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Abstract—For marathon runners, a single injury may affect 

their lifelong athletic career, so their injury management is very 

important. The current injury management for marathon 

runners has a certain lag, and the current injury warning is 

mainly based on manual teams, which is costly and poorly 

automated. To solve these problems, the study proposes a 

marathon athlete physical injury warning algorithm based on 

inertia weight adjustment optimized radial basis network. 

Particle swarm optimization technology has also been 

incorporated into early warning algorithms. Finally, an athlete 

injury and disease early warning model is constructed based on 

the algorithm. The results of performance tests show that the 

algorithm has a minimum fitness function value of 0.13, which is 

significantly lower than the current algorithm used for 

comparison. In the test with real data, the MAPE of the proposed 

algorithm was as low as 7.598% and the agreement of the hazard 

score results with the expert human assessment reached 100%. 

The results of the study indicate the practicality of the algorithm 

to assist work teams and perform early warning of physical 

injuries in athletes. However, the high number of iterations 

required is a limitation awaiting resolution. 

Keywords—Radial basis neural network; exponentially 

decreasing inertia weights; early warning algorithm; sports injury; 
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I. INTRODUCTION 

Marathon is one of the most popular athletic events. For 
marathoners, injury management and prevention are of the 
utmost importance. A single serious injury can end an athlete's 
career. However, there is a certain lag in the current injury 
management of marathon athletes. In addition, marathoner 
injury management is currently mainly through human analysis 
and decision making, which is costly and less automated [1]. 
To solve these problems, an early warning algorithm for 
physical injuries of marathon runners is proposed. The research 
gap of this study is focused on injury prevention for athletes. 
There are few studies focused on automation and algorithm 
applications, and there is still a large research gap in this field. 
Radial basis function neural networks have excellent 
approximation and global optimization capabilities, and are an 
effective tool for solving early warning problems [2]. 
Currently, there are few studies on the application of radial 
basis function networks in athlete injury prevention. This 
research can enrich these fields. To address the problem of 
balancing global and local search performance in radial basis 
networks, the Exponential Decreasing Inertia Weight (EDIW) 
strategy is introduced into radial basis networks. The physical 
injury warning algorithm for marathon runners is constructed 

based on the radial basis network optimized by EDIW, and it is 
hoped that this study will bring meaningful results for injury 
management and warning of marathon runners. 

This article has a total of V parts. The second part is related 
works, which reviews the research achievements in relevant 
fields in recent years, laying a foundation for this research. The 
third part is methods, which introduces the design idea of the 
algorithm and the construction process of the model. The 
fourth part is the experimental results, which show the 
performance of the proposed algorithm in the experiment. The 
fifth part is the conclusion, which summarizes the results of 
this study. 

II. RELATED WORKS 

Radial basis function neural network is a type of 
feedforward neural network that has superior performance and 
has been widely used in the prediction and warning fields. Zijie 
N led a team to build a mobile platform control system 
integrated with two Radial basis function neural networks, one 
for identifying the system's state and the other for predicting 
the mobile platform's deviation angle based on existing data 
[3]. The experimental results showed that the application of 
this algorithm during longitudinal driving reduced the 
correction time by 1.4 seconds and the overshoot angle by 7.4 
degrees compared to traditional control algorithms. 
Additionally, Wang H and their research team proposed a robot 
fault-tolerant control model based on Radial basis function 
neural network prediction, which estimated external 
disturbances using an RBFNN and automatically handled 
hazardous factors employing trajectory tracking techniques [4]. 
The experimental results showed that this RBFNN model could 
predict external disturbances with an accuracy rate of over 70% 
and effectively mitigate their impact using tracking and 
vibration elimination techniques. Furthermore, Lian X and 
other researchers proposed a sliding mode controller based on 
an adaptive Radial basis function neural network that 
introduced a track modeling approach with 12 degrees of 
freedom [5]. Through performance testing and comparative 
analysis, the algorithm was found to perform high-precision 
satellite capture and release tasks. Current Radial basis 
function neural network research tends to focus on practical 
applications, with limited research investigating performance 
optimizations of RBFNN itself. This study addresses its own 
performance limitations to some extent by optimizing RBFNN 
prior to its use in practical applications. 

