convert the column’s type to match the
requirement.

+ Step 3: Apply Ripper with several RipperK optimization
iterations equals 10.

+ Step 4: Train the model.

Ripper has improved IREP with the OPIMIZERULESET
process. This process optimized IREP's code and reduced it to
a leaner one. Ripper works well on data sets with unbalanced
class distribution. In a dataset, if there is a record set in which
most of the records belong to a particular class and the
remaining records belong to different classes, then the data set
is said to have a non-distribution balance between classes. It
works well with noisy datasets because it uses a validation set
to prevent the model from overfitting.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

339 | P a g e

www.ijacsa.thesai.org

D. Proposed Models

In machine learning, no one algorithm is always good for
all applications and all data sets because machine learning
algorithms are usually based on a set of parameters
(hyperparameters) or a certain assumption about the
distribution data. Therefore, to find the right algorithms for
our dataset, we may need a lot of time to test different
algorithms and then adjust the algorithm's parameters (tuning
hyperparameters) to obtain the highest accuracy.

To increase the accuracy of the dataset is to combine
several models. This method is called Ensemble Learning.
Different models with different capabilities can best perform
different types of work, and when combined properly, form a
powerful hybrid model capable of improving performance,
and overall performance compared to using the models alone.
Ensemble Methods are divided into the following three
categories: Boosting, Bagging, and Stacking.

1) Gradient boosting [18]: Gradient Boosting is a

machine learning algorithm of type Ensemble Learning, it

uses a reinforcement process based on sub-models to create a

better overall model.

Gradient Boosting handles data classification or regression
using a series of sub-models that are built on top of each other,
each of which targets the errors of the previous model. This
process results in a better overall model, with more accuracy
than each sub-module.

Gradient Boosting is commonly used in classification and
regression problems, such as handwriting classification, spam
email classification, stock price forecasting, and other
problems in the field of artificial intelligence.

 Gradient Boosting Model: illustrated in Fig. 1 below.

Fig. 1. Gradient boosting operation model.

 Processing steps of the Gradient Boosting Model:

+ Step 1: Define a lost function.

+ Step 2: Build a base model to make a prediction.

+ Step 3: Compute each prediction's residuals (the
difference between the predicted and actual values).

+ Step 4: Fit a new model to predict these residuals.

+ Step 5: Add this new model’s predictions to the previous
model’s predictions.

2) Bagging [19]: Bagging (Bootstrapped Aggregating) is

a machine learning algorithm of type Ensemble Learning, it

uses several sub-models to create a better overall model.

Bagging deals with the classification or regression of data
using several sub-models built on the same data set, but each
of the sub-models is trained on a bootstrapped dataset (the
sampled data set), by starting from an original data set and
then choosing a random number of data points to replace the
new data set). This process results in a better overall model,
with more accuracy than each submodule.

Bagging is commonly used in classification and regression
problems, such as handwriting classification, spam email
classification, stock price forecasting, and other problems in
the field of artificial intelligence.

 Bagging model: illustrated in Fig. 2 below.

Fig. 2. Bagging operation model.

 Processing steps of the Bagging Model:

+ Step 1: Build k bootstrap samples from the original
dataset.

+ Step 2: For each bootstrap sample, build a decision tree.

+ Step 3: Average the predictions of each tree to produce a
final model.

3) Stacking [20]: Stacking (stacked generalization) is a

machine learning algorithm in the Ensemble Learning

category. It uses a set of submodules to create a better overall

model.

In Stacking, sub-models are trained on an initial dataset
and then used to predict values for the new data set. The
prediction results of each sub-model are used as input to the
overall model. The population model is then trained on the
sub-model prediction results to predict the final value.

 Stacking model: illustrated in Fig. 3 below.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

340 | P a g e

www.ijacsa.thesai.org

Fig. 3. Stacking operation model.

 Processing steps of the Stacking model:

+ Step 1: Split the dataset into training and testing datasets.

+ Step 2: Train multiple models on the training dataset.

+ Step 3: Make a prediction using these models on the
testing dataset.

+ Step 4: Use these predictions as input features to train a
new model (the meta-model) on the testing dataset.

