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Abstract—Achieving the desired level of satisfaction for a 

decision-maker in any decision-making scenario is considered a 

challenging endeavor because minor modifications in the process 

might lead to incorrect findings and inaccurate decisions. In 

order to maximize the decision-maker’s satisfaction, this paper 

proposes a Single-valued Neutrosophic Geometric Programming 

model based on pentagonal fuzzy numbers. The decision-maker 

is typically assumed to be certain of the parameters, but in 

reality, this is not the case, hence the parameters are presented as 

neutrosophic fuzzy values. The decision-maker, with this 

strategy, is able to achieve varying levels of satisfaction and 

dissatisfaction for each constraint and even complete satisfaction 

for certain constraints. Here the decision maker aims to achieve 

the maximum level of satisfaction while maintaining the level of 

hesitation and minimizing dissatisfaction in order to retain an 

optimum solution. Furthermore, transforming the objective 

function into a constraint adds one more layer to the N-

dimensional multi-parametrizes      and  . The advantages of 

this multi-parametrized proposed method over the existing ones 

are proven using numerical examples. 

Keywords—Decision making; pentagonal neutrosophic 

numbers; single-valued neutrosophic geometric programming; 

multi-parametric programming 

I. INTRODUCTION 

Mathematical optimization, an area of applied 
mathematics, is used to solve real-life issues by generating 
mathematical models to produce feasible outcomes. In today’s 
world the significance of mathematical optimization and 
decision making can be explored in various fields [1-5]. 
Geometric Programming (GP) is a technique in the field of 
mathematical optimization and multi-objective decision 
making that is considered a significant optimization problem 
consisting of objective functions and constraints composed of 
monomials or posynomials that are designed to solve real-
world engineering problems by generating feasible outcomes 
[6]. The basics of GP were initially introduced in a book by 
Duffin, Petersen and Zener [7], and afterward its improved 
and extended applications can be seen in various fields. 
Although many problems were solved by conventional GP, 
most of the time the problem contains uncertainties and is 
considered fuzzy rather than crisp. To deal with these Zadeh 
[8] introduced Fuzzy Sets (FS) which were later implemented 
in decision making by Bellman and Zadeh [9]. Tanaka and 
others [10] proposed fuzzy mathematical optimization by 
developing the notion of level sets. Later on, Zimmermann 

[11] introduced fuzzy linear programming using the concepts 
of fuzzy sets. Furthermore, the authors of [12] addressed 
series system models with the help of fuzzy parametric GP 
and achieved optimized system reliability and minimized cost. 
In the research of Samadi et al., [13] the authors presented an 
inventory model based on fuzzy GP for maximizing profit by 
implementing shortages. 

Fuzzy decision-making models excel at addressing and 
optimizing decision-making problems, however evaluating 
membership values to our satisfaction is not always attainable 
due to a lack of readily available information. To overcome 
this issue, Atanassov [14] proposed Intuitionistic Fuzzy Set 
(IFS), which considers both membership and non-membership 
functions to effectively deal with vagueness rather than just 
the membership function as in fuzzy sets. Researchers then 
progressed with IFS in many real-life problems dealing with 
vague data, some of which are mentioned in the following 
literatures [15-18]. Smarandache later on introduced 
Neutrosophic sets (NS) [19] as the generalization of classical 
sets, FS and IFS which includes three independent 
membership functions representing the degrees of truth, 
indeterminacy and falsity for handling inconsistent, 
ambiguous and partial data more efficiently. However, the 
concept of NFS was established from a philosophical 
perspective, for which Wang et al., [20] introduced the notion 
of Single-valued Neutrosophic Sets (SvNS) to address 
practical, scientific and engineering challenges. Due to the 
limitations of the knowledge that humans acquire through 
experience or observation of the outside world, all the 
components indicated by SvNS are extremely appropriate for 
human consciousness. In contrast to the IFS, which cannot 
manage or represent indeterminacy and imprecise data, 
neutrosophic components are clearly the best fit in the 
representation of indeterminacy and inconsistent information. 
As a result, SvNS has quickly developed and is used in many 
different contexts [21-24]. With the advancement in research 
using SVNS many variations came into existence which 
includes triangular NS [25], trapezoidal NS [26] and recently 
pentagonal NS [27]. Das and Chakraborty initially applied 
pentagonal NS in solving linear programming problems by 
proposing a score function for converting the pentagonal NS 
data into crisp values. Further, Khalifa et al., [28] applied 
pentagonal neutrosophic based linear programming for 
optimizing stock portfolio investment. The authors of [29] 
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worked on maximizing profit using EOQ models using 
pentagonal neutrosophic demands. 

A. Gaps in Existing Research and Contribution 

The aspect of decision-making can be seen in many 
domains including geometric programming where several 
researchers contributed their works by developing and 
presenting diverse techniques to solve complex decision 
making problems and finding optimum solutions. 

