
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

405 | P a g e

www.ijacsa.thesai.org

The Impact of Design-level Class Decomposition on

the Software Maintainability

Bayu Priyambadha
1
, Tetsuro Katayama

2

Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
1,2

Faculty of Computer Science, Universitas Brawijaya, Malang, Jawa Timur, Indonesia
1

Abstract—The quality of the software's internal structure

tends to decay due to the adaptation to environmental changes.

Therefore, it is beneficial to maintain the internal structure of the

software to benefit future phases of the software life cycle. A

common correlation exists between decaying internal structures

and problems like software smell and maintenance costs.

Refactoring is a process to maintain the internal structure of

software artifacts based on the smell. Decomposition of classes is

one of the most common refactoring actions based on Blob smell

performed at the source code level. Moving the class

decomposition process to the design artifact seems to affect the

quality and maintainability of the source code positively.

Therefore, studying the impact of design-level class

decomposition on source code quality and software

maintainability is essential to ascertain the benefits of

implementing design-level class decomposition. The metrics-

based evaluation shows that the design-level class decomposition

positively impacts the source code quality and maintainability

with the rank biserial value is 0.69.

Keywords—Design level refactoring; class decomposition; class

diagram decomposition; software quality; software internal quality;

software maintainability

I. INTRODUCTION

Internal structure quality maintenance is an essential task in
every phase of the software development process. Due to
software changes, software's internal structure or design tends
to decay or decrease quality [1]–[3]. Some software is changed
without using a modern software engineering approach. As a
result, it may never be well structured and optimized for
understandability. A software developer often changes the
software artifact for the short-term goal. The changes are made
mostly not followed by a comprehensive analysis of the
existing artifact structure. Sometimes, the changes in one unit
of software artifact require adjustment at the other unit, so the
structure is always maintained. It is not uncommon that the
decaying condition of the software structure will have other
impacts, such as the immerging of smell on the software
artifacts.

Finding and solving the smell problems in the software
artifact is a software research field that continues growing until
now [2], [4]–[7]. Many approaches are immersed in detecting
the smell in the source code artifact [2]. Also, several
researchers have defined how to solve every type of smell in
source code without altering the outside behavior, known as
Refactoring. The smell term was also started to understand at
the level of design phases (software developing process) [4]–
[6]. Design smell is defined using the knowledge that lies in the

design artifact, for example, the class diagram or the other
architectural diagram that expresses the software architecture.
But it is still a lack of refactoring process at the design-level
artifact using the terms of design smell due to the abstract
information in the design artifact [1], [8].

A previous study was conducted to do the refactoring
process at the design artifact. The studies focused on the Blob
smell that was identified in the class based on the data from the
class diagram. Class decomposition is the process of
refactoring to solve the Blob smell in the class diagram. Using
the threshold-based agglomerative hierarchical clustering
algorithm that is based on the class diagram metrics the class
decomposition shows promising results [8]. The class diagram
metrics, in this case, are and , representing syntactic
and semantic metrics, respectively. Those metrics measure the
relationship between class elements. Then, the approach was
enhanced by using the evaluation process to solve the
misplaced element and unusable class [9]. The research has
shown promising results and is worth continuing to the other
pathway solution than the Blob smell.

Before it is continued to the other pathway refactoring
solution in the design-level artifact, it is better to know the
impact of existing approaches to software maintainability. The
existing refactoring process at the source code level has already
been proven to have a good impact on software maintainability
[10], [11].

This research examines the impact of design-level class
decomposition on software maintenance. The decomposition
process will be carried out using class diagrams. Once the
decomposition recommendations are generated, it will be
implemented into the source code. After the code has been
implemented (class decomposition), several software metrics
are used to measure the quality of a piece of source code after
its implementation. Measurement results are compared, before
and after decomposition, to determine whether there are any
differences or effects on software maintainability.