E. Combination of Ripper with Ensemble Learning Model

1) Ripper combines with gradient boosting:

+ Step 1: Read transaction data from the CSV file.

+ Step 2: Declare Gradient Boosting algorithm using
exponential loss function, 1000 boosting stages, and square
error criterion to qualify the quality of every split action.

+ Step 3: Train the model.

+ Step 4: Consecutively apply Ripper to improve model
metrics.

2) Ripper combines with bagging:

+ Step 1: Read banking data from the CSV file.

+ Step 2: Initialize the Bagging algorithm with the number
of rules generated in the training process equal to 1000.

+ Step 3: Apply Ripper to improve the accuracy.

+ Step 4: Train the model.

3) Ripper combines with stacking:

+ Step 1: Read banking data from the CSV file.

+ Step 2: Initialize Random Forest algorithm with a
random state is 10 and 100 trees in the forest.

+ Step 3: Initialize Linear SVC algorithm with a random
state equal to 42.

+ Step 4: Initialize Standard Scaler algorithm.

+ Step 5: Initialize the Stacking algorithm with the three
algorithms mentioned above and Logistic Regression as the
final algorithm.

+ Step 6: Apply Ripper to improve the model’s metrics.

+ Step 7: Train the model.

IV. EXPERIMENT

A. Experimental Tools and Software

Programming environment and tools: Python and
PyCharm. Python is a programming language widely used in
data science and machine learning. PyCharm is a fully
integrated development platform (IDE) designed specifically
for Python programmers.

We implemented the algorithms on a laptop with the
following configuration: CPU: Intel core i7-12700H, GPU:
Intel Iris XE Graphics, RAM: 16Gb.

 Implement Ripper algorithm to experiment stability
with unbalanced data:

+ Initialize Ripper: ripper = RIPPER()

The parameters of RIPPER() are shown in Table I.

TABLE I. PARAMETERS OF RIPPER()

Parameters Description
Default

value

Data

type

k The number of loops to optimize 2 int

prune_size
Pruning ratio (prune into two sets,

grown set, and prune set)
0.33 float

Random_state

Rules generating seed (rules

generated are the same if seeds are
the same)

none int

max_rules Maximum number of rules none int

max_rule_conds
A maximum number of conditions

in each rule.
none int

max_total_conds
A maximum number of conditions
in a whole rule set.

none int

verbosity

Between 0 and 5, print to the
terminal rule-generating process. 0

means do not print. The larger the

number the more detail:
1: Print the main process.

2: Print the optimization phases.

3: Print the calculations needed to
optimize.

4: Print the optimization/pruning

process step by step.
5: Print the operations needed to

add/prune rules.

0 int

+ Training: ripper.fit (<file data>, <classify col>, <positive
value>…)

The parameters of the .fit() method are shown in Table II.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

341 | P a g e

www.ijacsa.thesai.org

TABLE II. THE PARAMETERS OF THE .FIT()

Parameter Description Data type

trainset The data set used to train.
DataFrame/Numpy

array

y

Class labels corresponding to

trainset rows. Use if class

labels aren't included in the
trainset.

str/int/bool

class_feat

Column name or index of the
class feature. The use of the

class feature is still in the

trainset.

str, int

pos_class Name of the positive class. str/bool

feature_names

Specify feature names. If

None, feature names default

to column names for a

DataFrame, or indices in the

case of indexed iterables such

as an array or list.

List<str>

initial_model
Pre-existing model from
which to begin training.

str

cn_optimize
Use algorithmic speed
optimization.

bool

+ Dataset processing:

This study used the "Aggregated Financial Dataset for
Fraud Detection" dataset introduced above for processing.
First, remove unnecessary columns to reduce processing time,
those columns include name_org and name_dest. Next, divide
the data set into the train and test sets. The train set consists of
6000 lines of cheat data and 4 million lines of non-cheat data.
The test set consists of 2000 lines of fraudulent data and 2
million lines of non-cheat data.

Continue to divide the training set into four small datasets
and increase the imbalance rate between the sets to evaluate
the effectiveness of Ripper against large unbalanced sets:

 The first set contains 6000 fraudulent data and 60,000
non-fraud data.

 The second set contains 6000 fraudulent data and
100,000 non-fraud data.