In the previous scenarios, the expert person was introduced 
with the simple single vector   whose value would be 
constant for each constraint which bound the expert to provide 
the same level of satisfaction to the decision maker for every 
constraint [30]. Thereby the expert is in a dilemmatic situation 
where he needs to satisfy the decision-maker but without 
compromising the optimal solution resulting in following 
extra steps for the sake of optimality. This scenario is tackled 
in our work where the optimal solution is achieved while 
providing satisfaction to the decision maker. 

A multi-parametric programming approach was introduced 
in [31] for reaching the optimal solution in Linear 
Programming Problems (LPP). They proposed a method 
comprising a vector that would help the decision maker to 
attain a better satisfactory level for LPP. Though, the authors 
here employed an n-dimensional vector to obtain an optimal 
solution but did not reach the highest level of satisfaction of 
the decision maker in Geometric Programming Problems 
(GPP) since they did not consider fuzzy numbers for their 
work. So to overcome this, [36] proposed a multi-parametric 
vector   based on fuzzy numbers to solve the geometric 
programming problems to deal with the vagueness present in 
the decision making scenario. Here they were able to reach 
even the complete satisfaction for the decision maker in 
certain constraints. As a result, the expert is able to satisfy the 
decision maker for each constraint while maintaining the 
optimal value in the fuzzy GPP. Unfortunately, Fuzzy 
numbers cannot deal with indeterminacy, which is why 
Neutrosophic numbers are used in our proposed model. 

However, the term "decision making" doesn’t always 
indicate “identifying the best output from any programming 
problem”. Instead, the decision-maker aims to achieve the 
intended level of satisfaction, which may or may not be the 
same as maximizing or minimizing the objective function. As 
a result, the constraint has a different effect than in the 
standard version. The previous attempts in multilevel decision 
making are mostly focused on identifying the ideal 
circumstances and solution algorithms to tackle linear, 
nonlinear, and discrete elementary problems, with only one 
decision allocated to each decision level for optimizing the 
final distinct objective. Therefore, this study focuses on 
maximizing satisfaction and minimizing dissatisfaction levels 
of the decision-maker while keeping in check the hesitation 
levels by incorporating multi-parametric vectors      and   to 
Single-valued Neutrosophic Geometric Programming 
(SvNGP). Furthermore, the pentagonal neutrosophic numbers 
are subjected to a score function in order to establish a link 
between coefficients and exponents and obtain the crisp 
values. In this regard, the primary contributions of the 
proposed decision making model are as follows: 

1) There is not much effort put towards improving 

decision-maker’s satisfaction while taking a decision, 

particularly in neutrosophic environments. Thus the proposed 

approach aids decision-maker to take firm and confident 

decisions. 

2) The use of pentagonal neutrosophic numbers aids in 

coping with imprecision and results in achieving robust 

decisions. 

3) The objective function has been transformed into a 

constraint. As a result, the solution begins with the initial 

optimal point. 

4) The addition of a new constraint to the SvPNGP 

problem adds a new dimension as well as a new restriction on 

the feasible solution space. As a result, the proposed multi-

parametric      and   vectors comprise (N + 1) dimensions. 

5) This technique allows the decision-maker to place his 

desires on each constraint individually, offering him more 

flexibility. 

6) Inclusion of tolerance value aids in achieving precise 

results while using SvPNGP. 

7) It can deal with uncertainties, hesitancies and 

inconsistent data more efficiently. 

8) The decision-maker can manage the satisfaction, 

hesitation and dissatisfaction degrees resulting in reaching 

his/her maximum desire. 

9) The proposed approach is applicable to real-life 

programming problems. 

The rest of the paper is described as: Section II presents 
the preliminary definitions and theorems. To generate crisp 
values from Single-valued pentagonal neutrosophic numbers, 
a score function is taken into consideration which is described 
in Section III. In Section IV, multi-parametric vectors 
              are introduced to evaluate the optimum 
solution and values for the SvPNGP problem. Certain 
membership, non-membership and indeterminacy functions 
are modeled specifically for the programming problem and 
related theorems are also studied. In Section V, concepts of 
feasibility and efficiency using multi-parametric programming 
is described. Section VI discusses the two-phase strategy as 
well as the proposed algorithm to solve the SvPNGP problem. 
The efficacy of the method given is assessed using a 
numerical example problem in Section VII and the findings 
are examined with other methods. Also, the advantages of our 
method compared to the other methods are also pointed out. 
At last, in Section VIII, the concluding remarks are given. 

II. PRELIMINARIES 

In this section, several definitions and theorems are 
discussed that could be useful for analysis. 