The following section will describe the literature study
(Section II) and the whole method of the design-level class
decomposition. The class decomposition process on the class
diagram is described in Section III. Section IV describes the
current experiment scenario to know the impact of the design-
level class decomposition on software maintenance. Finally,
Sections V and VI represent the result of the experiment, the
analysis using the statistical approach, and the overall
conclusion of this experiment.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

406 | P a g e

www.ijacsa.thesai.org

II. LITERATURE STUDY

Maintaining the software's internal structure also benefits
the future phase of the software life cycle. The software life
cycle is not only one cycle and finish. Mostly it will continue
cycling as long as the user and environment need the software.
During the cycle, the software experiences change due to user
needs and environmental changes. The changes must be
applied to the software to prevent the existing software in the
specific environment. The software changes require costs we
must pay [12], [13]. Therefore, the software engineer must
maintain the internal structure to make changes easier and not
costly. The bad structure makes the artifact difficult to
understand, change, and maintain.

Every effort has been made to maintain the software's
internal structure's quality, starting from the source code.
Therefore, shifting from the source code to the design level of
Refactoring is considered worth doing to increase the quality
awareness of the design artifact as early as possible. But,
refactoring activity at a higher level of abstraction has a
specific problem [1], [8]. The design artifact contains less
information than the implementation artifact. Therefore,
excavating or mining the design artifacts and analyzing their
in-depth information is necessary.

Generally, design artifacts are only written (text-based)
with information that is contained within them. However,
information may sometimes contain hidden meanings that
require further analysis to be understood. The use of natural
language processing (NLP) or semantic analysis (SA) is one
approach that can provide functionality for understanding the
meaning of information [14].

In contrast, source code-level information clearly provides
complete information about the source code profile [1] for
example, the number of operands or operators in the source
code can be measured to determine the complexity of the
source code by the software engineer. In addition, by reviewing
the internal source code, the developer will be able to
understand the relationship between attributes and methods.
They can review the assigning value statement to determine the
relationship between the method and attribute.

On the side of design, a review and assessment of the
quality of the artifact design can be carried out by utilization of
NLP and SA. Furthermore, the refactoring activity, such as
class decomposition, using the design artifact is also possible
using the NLP and SA analysis [1], [8].

Shifting the refactoring activity to the design artifact is
expected to contribute and positively impact software
maintenance [11], [15]. There are two fundamental theories of
the research of design-level software refactoring. First, the
theories of Software Evolution (specifically in software
refactoring) [2] and the second is Model-Driven Software
Engineering (MDSE) [16] Software refactoring preserves the
quality of the software's internal structure in relation to the
software evolution, specifically in the case of software
maintainability. On the other hand, MDSE provides the
concept that software development is oriented on a model.
Therefore, the model acts as the core of action and the
guidance of the implementation phase. In other words, the
model is the bridge between requirement analysis and
implementation. The previous research on design-level
Refactoring aims to combine the theories (Refactoring and
MDSE) to propose a better approach for refactoring for better
software quality [1]. It also has the aim to increase the
awareness of internal quality as soon as possible. The other
reason for the shift to the design phase is to gain the benefit of
MDSE. Fig. 1 shows the thinking schema of the approach
according to the justification or rationale. Furthermore, the
impact of the Refactoring on the design phase is needed to be
investigated.

MDSE uses a software model as the primary artifact of
software development [16]. Compared to the implementation
artifact (source code), the software model is closer to the
problem domain. The model transformation is the main process
of the MDSE since the MDSE aims to generate the source code
from the models. On the other hand, there is another approach
to the development of software called Code-centric
Development (CcD). A comparison study between MDSE and
CcD has been done for over a decade. From the review paper
by Domingo et al., many researchers have been evaluating the
benefit of the MDSE [17]. Some works said that MDSE
decreases development time (up to 89%) relative to Code-
centric Development (CcD). The other works suggest that the
MDSE is suitable for academic exercise. Furthermore, the
other works assert that MDSE is also suitable for inexperienced
developers. Finally, Domingo et al., based on their review of
the MDSE, conclude that the MDSE is suitable for academic
exercise and inexperienced developers. It would be beneficial
to move refactoring activities to the design artifact utilizing the
benefits of MDSE.