 The third set includes 6000 fraudulent data and
150,000 non-fraud data.

 The fourth set contains 6000 fraudulent data and
300,000 non-fraud data.

The test set consists of 2 thousand fraudulent lines and 2
million non-fraud lines. This set contains data that RIPPER
has never encountered before, used to evaluate accuracy.

+ Results:

Results were obtained after performing RIPPER with 4
data sets (Table III).

TABLE III. STATISTICAL RESULTS AFTER TRAINING

Dataset TPR FPR
Preci-

son
Recall

F1

score
ROC

6_60 0.996 0.03 0.97 0.96 0.96 0.977

6_100 0.992 0.026 0.97 0.86 0.91 0.949

6_150 0.995 0.031 0.97 0.88 0.92 0.906

6_300 0.996 0.023 0.98 0.79 0.87 0.880

Meaning of columns

In the Ripper algorithm, "Positive" and "Negative" are two
types of labels used to evaluate and classify transactions.

+ Positive: represents valid transactions, no fraud.

+ Negative (negative): represents fraudulent transactions.

During training, the algorithm will use transactions labeled
Positive and Negative to build a classification model for
predicting whether new transactions will be fraudulent or not.
In a data set of credit card transactions, a transaction labeled
Positive would be considered a valid and fraud-free
transaction, while a transaction labeled Negative would be
considered a likely transaction cheat. Positive and Negative
labels play an important role in evaluating and improving the
accuracy of the Ripper algorithm in detecting transaction
fraud.

 Dataset: dataset used for training

 True positive rate (TPR): The ratio of correctly
predicting fraud cases, TPR is calculated using the
formula:

 True Positive / (True Positive + False Negative)

 False positive rate (FPR): The ratio of false predictions
of fraud cases, FPR is calculated using the formula:

 False Positive / (False Positive + True Negative)

 Precision: Precision is the ratio of True Positive
predictions that are correct to the total number of True
Positive predictions; precision is calculated using the
formula:

 True Positive / (True Positive + False Positive) =
Correct True Positive Predictions / True Positive
Predictions

 Recall: Recall is the ratio of True Positive predictions
that are correct to the total number of True Positives on
the whole dataset; recall is calculated using the
formula:

 True Positive / (True Positive + False Negative) =
Number of correct TP predictions / Total number of TP

 F1 score: F1 score is the harmonic mean of precision
and recall, the more accurate the F1 score, the better
the model predicts; F1 score is calculated using the
formula: 2 * ((precision * recall) / (precision + recall))

ROC: It has a value of [0,1], representing the model's
prediction accuracy. The higher the ROC score, the more
accurate the model is. Table IV below is the rule list with the
number of iterations of Ripper and the refined rule set.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

342 | P a g e

www.ijacsa.thesai.org

TABLE IV. RULE LIST WITH THE NUMBER OF ITERATIONS RIPPER AND

REFINE RULE SET WITH K=10

Number Rule

1
transaction_type==1 and new_balance_dest<=16123.02 and

old_balance_dest<=1087.36

2
transaction_type==1 and new_balance_dest<=7306.88 and

old_balance_dest<=225.92

3
transaction_type==1 and new_balance_dest<=16123.02 and

old_balance_dest<=1087.36

4

new_balance_org<=1744.75 and transaction_type==1 and

new_balance_dest<=17247.49 and

old_balance_dest<=11186.22

5
new_balance_org<=1572.27 and amount>=2106972.01 and

transaction_type==0

6 transaction_type==0 and amount>=3529762.55

7

new_balance_org<=1572.27 and old_balance_org>=1388977.19

and

old_balance_org<=1908598.9

8 transaction_type==0 and amount>=5014130.87

9 amount>=5014130.87 and new_balance_dest<=17247.49

10
transaction_type==0 and amount>=1867568.7 and

amount<=3529762.55

11
transaction_type==0 and amount>=1867568.7 and

amount<=3529762.55

12
transaction_type==0 and amount>=2519153.53 and

amount<=5014130.87

13

new_balance_org<=1572.27 and old_balance_org>=955088.21

and

old_balance_org<=1388977.19 and

transaction_type==0

14

new_balance_org<=1744.75 and old_balance_org>=946517.94

and old_balance_org <=1204862.32 and

old_balance_dest<=11186.22

15
transaction_type==0 and amount>=1262654.09 and

amount <=1867568.7 and

16
transaction_type==0 and amount>=1262654.09 and

amount <=1867568.7

17
transaction_type==0 and amount>=1697480.93

and amount <=2519153.53

18

new_balance_org<=1572.27 and old_balance_org>=697672.86

and

old_balance_org<=955088.21 and

transaction_type==0

Match the rules shown in Table V.