Definition 1. [8] A set of ordered pairs  ̃ is said to be a 
fuzzy set if: 

 ̃  {(    ̃  ))|     }  

where   is a non-empty set and the function   ̃    [     
denotes the membership function of  ̃. 
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Definition 2. [14] Let      be an intuitionistic fuzzy set 
(IFS) which is defined as a triplet in the form: 

    {        )      ))|    } 

where      )      )   [     such that        )  
     )   . The function      )  represents the degree of 

membership and      )  represents the degree of non-
membership for every    . Moreover, a hesitation margin 
or intuitionistic fuzzy index     can be defined as       
     )       ) for all      which indicates the degree of 
belongingness of    in   . 

Definition 3. [19] A neutrosophic set  ̃    is defined by: 

 ̃   {      ̃  )    ̃  )    ̃  ))|    } 

where   is an universal set and    ̃  )    ̃  )    ̃  ) 
represents three functions namely membership, indeterminacy 
and non-membership respectively. Their bounds are defined 
as: 

   ̃  )    ̃  )    ̃  )         [  

such that       ̃  )     ̃  )     ̃  )     

Definition 4. [20] A single valued neutrosophic set  ̃    
is defined by: 

 ̃   {      ̃  )    ̃  )    ̃  ))|    } 

where   is an universal set and    ̃  )    ̃  )    ̃  ) 
represents three functions namely membership, indeterminacy 
and non-membership respectively. Their bounds are defined 
as: 

   ̃  )    ̃  )    ̃  )   [     

such that      ̃  )     ̃  )     ̃  )    

Definition 5.[32] Let a single-valued pentagonal 
neutrosophic number (SvPNN) be defined as  ̃  
[               )   ̃  [               )   ̃  [               )   ̃ 
, such that  ̃   , where   is a set of real numbers and 
  ̃   ̃   ̃  [    . Then the membership function   ̃  )   
[    , indeterminacy function   ̃  )   [     and non-
membership function   ̃  )   [     of  ̅ is given by: 

  ̃  )  

{
 
 

 
 

    ̃  )        
    ̃  )        

   
    ̃  )        
    ̃  )        
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{
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    ̃  )        
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A graphical illustration of linear pentagonal neutrosophic 
number can be seen in Fig. 1. Here the three lines viz., black, 
red and blue represents the membership, non-membership and 
indeterminacy functions respectively. Here, the variable  is 
represented by the notation      , where the pentagonal 
number will become a triangular neutrosophic number if   = 0 
or 1. 

 

Fig. 1. Pictorial form of linear pentagonal neutrosophic number [32]. 

III. CRISPIFICATION OF SVPNN 

To transform neutrosophic numbers into crisp values, 
score and accuracy functions are required. We adopted the 
notion of score and accuracy function from [27] for a SvPNN 

 ̃   ( 
 
  

 
  

 
  

 
  

 
      ) which is defined a as follows: 

1) Score function: The score function for  ̃   is scaled as  

  ̃   
 

  
( 

 
  

 
  

 
  

 
  

 
)  {       }  

2) Accuracy function: The accuracy function is given as 

  ̃   
 

  
( 

 
  

 
  

 
  

 
  

 
)  {     }  

IV. SINGLE-VALUED NEUTROSOPHIC GEOMETRIC 

PROGRAMMING 

Definition 6.[33] The standard form of Posynomial 
Geometric Programming (PGP) of X is given by: 

max 

∑   

  

   

∏  
 

     

 

   

  
 (1) 

s.t. 

∑   

  

   

∏  
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where the M-dimensional variable   ( 
 
    

 
)
 

  , 

coefficients       and exponents        , are arbitrary real 

numbers. 

The problem 

   ̃   ̃   ),            (2) 

s.t.  ̃   )                 

      

is called an Single-valued Neutrosophic PGP (SvNPGP) 

problem, where      )  ∑      )
  
           , is a 

posynomial function on  , where the monomial function     
of    is defined as [34]: 

    

{
 
 

 
    ∏  

 

     

 

   

                    

       ∏ 
 

     

 

   

                          

    

and        )     ̃     )  represents the maximum 
goal of the objective function     ) where    is considered 
as the lower bound.    is the expectation value of     ) and 
   symbolizes fuzzy version of     which basically means 
“less than or equal to”. Therefore (2) can be changed into 
Single-valued neutrosophic reversed PGP problem: 

   ̃    ̃  )       (3) 

s.t   ̃  )                

   ̃  )                 

       

Definition 7. A monomial function of PGP can be defined 
as fully SvNPGP form as: 

   ̃  
 ̃ ∏ ̃

 

  ̃  

 

   

  
 (4) 

s.t 

 ̃ ∏ ̃
 

  ̃  

 

   

  ̃           

 

  ̃   ̃   

where all the coefficients  ̃   ̃            , variables 

 ̃  (  ̃     ̃ )
 
, exponents  ̃   and real numbers  ̃   ̃ are 

Single-valued Neutrosophic numbers. 