Injury management and prevention in athletes has long 
been an important research topic in the field of sports. Ye and 
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Di studied injury and fatigue in a large number of winter 
Olympic athletes and continuously monitored their 
psychological status for injury prevention in winter athletes [6]. 
The results of the study showed that there was a significant 
correlation between the adequacy of athletes' preparation 
activities and the rationality of training programs and athletes' 
injuries. Wang and his research partner developed a mutual 
information sports injury warning model based on an attribute 
parsimony algorithm, which was designed for youth athletics 
[7]. Simulation experiments found that the model was able to 
warn youth track and field athletes of injuries with 80% 
correctness, but the model suffered from a local optimal 
solution. Bahr led his team to explore the characteristics of 
athletes' injuries and diseases based on epidemiological 
research methods, and they reached consensus on a set of 
recommendations for the latest sports injury and disease 
research and proposed an athlete epidemiological research 
report list extension [8]. The study provided a systematic 
understanding of the causes of injury and disease in athletes 
and developed protective measures accordingly. Li used data 
fusion techniques to analyze and assess potential injury factors 
in various sports and based on this, developed a dynamic chain 
model for early warning of risk factors for sports injuries [9]. 
The study provides a reference for athletes to avoid and reduce 
injury risk and guarantee normal training and competition, and 
the authors also applied the research results to tennis training 
and achieved scientific results. Chia and her research team 
studied injury prevention in athletes from a social marketing 
perspective and proposed a strategy to implement athlete injury 
prevention efforts using a social marketing mix [10]. The team 
analyzed in detail the useful features of the social marketing 
mix, including elements such as product, price, and location, 
and provided high-value recommendations on the 
corresponding injury prevention programs. According to the 
analysis results of the literature in the field of athlete injury 
management, it is found that there is less research on the 
balance between local and global search capabilities, and the 
application of radial basis function networks in the field of 
sports is also relatively lacking. This indicates that there is not 
much research focused on automation and algorithm 
applications in this field, and there is still large research space. 
Therefore, the improved radial basis network is applied to 
injury warning for marathon runners, hoping to bring 
practically meaningful research results to these fields. 

III. RADIAL BASIS NETWORK-BASED PHYSICAL INJURY 

WARNING ALGORITHM CONSTRUCTION FOR MARATHON 

RUNNERS 

A. Radial Basis Network Model for EDIW Optimization 

Radial basis networks belong to feedforward neural 
networks and have excellent approximation and global 
optimization capabilities [11]. In addition, radial basis 
networks have a simpler structure compared to other 
feedforward networks and are therefore widely used in 
approximation, classification, and regression problems [12]. 
The marathon runner physical injury warning algorithm is 
based on a special radial basis network, and the topology of 
this network and its difference from the ordinary radial basis 
network are shown in Fig. 1. 
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Fig. 1. Radial basis function network model. 

Fig. 1(a) shows the structure of the ordinary radial basis 
network. Fig. 1(b) shows the adopted special radial basis 
network, which is based on nonlinear regression and is called 
generalized regression network. The difference from the 
ordinary radial basis network is that the hidden layer of the 
generalized regression network is a two-layer structure, i.e., the 
mode layer and the summation layer [13]. The mode layer is 
activated using a radial basis Gaussian function, while the 
summation layer performs direct and weighted summation of 
the output values of the mode layer, respectively [14]. This 
structure allows radial basis networks to optimize the warning 
effect by eliminating the need to adjust the connection weights 
and only changing the smooth factor to affect the activation 
function of the mode layer [15]. Current particle swarm 
optimized radial basis networks have received attention for 
their stronger global search capability and computational 
efficiency, and therefore damage warning algorithms also use 
particle swarm optimized generalized regression radial basis 
networks [16]. However, the global search and local 
exploration capabilities of such optimization networks are 
often not easily balanced, so how to adjust the inertia weights 
of the algorithm and achieve the best balance is a key issue for 
such networks [17]. In this study, an EDIW-based strategy is 
proposed, and the operational flow of the radial basis network 
model optimized by this strategy is shown in Fig. 2. 
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Fig. 2. Operation process of EDIW optimized RBF network model. 
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In this operational flow, the particle population is first 
initialized and the positions of the particles are mapped to the 
radial basis network. After that, the fitness is calculated and the 
inertia weights and particle positions and velocities are 
updated, and then the new values are mapped into the radial 
basis network. The mathematical expression of the EDIW 
strategy is shown in Eq. (1). 