Fig. 1. Thinking schema of design-level class decomposition.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

407 | P a g e

www.ijacsa.thesai.org

On the other side of view, the impact of the design-level
refactoring process on maintenance is questionable and needs
study. There are several methods to measure software
maintainability. Software maintainability, the ease with which
a software system can be understood and modified to
accommodate bug fixes, new features, and improvements in
general, plays an important role in software quality. Since it is
difficult to measure software maintainability without
measuring the actual maintenance process, researchers and
practitioners often use product metrics as indicators. Some
practitioners sometimes face difficulty in finding suitable
metrics, specifically software maintainability metrics,
according to the practitioner's scope or subjective. The paper of
Saraiva et al. has aimed to propose Object-Oriented Software
Maintainability (OOSM) metrics categorizations. It aims to
make it easy to find suitable maintainability metrics [18].
Maintainability is related to external quality attributes such as
analyzability, changeability, stability, and testability. All
external attributes are expressed as maintainability
characteristics that are "easy to adapt." To achieve this
maintainability objective, most researchers measure from the
internal quality attributes at least the system's size, complexity,
coupling, and cohesion [18].

The other metric that points to software maintainability is
named Maintainability Index (MI) [19]. MI is a software
metric that is used to measure the level of software, whether it
is easy or difficult to maintain in the future. The MI is
calculated by considering the Line of Code (LOC), Cyclomatic
Complexity, and Halstead Volume (HV). MI is measured using
the information of software source code.

III. DESIGN-LEVEL CLASS DECOMPOSITION

This section describes how the refactoring activity can
perform in the design-level artifact. This research uses the class
diagram as the main object in the refactoring process. The
refactoring activity on the class diagram utilizes the class
information extracted from the class diagram. One of the
challenges in this research is using the existing information to
do the refactoring activity. Fig. 2 explains the proposed design-
level class decomposition approach to solve Blob smell in class
(class diagram).

A. Design-Level Information Extraction

The first task in this approach is to collect or extract
information from the class diagram. The class diagram is a
notation-based diagram that is expressed as an image showing
the software's architecture in case of a class arrangement, and it
is a static diagram. The information in the class diagram is
important to collect and analyze to support the process. The
information extraction needs a specific strategy to make it easy
to implement.

The first step in this process is converting the class diagram
to an XML formatted file. The conversion aims to transform
the notation based to text-based information. Then, the
information (text-based) is extracted from the XML syntax to
get important data for smell detection (the next process). The
extraction uses a specific search algorithm called Tree-based
keyword search [20].

The candidate data (classes) for smell detection consists of
seven pieces of information. The data are the number of
attributes, number of methods, number of relations between
methods and attributes, number of relations between methods
and attributes, number of relations between attributes and
attributes, the capacity of the relationships within the class, and
the degree of cohesion [21]. The NLP and SA determine the
relationship between the class elements. In addition, the degree
of cohesion is calculated based on the relationship between the
class elements [22].

Fig. 2. The design-level class decomposition (design-level refactoring).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

408 | P a g e

www.ijacsa.thesai.org

B. Design Smell Detection

The classification method will be used to detect the smell.
The experiment used three classifiers: the j48, the Multi-Layer
Perceptron, and the Naïve Bayes. The experiment uses Weka
as machine learning software to solve data mining problems
and run using a basic configuration. Classifiers are used to
demonstrate that the dataset can be distinguished from bad
smells (Blob and Feature Envy) [21]. The experiment result
shows an average accuracy of 80.67% for the Blob smell. The
accuracy value means that the information data can be utilized
for the Blob detection process in a class diagram.

The information (seven pieces of information from the
class diagram) contained characteristics that led to the
identification of the Blob smell [21]. Hence, the Blob smell is
being addressed in the Refactoring.

C. Design-Level Class Decomposition

Once the Blob smell is detected, Refactoring must be
performed to solve the smell. Based on the experiences, the
Blob smell is solved using the class decomposition or
extraction. Mostly the research about class decomposition is
done at the level of source code [2], [23]–[30]. Then based on
the information in the class diagram [21], the class
decomposition is done.