Theorem 1 .[35]  Let     ) be a convex function for any i, 
then the resulting geometric programming problem is an 
Single-valued Neutrosophic convex problem 

    )      (5) 

    )               

Theorem 2. Any SvNPGP can be turned into a Single-
valued neutrosophic convex programming problem, as 
specified in (2). 

Proof. Let           ) , where    (〈           〉)  , so 

   =     for      . Then 

∑   

  

   

∏ 
 

     

 

   

 ∑   

  

   

 ∑   
 
             )          (6) 

Thereby, problem (2) can be turned into (5). So, by 
applying Theorem 1, we are able to prove it. 

Theorem 3. Any Single-valued Neutrosophic monomial 
PGP problem (4) can be converted into a Single-valued 
Neutrosophic linear programming problem as follows: 

 

max    ̃  ∑    ̃ 

 

   

  
 (7) 

s.t 

   ̃  ∑    ̃ 

 

   

    ̃           

 

  ̃    ̃           

 

Proof. By using “ln” function on (4), we can say that: 

 

max    ̃  ∑      ̃ 

 

   

  

 

 (8) 

s.t 

   ̃  ∑      ̃ 

 

   

    ̃   

 

        

 

  ̃    ̃           

Now, when we put    ̃   ̃  in (8), a convex program is 

obtained as follows: 

 

max    ̃  ∑    ̃ 

 

   

  
 (9) 

s.t 

   ̃  ∑    ̃ 

 

   

    ̃   
        

 

  ̃
 
   ̃           

 

Thus, from theorem 2, we can say that the above problem 
is a convex programming problem and has a similar Single-
valued Neutrosophic optimal solution as the problem (4). 
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V. FEASIBILITY AND EFFICIENCY CONCEPTS THROUGH 

MULTI-PARAMETRIC PROGRAMMING 

The notion of a multi-parametric vector       )  is 
introduced in this section which is useful to evaluate the level 
of confidence derived from the feasibility and efficacy of the 
optimum solution. Inclusion of tolerance value to the 
programming problem as a novel membership function 
imposes limitation as a prerequisite that can play a significant 
part in obtaining a suitable solution. Furthermore, the decision 
maker’s satisfaction will be closer to the feasible solution. 

Considering (2) and assuming that  ̃  represents every   of 
neutrosophic constraints related to the neutrosophic inequality 
constraint     )            ), the membership function 

  ̃ 
  ), indeterminacy function   ̃ 

  ) and non-membership 

function   ̃ 
  ) are given by: 

  ̃ 
  )  {

  

  
  

  
  

 

    )   

    )               

    )      

  ) 

  ̃ 
  )  {

  
    

  
  

 

    )   

    )               

    )      

  ) 

  ̃ 
  )  {

  
    

  
  

 

    )   

    )               

    )      

  ) 

where       represents the maximum tolerance value 
which is determined by the decision-maker. The decision-
maker assigns a tolerance value which can complicate the 
SvNGP problem. So, selecting a tolerance value throughout 
the decision making process, aiming to please the decision-
maker, and then enhancing his satisfaction level, ultimately 
boosts efficiency. 

By observing problem (3), multi-parametric vectors 
         are presented where           )  
                    )                        )  
         represents the confidence level for the membership, 
non-membership and indeterminate values respectively of the 
programming problem. Here              represents the 
satisfaction, dissatisfaction and hesitation degrees 
respectively, for the objective function which then will be 
converted into a constraint imposing a limitation to the 
feasible solution resulting a precise optimal solution whereas 
  ,           for i = 1,…, N represents the satisfaction, 
dissatisfaction and hesitation degrees for each constraint. 
Thus, a new membership, indeterminacy and non-membership 
function is created solely for the objective function after it is 
converted to a constraint which is defined as: 

 (          ))   
             )

  
            )        

(10) 

 (          ))   
          )       

  
            )         

 (          ))   
          )       

  
  

 

          )        
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 (          ))  { 

  

  
          )    

  
  

 

          )    
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 (          ))  { 

  
          )    

  
  

 

          )    

             )                   

          )                      

 

 (          ))  { 

  
          )    

  
  

 

          )    

             )                   

          )                      

 

Thus an underlying framework is presented to discover the 
optimum solution in terms of the satisfaction, dissatisfaction 
and indeterminacy degrees of the decision-maker with the 
maximum tolerance in (3): 

max     )   (11) 

s.t     )             

     )          )      

     )          )      

     )          )              

     )                     

     )                     

     )          )                

     )                       

     )                       

                     
                 

         

Definition 8. Let        
      

 )     be an M-
dimensional vector where       [     and        , 
defined as: 

       {     |    

  (    ))    

  (    ))    

  (    ))    

        } 

(12) 

in which a vector          will be an      -feasible 

solution for (2) where   is the minimal acceptance degree, 
        denotes the maximum rejection and hesitation degree 
respectively. 