TABLE V. RULES WITH HIGH COVERAGE

No Rule Ratio

1

transaction_type==1 and

new_balance_dest<=16123.02 and

old_balance_dest<=1087.36

50%

4

new_balance_org<=1744.75 and

transaction_type==1 and

new_balance_dest<=17247.49 and

old_balance_dest<=11186.22

48%

5

new_balance_org<=1572.27 and

amount>=2106972.01 and

transaction_type==0

10%

6 transaction_type==0 and amount>=3529762.55 6.5%

7

new_balance_org<=1572.27 and

old_balance_org>=1388977.19 and

old_balance_org <=1908598.9

5.5%

9
amount>=5014130.87 and

new_balance_dest<=17247.49
4,7%

At this stage, the retainer is used. The dataset is divided
into 10 sets. The purpose of the division is that after each step,
the percentage of fraudulent data is gradually increased,
creating an imbalance and checking the stability of the rule
set. Each set contains 200 fraudulent data and 2000 non-cheat
data (the data of these 10 datasets do not overlap). Then, add
each data set in turn, corresponding to 10 cycles to see the
coverage of the rules after having new data. Table VI below is
the simulation rule range for ten cycles.

TABLE VI. SIMULATION RULE RANGE FOR TEN CYCLES

Rule 1

(%)

Rule 2

(%)

Rule 3

(%)

Rule 4

(%)

Rule 5

(%)

Rule 6

(%)

Base

Coverage
50 48 10 6.5 6.5 4.7

1 49 46 8 5 4 6

2 48 44.5 7 5 6 5

3 51.5 50 7 4.5 8.5 3.5

4 43.5 42 8.5 6 6.5 3.5

5 50.5 46.5 7.5 5.5 7 4.5

6 52 49.5 11 7.5 7 5.5

7 48 46.5 8.5 4.5 4 3

8 50 46 8.5 5.5 8 2

9 49.5 48 13 7.5 7 3.5

10 48.5 47 7.5 3.5 3.5 4

After 10 cycles, although the amount of data gradually
increases and causes a high imbalance, the test has shown that
Ripper is stable and does not suffer from "overfitting".

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

343 | P a g e

www.ijacsa.thesai.org

B. Experimental Results

Finally, this study used the fourth dataset containing 6000
fraudulent data and 300000 non-fraud data above to check the
criteria for the Ripper algorithm and Ripper combined with
Ensemble Learning Methods.

1) Implement the Ripper

+ Results:

- The set of rules: 31.

- Metrics: described in Table VII below.

TABLE VII. METRICS OF RIPPER

 precision recall f1-score support

0 1.00 1.00 1.00 60296

1 0.97 0.77 0.86 1241

accuracy 0.99 61537

macro avg 0.98 0.88 0.93 61537

weighted avg 0.99 0.99 0.99 61537

- Confusion matrix: False Positive = 60267, False
Negative = 29, True Negative = 290, True Positive = 951.

- ROC = 0.88. Execution time: 6m 58s.

2) Implement the Ripper combines with Gradient

Boosting (Fig. 4)

+ Operation model:

Fig. 4. Operation model by ripper combines with gradient boosting.

+ Results:

- The set of rules: 21

- Metrics: Described in Table VIII below.

TABLE VIII. METRICS OF RIPPER COMBINES GRADIENT BOOSTING

 precision recall f1-score support

0 1.00 1.00 1.00 60372

1 0.98 0.92 0.95 1165

accuracy 1.00 61537

macro avg 0.99 0.96 0.97 61537

weighted avg 1.00 1.00 1.00 61537

- Confusion matrix: False Positive = 60349, False
Negative = 23, True Negative = 90, True Positive = 1075.

- ROC = 0.96. Execution time: 10m 57.3s.