The design-level class decomposition in this research uses
threshold-based agglomerative hierarchical clustering. It is
divided into static and dynamic threshold hierarchical
clustering. Static thresholds differ from dynamic thresholds in
defining the threshold before decomposing the cluster. In the
static approach, the threshold value is defined at the beginning
of the decomposition process (the threshold is defined only
once). According to the dynamic approach, the threshold is
calculated at every stage of the decomposition process. In this
study, Hamdi's algorithm is used, but it is implemented at the
level of design [29]. Shifting objects to class diagrams requires
defining new metrics for clustering. Syntax and
semantic aspects of the class element's label are
considered in the similarity matrix to do the clustering process
(class decomposition) [8]. The two aspects (syntax and
semantics) are considered due to the nature of class diagram
information, which is more abstract than source code
information. To determine the relationship between class
elements, it has to determine the closeness meaning of the label
name between elements. This seems to be the essential
approach in this process.

The process shows the promising result of decomposition
(based on the Silhouette value). But, there are still
shortcomings to solve. Some elements still have a negative
Silhouette value in the decomposition result. Negative
Silhouette values indicate that the current element is far from
other cluster elements or has the wrong placement.
Additionally, the negative Silhouette elements are considered
to be the least desirable.

The results also indicate that some clusters are considered
unimplementable due to the possibility that they may produce
objects that cannot collaborate with each other. A cluster with
only one element, particularly if the element has a private
modifier, is considered useless. Evaluating the moving

mechanism of the negative element is considered important as
an optimization process. The next process is the evaluation
process to the result of this process.

D. Optimization of Class Decomposition Result

The result of the decomposition from the previous process
has to be optimized to solve the negative element and unusable
cluster. The elements are evaluated by considering the value of
Silhouette () and class usability ().
value calculated based on the existence of the public method
inner the cluster (value one if exists and 0 if not). Then to
evaluate the cluster and elements, the following formula is
used [9].

 (1)

Where and are the weight of every factor to adjust
during the experiment. Threshold-based agglomerative
hierarchical clustering experiment has been optimized by
adding an evaluation process. During the evaluation process, a
specific element with a negative Silhouettes value in each
cluster is intended to be moved to a better cluster.

In comparison to the previous approach, the evaluation
process increases the average Silhouettes of the cluster by
using higher or equal to 0.7. There has been an average
increment of Silhouettes of about 40% [9]. Based on the results
of the previous approach, the evaluation process is also able to
solve the unusable cluster.

Finally, the whole process produces a set of clusters that
represent the classes as the result of the decomposition. In this
step, the result is the recommendation to be implemented at the
source code level. Then, the impact of the decomposition
implementation on the source code level will be described and
analyzed in the following section.

IV. EXPERIMENT SCENARIOS

Understanding the impact of the refactoring result on the
software maintainability is essential. The impact of class
decomposition recommendation result (design-level class
decomposition) on the quality of source code is the way to
know how is the performance of the design-level class
decomposition approach.

A. Overview of Scenario

The decomposition of the class on the source code level
based on the recommendation from class decomposition on the
design level aims to compare the quality. The source code
quality before and after implementing the class decomposition
recommendation will lead us to conclude how the design-level
decomposition will impact the source code. The quality of code
is measured using the source code quality metrics. Fig. 3 shows
how the experiment is held to study the impact of design-level
class decomposition. The following five internal quality
attributes are associated with software maintainability: size,
complexity, coupling, cohesion, and constraints associated with
software architecture [18]. Four of the internal quality
attributes are expressed in the 18 metrics. Table I shows the list
of the 18 metrics used in this experiment to compare the before
and after decomposition process. The purpose of this
experiment is not only to compare the quality of source code

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

409 | P a g e

www.ijacsa.thesai.org

based on the 18 metrics but also to compare the MI [19] as the
final proof of this research.

Fig. 3. The experiment scenario.

TABLE I. THE LIST OF THE 18 METRICS

No. Name Description

1. CBO Coupling Between Object Classes, the number of coupled
classes (Coupling)

2. RFC Response For a Class, the number of methods that can be

potentially invoked in response to a public message

received by an object of a particular class (Complexity)

3. SRFC Simple Response For a Class, the number of methods that

can be potentially invoked in response to a public message

received by an object of a particular class (Complexity)

4. DIT Depth of Inheritance Tree, the position of the class in the
inheritance tree (Complexity)

5. NOC Number of Children, the number of direct subclasses of a

class (Coupling)

6. WMC Weighted Method Count, The weighted sum of all class'
methods and represents the McCabe complexity of a class

(Complexity)