Theorem 4. Let           )             
        )                         )          , and 
for   

           ,        
      

 )     is an M-

dimensional vector and an      -feasible solution for (2). So 
    is an      -efficient optimal solution iff it satisfies the 
following constraints - 

max     )  (13) 

s.t     )             

     )          )      
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     )          )      

     )         )              

     )                    

     )                    

     )         )                

     )                      

     )                      

                              

                   

where    denotes the maximum tolerance. 

Proof. Let us consider that          )             
        )                         )           , and 

for   
           ,        

      
 )     is an 

     -feasible solution for (2). From definition 8 and problem 

(9), we have    (    ))       (    ))     and   (    ))  

  , therefore    is a feasible solution. However, as       is 

an      -efficient solution, no other    
  

     
 will satisfy 

  ( 
  
)       

 )  Thus, it means    
is an optimal solution. 

Moreover, if we consider    
 be an optimal solution for (12) 

and apparently,    
is an      -feasible solution, it means    

 

is an      -efficient solution. 

Now, let us assume the optimal solution for problem (12) 

be              
 )) in Theorem 3. It is only necessary to 

solve the programming problem below: 

 
max 

∑   

 

   

   

 (14) 

s.t     )             

     )          )      

     )          )      

     )         )              

     )                    

     )                    

     )         )                

     )                      

     )                      

                              

                   

VI. THE CONCEPT OF THE TWO-PHASE METHOD AND THE 

PROPOSED ALGORITHM 

The overall process of optimization is divided into two 
phases which are described as follows: 

Phase 1: In this phase first an appropriate GP problem is 
created for solving. Theorems 2 and 3 are then used to 
generate Single-valued Pentagonal Neutrosophic Linear 
Programming (SvPNLP) problem from the GP problem. The 
score function is then used to transform the SvPNLP problem 
into a crisp linear programming problem that allows the 
tolerance value to be set. In this case, the decision-maker 
implements his requirement according to his satisfaction. The 
decision-maker could choose various degrees of tolerance 
value, which results in distinct sets of feasible alternatives; 
consequently, we must devise a technique to determine the 
optimal solution within these feasible choices. 

Phase 2: This phase begins with a feasible solution 
provided in phase 1 and its goal is to increase satisfaction by 
providing an optimal solution. The multi-parametric 

confidence vectors                ) are utilized to correlate 
the degree of satisfaction, dissatisfaction and indeterminacy 
with its relevant environment. Then the conversion of the 
objective function into a constraint takes place at this stage 
where    marks the beginning of the optimum solution along 
with              as satisfaction, dissatisfaction and 
hesitation degrees. The tolerance degree,   , can be enhanced 
for individual constraint and objective function, allowing the 
degree of satisfaction to be maximized and dissatisfaction 
degree to be minimized while maintaining the degree of 
indeterminacy in individual constraint. Finally, solving the 
original problem with the proposed model an optimal solution 
is achieved with the highest degree of satisfaction while 
keeping the level of dissatisfaction and indeterminacy in 
control. 

An algorithm along with a flowchart, in Fig. 2 is presented 
for finding an optimal solution for SvPNGP problem based on 
the preceding discussion (3). 

Algorithm: SvPNGP Modelling  

1. Model the SvPNGP problem. 

2 Convert the SvPNGP to crisp LP using the help of the score 

function and applying Theorem 2 and 3. 

3 Find the initial optimal value    from basic variables. 

4. Add tolerance value and apply     - efficiency and 

formulate the equivalent LPP: 

                  (15) 

 s.t     )   ,     )         )    

      )   ,     )   ,     )              

                 , 

                     

 The above LPP is equivalent to: 

 s.t           ) (16) 

      )   ,     )         )    

      )   ,     )   ,     )              

                 , 

                     

5. According to multi-parametric                 ) apply the 

membership, non – membership and hesitancy functions and 

place the objective function as a constraint. 
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6. Solve and find     
       )  using the dual-simplex 

method. 

7. Build a new programming problem model under multi-

parametric               with different degrees of 

satisfaction, dissatisfaction and indeterminacy respectively. 

8. Solve the new problem and find the optimal satisfaction 

degree. 

9. Determine the optimal value under optimal          and 

evaluate     
           ). 

 

Fig. 2. Flowchart of the proposed work. 