3) Implement the Ripper combines with Stacking (Fig. 5)

+ Operation model:

Fig. 5. Operation model by ripper combined with stacking.

+ Results: The set of rules: 45.

- Metrics: Described in Table IX below.

TABLE IX. METRICS OF RIPPER COMBINED WITH STACKING

 precision recall f1-score support

0 1.00 1.00 1.00 60372

1 0.95 0.90 0.93 1165

accuracy 1.00 61537

macro avg 0.97 0.95 0.96 61537

weighted avg 1.00 1.00 1.00 61537

- Confusion matrix: False Positive = 60317, False
Negative = 55, True Negative = 111, True Positive = 1054.

- ROC: 0.95. Execution time: 8m 46.8s.

4) Implement the Ripper combines with Bagging (Fig. 6)
+ Operation model:

Fig. 6. Operation model by ripper combines with bagging.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

344 | P a g e

www.ijacsa.thesai.org

+ Results: The set of rules: 44.

- Metrics: Described in Table X below.

TABLE X. METRICS OF RIPPER COMBINES BAGGING

 precision recall f1-score support

0 1.00 1.00 1.00 60372

1 0.95 0.95 0.95 1165

accuracy 1.00 61537

macro avg 0.98 0.98 0.98 61537

weighted avg 1.00 1.00 1.00 61537

- Confusion matrix: False Positive = 60291, False
Negative = 42, True Negative = 60, True Positive = 1144.

- ROC: 0.98. Execution time: 14m 41.7s.

C. Comparison

Table XI below summarizes the achieved indicators of
each model.

TABLE XI. COMPARE CRITERIA BETWEEN METHODS

Criteria Ripper (1)

Ripper

combines

Boosting (2)

Ripper

combines

Bagging (3)

Ripper

combines

Stacking

(4)

Execution

time
6m 58s 10m 57.3s 14m 41.7s 8m 46.8s

The set of

rules
32 21 44 45

Precision 0.97 0.98 0.95 0.95

Recall 0.77 0.92 0.95 0.90

F1-score 0.86 0.95 0.95 0.93

ROC 0.883 0.961 0.976 0.952

Of the four models mentioned above, (1) gives the worst
results because only a single algorithm is used. Although (2)
produces the fewest rules, this is the most optimal set of rules
because of its processing model. On the other hand, in models
(3) and (4), the sets of rules are generated independently, and
then combined, so the rules will tend to be more and overlap.
This leads to models (3) and (4) generating more rules but not
as efficient the model (2).

This result shows that Ripper combined with Gradient
Boosting gives the best results. Compared with related studies
in part I such as [4], [6], [7], [11], [12], this result achieved
ACC and ROC higher than all. This study shows that Ripper
combined with Gradient Boosting gives the best results.

V. CONCLUSION

The Ripper algorithm has been studied and applied
effectively in the field of data mining. Ripper is a
classification algorithm in machine learning and is used in
many different fields. Such as data classification: Ripper can
be used to classify data based on their characteristics and
values. Object recognition: Ripper can be used to identify
objects in an image or video by classifying objects according
to their features and values. Market Research: Ripper can be
used to analyze market data to identify potential customer
groups and other groups. Phrase Search: Ripper can be used to

search for phrases in text or other textual data. The limitation
of the study is that the algorithm executes slowly if the
number of attributes of the data set is too large. In this study,
the proposed method was improved by combining Ripper with
Ensemble Learning Method, namely Gradient Boosting to
create a new predictive model with higher accuracy and
reliability (ROC increased from 88% to 98% compared to just
using regular Ripper). Depending on the structure and
distribution of the data set, this research can use the Ripper
algorithm in combination with Gradient Boosting, Bagging, or
Stacking to achieve the desired result. Thus, the proposed
model has obtained better results than related studies (ACC
and ROC). Besides, combining models together for training
usually takes more processing time and takes up more
memory resources than single models.

However, detecting transaction fraud is a constant
challenge, as scammers are always looking for ways to change
techniques and tricks to avoid detection. Therefore, the use of
fraud detection solutions needs to be continuously updated and
optimized to keep the financial system safe and meet the
requirements of stakeholders.