7. LOC Line Of Code (Complexity, Size)

8. CMLOC Class-Method Lines of Code, Total number of all

nonempty, non-commented lines of methods inside a class
(Complexity, Size)

9. NOF Number Of Fields, the number of attributes in class

(Complexity, Size)

10. NOSF Number of Static Fields, the number of static attributes
(Complexity, Size)

11. NOM Number of Methods (Complexity, Size)

12. NOSM Number of Static Methods (Complexity, Size)

13. NORM Number of Overridden Methods (Complexity)

14. LCOM Lack of Cohesion of Methods, measure how methods of a
class are related to each other (Cohesion)

15. LCAM Lack of Cohesion Among Methods (1-CAM), CAM

metric is the measure of cohesion based on parameter

types of methods (LCAM = 1-CAM) (Cohesion)

16. LTCC Lack of Tight Class Cohesion, The Lack of Tight Class

Cohesion metric measures the lack of cohesion between

the public methods of a class (Cohesion)

17. ATFD Access to Foreign Data, the number of classes in which the
attributes are directly or indirectly reachable from the

investigated class (Coupling)

18. SI Specialization Index measures subclasses override their
ancestor's classes (Complexity)

All the measurement results are collected to be analyzed in
the following step. For the result of measurement using the 18
metrics, the data will be recapped and show the trend of
comparison before and after decomposition.

Lastly, for measuring MI, statistical analysis is needed to
determine the impact of the decomposition recommendation on
the source code quality.

B. Experiment Data

TABLE II. MI CLASSIFICATION

MI Value Classification

>85 Highly maintainable

>65 and ≤85 Moderate maintainable

≤65 Difficult to maintain

This experiment used two study cases, jHotDraw and
AgroUML source code. There are 67 classes identified as Blob
classes using jDeodorant in both applications. But, after
measuring the MI, not all classes are considered problematics
in maintenance. The classification of MI value refers to
Table II, which explains how the value is classified based on
maintainability [19] There are only 33 classes that have
moderate and difficult to maintain. Therefore, only 33 classes
are used as the object in this experiment. The acquisition of
data is shown in Fig. 4.

The Blob classes classified as highly maintainable are not
used in this experiment because it assumed not to be included
in problematic classes in the maintainability manner.

Fig. 4. Data acquisition.

But, it has to solve from the other perspective manner.

C. Tools

There are three tools used in this experiment, the
jDeodorant plugin for Eclipse IDE [31], the CodeMR (Code
Magnetic Resonance), and the prototype application that
implements the MI measurement [19].

The jDeodorant is used in the data acquisition process to
select the classes that contain a Blob smell. The CodeMR is the
application that has the ability to measure the quality of source
code based on the 18 metrics measurement. CodeMR is a static
analysis tool for source code. And the last is a custom
application that can show the value of the Maintainability
index of source code. CodeMR and the custom application
used on the before and after decomposition process. The result
of measurement is recapped and analyzed to know how the
impact of the usage design-level class decomposition
recommendation on the source code quality.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

410 | P a g e

www.ijacsa.thesai.org

V. EXPERIMENT RESULT AND DISCUSSION

The class decomposition recommendation is implemented
on the source code to get the benefit of it. The result is
measured using 18 metrics and MI to know how difference
before and after the decomposition process.

A. Measurement using the 18 Metrics

The source code decomposition result is measured using
the 18 metrics for the first result. The 18 metrics are grouped
into four metrics based on the metrics type. Every value of
each metric is calculated by averaging the values of particular
metrics in every case study. Then, it differentiated before and
after decomposition. The groups are coupling, complexity,
cohesion, and size metric. Fig. 5 shows the result of the
measurement that is described on the line graph. Another
reason for grouping metrics is that each type of metric has a
different range of values, so separating each type into groups
will clarify trends for each type of metric.

Fig. 5(a) shows the trend of measurement in the type of
coupling metric. There are three metrics in the category
coupling metric, CBO, NOC, and ATFD. In this result, CBO
shows a decrement value from before to after decomposition.

The other metrics, NOC and ATFD, do not show
decrement due to the value equality between before and after
decomposition.