VII. IMPLEMENTATION OF THE PROPOSED MODEL WITH THE 

HELP OF NUMERICAL ILLUSTRATION 

Example 1. A water distribution plant wants to produce 
concrete pipes for an underground water distribution project. 
It requires three pipes P1, P2 and P3 with utmost weight e

19
, 

e
46

, and e
64

 in Kgs. The water pipes need to be manufactured 
utilizing four varieties of concrete materials M1, M2, M3 and 
M4. Table I shows the percentage of each kind of raw 
concrete required in each pipe (kg) and its unit price ($/kg). 
Determine the maximum amount of raw concrete required 
while staying within the owner's tolerance limit. 

TABLE I.  CONCRETE PERCENTAGES AND ITS PRICE/UNIT 

Pipes M1 M2 M3 M4 Need (Kg) 

P1 P1M1 P1M2 P1M3 P1M4 e19 

P2 P2M1 P2M2 P2M3 P2M4 e46 

P3 P3M1 P3M2 P3M3 P3M4 e64 

Unit Price 

($/Kg) 
5 6 3 5  

P1M1= ((0,1,1,2,2);0.6,0.4,0.3), P1M2= ((0,1,3,4,5);0.9,0.1,0.3), P1M3= ((1,1,1,1,1);0.9,0.3,0.1), 

P1M4= ((1,2,2,3,4);0.8,0.5,0.3), P2M1= ((5,6,6,7,8);0.8,0.4,0.4), P2M2= ((3,4,6,7,9);0.8,0.5,0.3), 

P2M3= ((2,3,3,4,5);0.6,0.5,0.6), P2M4= ((0,2,2,4,5);0.8,0.2,0.5), P3M1= ((1,2,4,5,6);0.7,0.2,0.2), 

P3M2=   ((2,3,5,6,8);0.7,0.2,0.2), P3M3= ((1,1,3,3,3);0.7,0.4,0.3), P3M4= 

((10,11,13,14,15);0.8,0.4,0.2) 

Solution. The above problem can be converted into 
SvPNGP as follows: 

     ̃   
   

   
   

  (17) 

s.t   
      

      
      

       e
19

  

   
      

      
      

       e
46

  

   
      

      
      

       e
64

  

                

By using   =     (     ), we can change problem (16) 
into the intuitionistic fuzzy problem by utilizing Theorems 2 
and 3. 

     ̃                 (18) 

s.t                              19  

                              46  

                              64  

Next, we apply the score function on SvPNN 

     ̃                 (19) 

s.t                              19  

                              46  

                              64  

After the conversion, the primary optimal solution is 
drawn from the basic variables                  
                and the optimal value is e

76.18
. By applying 

  =    , we get   = 76.18. Using the two-phase technique 
and applying the membership, non-membership and 
indeterminacy functions defined in (9) along with substituting 
the values of    ,    ,    ,     and    where     ,     , 
     and      for   , (i = 0,1,2,3) are the tolerance values 
which are set up by the decision maker, we can convert 
problem (18) into the programming problem as given below: 

   ̃        ) (20) 

           Construct SvPNGP 

        Problem   

            Using score function and applying  

             Theorem 2 and 3 construct crisp LP 

 Input Tolerance Limit 𝑡𝑖 

  Use 𝛼 𝛽 𝛾- efficiency 

          Apply the objective function as a constraint  

           using multi-parametric 𝛼 𝛽 𝛾        𝑁  ) 

               Develop a new programming model under  

             multi-parametric 𝛼𝑖  𝛽𝑖      𝛾𝑖 with different degrees of  

               satisfaction, dissatisfaction and indeterminacy respectively 

   Obtain the optimal degree of satisfaction 

under optimal 𝛼  𝛽  𝛾    

 Obtain initial optimum value 𝒵  

 Obtain 𝑔  𝒵
  𝛼 𝛽 𝛾) 

               Evaluate  

              𝑔  𝒵
   𝛼  𝛽  𝛾 )  
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s.t.                             
                             
                             
 0.76   + 2.17   + 0.83   + 1.60        ,  
 0.76   + 2.17   + 0.83   + 1.60      +      
 0.76   + 2.17   + 0.83   + 1.60      +      
        + 3.87   + 1.70   + 1.82           
        + 3.87   + 1.70   + 1.82           
        + 3.87   + 1.70   + 1.82           
 2.64   + 3.68   + 1.47   + 9.24            
 2.64   + 3.68   + 1.47   + 9.24            
 2.64   + 3.68   + 1.47   + 9.24            
                                        

           

Table II displays the satisfaction of the decision-maker at 
various degrees of      -efficiency confidence. If   
            )               ) ,                )  and 
    

       )  signify the optimal value of the objective 
function at every step under different conditions, we may 
obtain the following table using the LINGO 18.0 software: 

From Table II it can be observed that the maximum initial 
optimal solution              ) is achieved at row 1 with a 
value of 80.11. It is also seen that the least efficient 
components are    and   . As the values of    and    
increases, the values of   ,   ,    and    decreases because of 
the constraint       and      , that results in the 
degradation of the optimal solution. By reducing the values of 
   and    provides better results. If we increase the values of 
   and    and decrease   ,   ,    and    respectively, we are 
able to reach closer to the optimal solution. Now, as an initial 
solution, we will strive to minimize    and    by selecting the 
(0.5, 0.5, 0.5, 0.5)-efficient solution having optimal value 
             ) = 80.11. 