REFERENCES

[1] [Online]. Available: https://tinyurl.com/4eh5ex6a. [Accessed 2022].

[2] R. K. Jamra, Kautsarina, D. I. Sensuse, "Systematic review of issues and
solutions," In 2020 International Conference on Electrical Engineering
and, pp. 1-5, 2020.

[3] N. Maynard, "ONLINE PAYMENT FRAUD: MARKET FORECASTS,
EMERGING THREATS & SEGMENT," 2021. [Online]. Available:
https://www.businesswire.com;
https://www.juniperresearch.com/researchstore/fintech-payments/online-
payment-fraud-.

[4] N. Chawla & B. Kumar, "E-commerce and consumer protection in India:
The emerging trend," Journal of Business Ethics, pp. 1-24, 2021.

[5] S. Beigi. M. R. Amin Naseri, "Credit card fraud detection using data
mining and statistical methods," Journal of AI and Data Mining, Vols. 8:
149-60, 2020.

[6] K. G. Al-Hashedi, P. Magalingam, "Financial fraud detection applying
data mining techniques: A comprehensive review from 2009 to 2019,"
Computer Science Review, vol. 40:100402, 2021.

[7] A. A. N. M. R. A. K. M. B. H. A. K. M. N. I. a. R. M. R. Tahmid Hasan
Pranto, "A Blockchain, Smart Contract, and Data Mining Based
Approach toward the Betterment of E-Commerce," Cybernetics and
Systems, vol. 53, pp. 443-467, 2021.

[8] Wang, Y., H. Liu, and Q. Liu, "Application Research of web log mining
in the e-commerce. In 2020 Chinese Control and Decision Conference
(CCDC)," IEEE, 2020.

[9] W. W. Cohen, "Grammatically biased learning: learning logic programs
using an explicit antecedent description language Artificial Intelligence,"
vol. 68, pp. 303-366, 1994.

[10] K. Poongodi and D. Kumar, "Support Vector Machine with Information
Gain Based Classification for Credit Card Fraud Detection System," The
International Arab Journal of Information Technology, vol. 18, pp. 199-
207, 7 9 2020.

[11] Y. Kumar, S. Saini, R. Payal, "Comparative Analysis for Fraud
Detection Using Logistic Regression, Random Forest and Support
Vector Machine," International Journal of Research and Analytical
Reviews (IJRAR), vol. 7: 4, pp. 726-731, 2020.

[12] I. Sadgali, N. Sael, F. & Benabbou, "Comparative Study Using Neural
Networks Techniques for Credit Card Fraud Detection," in Innovations
in Smart City Application, Warszawa, Springer, 2020, pp. 287-296.

[13] A Sahu, GM Harshvardhan, MK Gourisaria, "A Dual Approach for
Credit Card Fraud Detection using Neural Network and Data Mining

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

345 | P a g e

www.ijacsa.thesai.org

Techniques," in 2020 IEEE 17th India Council International Conference
(INDICON), New Delhi, 2020.

[14] V. Jain, M. Agrawal, and A. Kumar, "Performance Analysis of Machine
Learning Algorithms in Credit Cards Fraud Detection," in International
Conference on Reliability, Infocom Technologies and Optimization
(ICRITO) (Trends and Future Directions), 2020.

[15] J. Soyemi, and H. Mudasiru, "An implementation of decision tree
algorithm augmented with regression analysis for fraud detection in
credit card," 2020.

[16] "Aggregated financial datasets for fraud detection," 2022. [Online].
Available: Kaggle.com. [Accessed 12 1 2023].

[17] T. H. Pranto, A. A. Noman, M. Rahaman, A. K. M. Bahalul Haque, A.
K. M. Najmul Islam & Rashedur M. Rahman, "A Blockchain, Smart
Contract and Data Mining Based Approach toward the Betterment of E-
Commerc," 2021.

[18] J. H. Friedman, "Stochastic gradient boosting," pp. 367-378, 2002.

[19] Bbeiman, Leo, "Bagging Predictors," Machine Learning, vol. 24, pp.
123-140, 1996.

[20] B. Pavlyshenko, "Using Stacking Approaches for Machine Learning
Models," in IEEE Second International Conference on Data Stream
Mining & Processing, 2018.