( (max) (min))
( )

n
n

N

 





 

In Eq. (1), n  is the number of iterations of the neural 

network, and N  is the maximum number of iterations. 

(max)
 and 

(min)
 are the maximum and minimum initial 

inertia weights, respectively. According to the mathematical 
properties of the EDIW expression, it is a linear function with 
the decline as shown in Eq. (2). 
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The LD  in Eq. (2) is the weight reduction. The inertia 
weights have two main roles for the motion damage warning 
algorithm, one is to adjust the influence of the historical 
velocity on the current velocity, and the other is to balance the 
global detection and local search ability. Therefore, at the 
beginning of the iteration, the inertia weights should decrease 
at a faster rate to ensure that the particle swarm can search the 
region where the feasible solution is located more quickly. At 
the later stage of the iteration, the inertia weight decreases at a 
significantly slower rate, thus limiting the step size of particle 
updates, which allows the particles to increase their ability to 
search for the optimal solution in the region of feasible 
solutions. Based on this theory, an EDIW strategy based on 
control parameters is proposed, as shown in Eq. (3). 
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In Eq. (3), Con  is the control parameter whose value is 
always greater than 0. The strategy adds this parameter to the 
normal EDIW and uses it to change the drop in inertia weights. 

The decrease is affected by the variables Con , 
(max)

 and 

(min)
. Provided that the maximum and minimum initial 

inertia weights remain unchanged, the decrease in the weights 

according to the change in Con  is shown in Eq. (4). 
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In Eq. (4), 
( , )n Con

 indicates how much the weight 

decreases with Con . The drop in weight becomes smaller as 

the number of iterations goes up. Assuming n N , the 

expression of 
( , )n Con

 becomes Eq. (5). 


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The derivative function analysis of Eq. (5) is shown in Eq. 
(6). 


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According to Eq. (6), when the value of the control 
parameter is greater than 1, the decline of the weights gradually 
converges to 0 with the increase of the control parameter. The 

maximum value of the decline is
1

e , when the value of the 
control parameter is 1. So far the algorithm has achieved the 
design of the inertia weights with the number of iterations. The 
rate of decrease of the inertia weight decreases with the 
increase of the number of iterations. At the beginning of the 
iteration, the inertia weights are larger, which leads to the fact 
that the particles will retain more of the historical velocity. It is 
easy to see that the output results of the algorithm under this 
model are greatly influenced by the control parameters, so the 
values of the control parameters are important to ensure 
accurate results. Depending on the number of iterations, the 
selection of the control parameters also needs to satisfy 

different conditions. When n N , the control parameters must 
be such that the inertia weights can reach or converge to

(min)
, and the inertia weights at this time are shown in Eq. 

(7). 
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In this case, the inertia weights are taken as shown in Table 
I. 

TABLE I.  INERTIA WEIGHTS 
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When 0 n N  , the control parameters need to be taken 
in such a way that the weights fall faster and then slower. In 
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this case, the values of the control parameters can lead to large 
differences in the drop curves of the inertia weights, and it is 
necessary to test the drop curves with different parameter 
values to determine the optimal parameter values. 

B. Construction of Injury Influencing Factors Model and 

Injury Warning Algorithm for Marathon Runners 

Most sports injury events in marathon runners are not 
triggered by a single factor, but by a plural number of 
influencing factors acting together [18]. Therefore a correct 
analysis of the influencing factors is the basis of the early 
warning algorithm. According to the definition of sports 
injuries, the risk factors that induce this type of injury can be 
classified as internal and external factors [19]. Internal factors 
refer to the physical condition of the athlete, including age, 
muscle strength, injury history, etc. External factors are 
environmental factors other than the athletes themselves, 
including terrain, weather, etc. [20]. However, the model of 
injury influencing factors from internal and external factors 
only lacks comprehensiveness, so stimulus-triggering factors 
were added as the third assessment dimension in the 
influencing factor model. Stimulus-predisposing factors are 
factors that amplify the likelihood of an athlete's injury while 
internal and external influences remain unchanged. When an 
athlete's internal or external influences are abnormal, the 
athlete is judged to be an injury prone individual [21]. Injury-
prone individuals are significantly more likely to be injured in 
marathon sports than non-injury-prone individuals and require 
extra attention. When stimulus triggers are present, the 
likelihood of injury increases and the risk is higher for injury-
prone athletes, at which point the algorithm needs to warn the 
athlete and their team in a timely manner. This study compiled 
injury-influencing factors for marathon athletes based on the 
opinions of a panel of professional track and field players and 
coaches, as well as a large number of actual situations in 
competition, as shown in Fig. 3. 
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Fig. 3. Influencing factors of injury and disease of marathon athletes. 