Now, we will determine the LP problem below that is 
influenced by              ) = 80.11. 

   ̃  ∑         )

 

   

 
(21) 

s.t.                             
                             
                             
 0.76   + 2.17   + 0.83   + 1.60        ,  
 0.76   + 2.17   + 0.83   + 1.60      +      
 0.76   + 2.17   + 0.83   + 1.60      +      
        + 3.87   + 1.70   + 1.82           
        + 3.87   + 1.70   + 1.82           
        + 3.87   + 1.70   + 1.82           
 2.64   + 3.68   + 1.47   + 9.24            
 2.64   + 3.68   + 1.47   + 9.24            
 2.64   + 3.68   + 1.47   + 9.24            
                              
                              
                              
                              

The optimum solution of problem (20) will be reached by 
maximizing the satisfaction degree as 
                      )  with confidence level    
               ) ,                   )  and    
               , and  the optimal value calculated with respect 
to              as     

           )   

(5.64,0,10.76,3.93;1,0.5,0.5,0.5;0,0.5,0.5,0.5;0,0.5,0.5,0.5)=80
.11 . As a result, the optimal solution to GP programming 
problem (16) is    = e

5.64
,    =1,    = e

10.76
,    = e

3.93
, and the 

optimal value is e
80.11

. 

TABLE II.  DETERMINING THE MAXIMUM LEVEL OF SATISFACTION WITH A MULTI-PARAMETERS       

S. No                                                              ) 

1 0.5,0.5,0.5,0.5 0.5,0.5,0.5,0.5 0.5,0.5,0.5,0.5 5.64 0 10.76 3.93 80.11 

2 0.9,0.5,0.5,0.7 0.2,0.5,0.5,0.1 0.1,0.5,0.5,0.2 5.44 0 11.58 3.59 79.93 

3 0.4,0.8,0.3,1 0.2,0.4,0.2,0.3 0.1,0.5,0.2,0.6 5.22 0 11.36 3.63 78.32 

4 0.5,0.9,0.9,0.5 0,0.3,0.2,0.1 0.3,0.4,0.5,0.3 5.36 0 10.93 3.72 78.20 

5 0.5,0.8,0.9,0.5 0.2,0.1,0.2,0.3 0.1,0.3,0.1,0.2 5.27 0 10.80 3.83 77.89 

6 0.7,0.5,0.8,0.5 0.7,0.5,0.8,0.5 0.2,0.5,0.1,0.5 5.21 0 11.00 3.75 77.85 

7 0.9,0.9,0.9,0.9 0,0,0,0 0.3,0.2,0.2,0.3 5.11 0 11.07 3.70 77.28 
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Example 2. In continuation from example 1, determining 
the maximum satisfaction of decision maker without any 
tolerance limit then the results are shown in Table III. 

TABLE III.  DETERMINING THE MAXIMUM SATIFACTION LEVEL WITHOUT 

TOLERANCE LIMIT 

S. 

No 
1 2 3 4 

  0.5,0.5,0.5,0.5 0.9,0.5,0.5,0.7 0.7,0.5,0.8,0.5 0.5,0.9,0.9,0.5 

  0.5,0.5,0.5,0.5 0.2,0.5,0.5,0.1 0.2,0.1,0.3,0.2 0,0.3,0.2,0.1 

  0.5,0.5,0.5,0.5 0.1,0.5,0.5,0.2 0.2,0.5,0.1,0.5 0.3,0.4,0.5,0.3 

   4.89 4.85 5.07 5.06 

   0 0 0 0 

   11.90 12.04 11.20 11.23 

   3.69 3.63 3.71 3.70 

   78.59 78.56 77.55 77.54 

              )               ),               ),     
 
        

  
 
) 

Example 3. With continuation from example 1, 
determining the maximum satisfaction of decision maker with 
single parametric           then the results are displayed in 
Table IV. 

TABLE IV.  DETERMINING THE MAXIMUM SATIFACTION LEVEL WITH 

SINGLE PARAMETRIC           

S. 