After importing the injury influencing factors into the radial 
basis network and training, the early warning algorithm is able 
to determine the injury risk of marathon runners by the input 
physical and other related information. The athlete's injury risk 
is classified as low, medium or high. The algorithm does not 
warn for low risk. For medium risk, the algorithm issues an 
alert and indicates the source of the risk to the athlete and his 
or her team. For high risk, the algorithm issues a warning and 
strongly advises the athlete not to participate in the competition 
or to take appropriate measures. The hidden layer activation 

function of the radial basis network is a Gaussian function, 
whose mathematical expression is shown in Eq. (8). 


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In Eq. (8), 
( )jf x

 represents the output value of the 
j

 

hidden layer node. x  It is the independent variable and the 

input to the network. j
c

 is the center vector of the kernel 

function of the 
j

 hidden layer node. Under this activation 
function, the output of the radial basis network is shown in Eq. 
(9). 
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In Eq. (9), jy
 is the output of the i  th output layer node, 

and ij
 is the connection weight between the i  th and 

j
 th 

hidden nodes. Since the position vector of each particle in the 
radial basis network is composed of the function center, 
function width and connection weights, these three elements 
need to be defined [22]. First an error function needs to be 
defined, as shown in Eq. (10). 
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In Eq. (10), M  is the error function and qE
 is the error of 

the input sample. The definition of the error is shown in Eq. 
(11). 
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Eq. (11) in qd
 represents the value of the desired type of 

sample. The values vary according to the different athlete 
injury risk levels, 1 and 2 for low risk, 3 and 4 for medium risk, 
and 5 for high risk. According to the error function, the weights 
of the radial basis network output cells are shown in Eq. (12). 
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In Eq. (12), 1m  is the value after iteration and m  

represents the current value of the individual variable. 


 
represents the learning efficiency. The radial basis network 
implicit layer function centers are defined as shown in Eq. (13). 


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Eq. (13) in jc
 is the center of the function. The width of 

the function is defined, as shown in Eq. (14). 
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Finally, the fitness function of the radial basis network 
needs to be defined. The fitness function uses the relative error 
function between the actual output and the network output, and 
its mathematical expression is given in Eq. (15). 


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In Eq. (15), rky
 represents the first r  output value of the 

k  output neuron, and rky
 is its actual value. R  is the sample 

size and K  is the number of output neurons. In the practical 
application of the physical injury warning algorithm for 
marathon runners, it is first necessary to initialize the particle 
population and map its position into the radial basis network. 
After training, the radial basis network calculates the global 
extremes of the particles. After updating the weights, the 
particle fitness is calculated again and iterated continuously. If 
the population fitness after iteration is better than the last one, 
the iterated extreme value is used as the new extreme value. 
Keep iterating until the global extreme value meets the fitness 
filtering condition to output the prediction result. 

IV. PERFORMANCE AND APPLICATION EFFECT TEST OF 

PHYSICAL INJURY WARNING ALGORITHM FOR MARATHON 

RUNNERS 

The experimental hardware environment is a computer 
system with I7 processor and 8G memory, and the 
programming environment is PYTHON, and the experimental 
procedure is to test the theoretical performance of the early 
warning algorithm by simulating the environment and test data 
set, and finally to conduct the practical application test by 
using the data of real marathon runners' bodies and other 
related factors. Since the performance of the proposed warning 
algorithm is greatly influenced by the control parameters, the 
optimal control parameters need to be confirmed first. The 
inertia weight variation curves under different control 
parameters are shown in Fig. 4. 