No 

                     

1 0.5 0.5 0.5 5.64 0 10.76 3.93 80.11 

2 0.6 0.4 0.4 5.53 0 10.82 3.88 79.55 

3 0.8 0.2 0.2 5.32 0 10.94 3.79 78.41 

4 0.9 0.1 0.1 5.21 0 11.00 3.74 77.85 

5 1 0 0 5.10 0 11.07 3.70 77.28 

    
 
        

  
 
) 

It can be observed that the optimal solution degrades with 
the absence of tolerance limit while analyzing Table II and III. 
When Table II and IV are compared, it is found that in Table 

IV, raising the confidence level   and decreasing        , 
reduces the ideal solution, whereas we anticipate the optimal 
solution to increase as the confidence level rises. Similarly, 

the decision maker has to adjust the levels of satisfaction, 
dissatisfaction and hesitancy levels for every constraint to the 
same degree, but in the method proposed, the satisfaction, 
dissatisfaction and hesitancy levels for each constraint can be 
decreased or increased independently. Table IV clearly shows 
that raising the confidence level has the opposite effect on the 
optimization, and the optimal value returns to its original 
solution, whereas in Table II, until the satisfaction, 
dissatisfaction and hesitancy degree components change, the 
optimal value remains optimal. The reason for this is because 
the confidence vectors are not reasonable for all constraints, 
especially when the objective function is transformed into a 
constraint. Thus the adaptability of the (N + 1) -dimensional 
      and    confidence levels can help in achieving the 
decision-maker's purpose of getting a better optimal result. 

Table V presents the difference of solutions for example 1 
using four methods. Comparing our work with Intuitionistic 
Fuzzy Geometric Programming (IFGP), Khorsandi et al., [36] 
and Zimmermann’s method [37], it is observed that the 
solution achieved using our proposed method for solving 
SvPNGP is more efficient compared to the solution obtained 
using the other techniques. Here methods 1, 2 and 3 are multi-
parametric, whereas method 4 is single parametric, and 
methods 3 and 4 are designed to solve fuzzy optimization 
problems, whereas Method 1 is intended to address 
Neutrosophic optimization problems. 

The proposed method achieved the highest optimal value 
compared to the existing techniques. Fuzzy optimization only 
considers one degree of acceptance or rejection at a time 
whereas Intuitionistic Fuzzy optimization includes both 
degrees of acceptance and rejection in order to manage 
optimization but in reality, there are some circumstances 
where, due to lack of information or indeterminacy, evaluating 
the membership and non-membership functions together 
cannot yield a greater and/or more satisfactory conclusion. As 
a result, there is still an indeterministic element on which 
hesitation persists which is addressed by neutrosophic 
optimization.

TABLE V.  COMPARATIVE ANALYSIS BETWEEN DIFFERENT OPTIMIZATION APPROACHES 

Methods                                  

1) Proposed SvPNGP               )               )               ) 5 1 4 6 5.64 0 10.76 3.93 80.11 

2) IFGP               )               )  5 1 4 6 0 8.52 0 6.99 76.78 

3) Khorsandi et al’s 

Method [36] 
              )   5 1 4 6 2.51 5.3 0 3.18 60.34 

4) Zimmermann’s 
Method [37] 

(0.2) 

(0.5) 

(1) 

  5 1 4 6 

2.74 

2.51 

2.12 

5.21 

5.30 

5.45 

0 

0 

0 

3.30 

3.18 

2.98 

61.59 

60.34 

58.27 

              )               ),               ),                 ) 

VIII. CONCLUSION 

In order to obtain optimal results in decision making, the 
decision-maker needs to be provided with the flexibility to 
achieve satisfaction in the decision making process. Thereby, 
this research article proposed a SvPNGP model by 
incorporating multi-parametric vectors       to achieve the 
maximum degree of satisfaction while minimizing the degree 
of dissatisfaction and hesitation within the tolerance limit of 

the decision-maker. With this strategy, the decision-maker can 
obtain an optimal solution for the SvPNGP problem while 
satisfying his/her needs and moreover the decision maker is 
not restricted for selecting the same tolerance value for 
individual constraints. We divided the whole process into a 
two-phase method where the SvPNGP is transformed to a 
crisp LP problem in the first phase and in the next phase, the 
multi-parametric vectors are applied along with membership, 
indeterminacy and non-membership functions and solved to 
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find the optimal solution. With the help of numerical 
problems, we evaluated and analyzed certain parameters with 
our proposed model. The results were then compared with the 
existing methods and found out to produce better optimal 
solution compared to others. 

The contribution of this paper includes developing an 
optimal SvPNGP model to enable the decision-maker to 
achieve robust decisions while providing him the flexibility to 
achieve the desired level of satisfaction. As the model is built 
on neutrosophic numbers, it can handle uncertainty in real-
world programming situations. 

For future work, we hope to expand our work with 
Plithogenic sets, which is another generalized method that can 
be useful for dealing with inconsistent and indeterminate data. 
The extended approach can be used to a wide range of real-
world challenges in the field of engineering, manufacturing, 
management and many more. 
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