The number of iteration steps of the radial basis network is 
set to 1000 in Fig. 4, and the maximum and minimum initial 
weights are 0.7 and 0.2, respectively. Fig. 4 illustrates that 
smaller control parameters ensure that the inertia weights 
change slowly at the beginning of the network iteration, 
allowing the algorithm more space to find the ideal region 
while larger control parameters enable the algorithm to arrive 
at the minimum initial weight when it is iterating to the 
maximum number of iterations. When the control weights are 
above eight, the inertia weights drop too fast and reach the 
lower bound at 400 iterations. And when the inertia weight is 
less than six, the inertia weight decreases too slowly, and the 
lower bound is still not reached by the maximum number of 
iterations. In general, when the control parameter ranges from 
6 to 8, the inertia weight decreases more satisfactorily. This 
experiment takes the middle number 7 as the control parameter 

of radial base network. After completing the control parameter 
setting, the simulation performance test of the warning 
algorithm was started. Firstly, experiments were conducted on 
the variation of the fitness function curve of the parameters 
with the number of iterations. In order to compare and 
determine the differences between the proposed algorithm and 
the existing algorithms, a normal radial basis network, a 
particle swarm optimized radial basis network and a linear 
decreasing inertia weight (LDIW) optimized radial basis 
network are used here as the comparison algorithms, and the 
results are shown in Fig. 5. 
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Fig. 4. Change of inertia weight under different control parameters. 
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Fig. 5. Change of algorithm fitness function curve. 

According to Fig. 5, it can be seen that the radial basis 
network without any optimization has the slowest convergence 
rate in terms of fitness, and the fitness that reaches stability 
after convergence is 0.22, which is greater than the other 
algorithms. The proposed EDIW optimized radial basis 
network shows a convergence speed very close to the other two 
optimized radial basis networks in the experiment and has the 
smallest fitness function value, which is 0.13. The four 
algorithms have the highest to lowest fitness function values in 
order of radial basis networks; particle swarm optimized radial 
basis networks, LDIW radial basis networks and the proposed 
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algorithm. The results illustrate that the proposed early warning 
algorithm has the smallest neural network training error and 
shows the highest accuracy with negligible differences between 
the convergence speed and similar optimization algorithms. 
The next experiment trained the algorithm using time-series 
data of injury influencing factors of marathon runners, and the 
output obtained is shown in Fig. 6. 
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Fig. 6. Output curve of algorithm in training. 

In Fig. 6, Fig. 6(a) shows the actual values of the training 
data; Fig. 6(b) shows the superimposed images of the output of 
the radial basis network optimized by LDIW and the actual 
values; Fig. 6(c) shows the superimposed images of the output 
of the radial basis network optimized by particle swarm and the 
actual values; Fig. 6(d) shows the superimposed images of the 
output of the proposed algorithm and the actual values. It can 
be seen that the weather index of the sports field in this dataset 
reaches a maximum of 390 and a minimum of 11, showing an 
overall trend of significant fluctuations followed by a decrease. 
All three algorithms used in this session are able to restore the 
trend of the real data, but some errors can still be observed. To 
further compare the errors in a quantitative and visual way, the 
error images of the three algorithms in this session were drawn, 
as shown in Fig. 7. 

In Fig. 7, Fig. 7(a) shows the error image of the particle 
swarm optimized radial basis network; Fig. 7(b) shows the 
error image of the LDIW optimized radial basis network; and 
Fig. 7(c) shows the error image of the proposed algorithm. It is 
not difficult to see that the training errors under all three 
algorithms show a trend from large to small. Before the 80th 
iteration, the error values of all three algorithms fluctuate more 
drastically. Both the radial basis network with particle swarm 
optimization and the radial basis network with LDIW 
optimization show an error of more than 250. The maximum 

error of the proposed algorithm, on the other hand, is 235, 
which shows an advantage in terms of the error maximum. 
After the 80th iteration, the errors of all three algorithms 
decreased significantly, indicating that the predictive stability 
of the algorithms for the test data increased with the number of 
iterations. The mean square error (MSE), root mean square 
error (RMSE) and mean absolute error (MAE) of the three 
algorithms in training were tested, and the three metrics of the 
proposed algorithms were found to be 2.521, 0.129, and 20684, 
which are the smallest among the three compared algorithms. 
This represents that the error of the proposed algorithm is the 
smallest of several algorithms. After completing the network 
training and related experiments, the actual accuracy of the 
early warning algorithm was further tested using real data sets, 
and the test results are shown in Table II. 
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Fig. 7. Error comparison of different algorithms. 

TABLE II.  ALGORITHM ERROR TEST RESULTS UNDER REAL DATA 

Case number PSO-RBF LDIW-RBF EDIW-RBF Actual value 

1 224.34 223.14 234.75 231.50 

2 247.48 245.87 236.61 223.00 

3 241.01 250.63 241.11 281.00 

4 247.00 248.47 241.75 215.00 

5 249.63 246.33 239.07 247.00 

Index \ \ \ \ 

MAPE (%) 8.796 8.213 7.598* \ 

MSE 6.846 5.268 4.996* \ 

RMSE 0.011 0.010 0.008* \ 

a. Note: "*" indicates that the error of this item is the lowest among the three algorithms. 

Table II provides the error performance of the proposed 
algorithm and the two compared algorithms with the real data 
set and uses it to evaluate their actual accuracy. The proposed 
algorithm exhibits an RMSE of 0.008, MSE of 4.996, and 
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Mean Absolute Percentage Error (MAPE) of 7.598% in this 
session. The three errors metrics of the proposed algorithm are 
the lowest among the compared algorithms, which indicates 
that the actual accuracy of the proposed algorithm is better than 
the other two algorithms. This result further demonstrates the 
feasibility of applying the improved EDIW to the particle 
swarm radial basis function neural network, and its 
optimization effect is higher than other similar algorithms. 
Although the proposed algorithm has shown better 
performance than similar algorithms in predicting injury and 
illness factors in marathon runners, in reality most injury and 
illness risk factors management in marathon runners is still 
implemented by expert teams for human management. This 
management approach has proven to be effective, but 
consumes more human resources. Although the proposed 
algorithm can save labor cost, its consistency with expert team 
decision making still needs to be proven. Therefore, the 
experiments were conducted using the same set of athletes and 
race data, allowing the expert team and the algorithm to be 
evaluated separately, and the results are shown in Fig. 8. 

Fig. 8(a) shows the results of the radial basis network with 
particle swarm optimization versus expert team decision 
making. Fig. 8(b) and Fig. 8(c) show the results of LDIW 
versus the output of the proposed algorithm versus the expert 
team decision, respectively. Although all three algorithms 
agree with the expert decision results in terms of the trend of 
the hazard level for different cases, only the hazard level 
scoring results of the proposed algorithm agree with the expert 
assessment by 100%. The agreement between the results of the 
particle swarm algorithm and the expert assessment is only 
20%, while the agreement between the LDIW optimization 
algorithm and the expert assessment is 80%. This result 
indicates that the judgment of the radial basis network with 
particle swarm optimization has been very close to the 
judgment of experts who have worked in the industry for many 
years, which represents that compared to other algorithms, the 
learning effect of the radial basis network with particle swarm 
optimization is better, following the results of personal 
judgment by the close person. 
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Fig. 8. Comparison between algorithm output and expert evaluation results. 

V. CONCLUSION 

To address the problems of lag and low automation in 
modern marathon tele-mobilization injury management, this 
study proposes a marathon athlete physical injury warning 
algorithm based on particle swarm radial basis neural network 
with EDIW optimization. The algorithm utilizes the EDIW 
strategy to optimize the search process of the neural network to 
ensure that the algorithm achieves an optimal balance between 
global search and local search. The minimum fitness function 
value of the proposed algorithm is 0.13, which is lower than 
the values of particle swarm radial basis network and LDIW 
radial basis network. In the training session of the neural 
network, the MSE, RMSE, and MAE of the proposed 
algorithm are 2.521, 0.129, and 20684, respectively, with lower 
errors than other comparative algorithms. In the test with real 
data, the MAPE of the proposed algorithm is as low as 7.598%, 
while the MAPEs of the LDIW radial basis network and the 
particle swarm radial basis network used as comparisons are 
both above 8.1%. In the comparison with the expert group's 
assessment, only the hazard score results of the proposed 
algorithm reached 100% agreement with the expert assessment. 
The experimental results demonstrate the practicality of this 
injury warning algorithm and its ability to enhance the 
automation of injury management for marathon runners. 
Although the construction of this algorithm has been 
successful, there are obvious limitations. Only when the 
number of iterations is high enough, the negative impact of 
parameter initialization of the proposed algorithm is small. 
However, this will lead to a large amount of computation, 
which leads to a high overhead of algorithm operation. In the 
case of a low budget, this algorithm may be difficult to apply to 
reality. How to reduce the computational complexity of the 
algorithm while ensuring performance is the focus of future 
research. In this regard, based on global optimization 
algorithms, using algorithmic search to find the most 
appropriate initial value, thereby reducing the amount of 
computation, is a promising direction. 
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