Fig. 5(b) shows the group of complexity metrics consisting
of ten metrics. The metrics are RFC, SRFC, DIT, WMC, SI,
NOF, NOSF, NOM, NOSM, and NORM. Those metrics
measure the complexity of source code from several sides. For
the ten metrics, the graph shows the trend that the values
decrease after decomposition. Two metrics show the same
value before and after decomposition. The metrics are SI and
NORM that has a value of 0 before and after decomposition.

Fig. 5(c) shows the cohesion metric, consisting of three
metrics: LCOM, LCAM, and LTCC. All metrics show the
measurement of a lack of cohesion in the class. Higher values
show a higher lack of cohesion in the source code. The value of
those metrics decreases before and after the decomposition
process.

Fig. 5(d) shows the size metric, which measures the size of
the source code. It seems to be the same trend as the other type
of metrics. The value of LOC and CMLOC, before and after
decomposition, decreases due to the result of decomposition
implemented to the source code.

All metric types show the same trend that, after
decomposition, tend to be lower value of metrics. The 18
metrics show the same meaning of the value: the lower value
means the better condition of the source code. Implementing
class decomposition on the source code seems to make the
source code better quality measured by the 18 metrics.

Fig. 5. Result of measurement using the 18 metrics of a) Coupling metrics, b) Complexity metrics, c) Cohesion metrics, and d) Size metrics.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

411 | P a g e

www.ijacsa.thesai.org

B. Statistical Analysis of the Maintainability Index (MI)

The Maintainability Index (MI) measurement is done using
the prototype application. The measurement is applied before
and after the class decomposition process based on the design-
level recommendation. The MI value for the after-
decomposition is calculated by averaging each class's value
aims to represent one value. Table III shows the result of the
measurement of MI compared before and after the
decomposition process.

In this experiment, the differences between before and after
are worth calculating to ensure the differences after
decomposition. The differences calculation uses the statistical
approach, in this case, Wilcoxon signed-rank. Analysis
differentiation aims to make sure that there is a difference
between before and after decomposition. Differentiation can be
used as a sign that the decomposition process causes an impact
on the source code in case of maintainability.

Besides the differences, how strong the effect of the usage
of design-level decomposition recommendation in the source
code level decomposition to the value of MI is also important
to know. The Wilcoxon signed rank is able to inform both the
differences and the effect size of the approach.

Based on the result of the Wilcoxon signed rank, there are
several interpretations based on the test result. Fig. 6 shows the
first indicator by the p-value of the result. The significant value
of differential analysis is lower than the 0.05 p-value. The
current result shows that the p-value is 6.02e-04, lower than
0.05. So, based on the p-value, the result concluded that the MI
before and after the decomposition process is significantly
different.

The second indicator is the median value from the plot in
Fig. 6. Even though the median value cannot act as the main
indicator of differentiation and it shows how the differences in
spreading data differ. Based on the result, the median values
before and after decomposition differ in favor. The median of
after decomposition data is increased by 25.03 to the before.

This research aims to know how the impact of the
utilization of design-level class decomposition
recommendations on the source code level. The p-value and
median value only show that the data before and after is
different. It does not show how the impact of the design-level
class decomposition on the source code quality simultaneously.
The other value could be used to know how strong the impact
design-level decomposition is rank biserial, as shown in Fig. 6.
The rank biserial is used to examine the relationship between
dichotomous (binary) nominal data and ordinal (ranked) data.
Before running the statistical analysis, the data measurement of
MI is calculated to find the data rank based on the differences
in the value of MI before and after decomposition. It is one of
the Wilcoxon sign rank method's requirements before shown in
the plot as shown in Fig. 6. The rank biserial value shown in
Fig. 6 is 0.69. Therefore, the higher value is better. Based on
Funder's interpretation [32], 0.69 can be interpreted as very

large. In other words, the use of design-level decomposition
recommendation on the source code level decomposition gives
a very large, positive, and significant effect on the MI.

TABLE III. MI BEFORE AND AFTER DECOMPOSITION PROCESS

Differentiation of MI

No. Class Name Before After

1. ArgoEventPump 80.78 99.02

2. ArgoJFontChooser 82.76 100.13

3. ArgoParser 84.66 116.53

4. DetailsPane 80.38 97.84

5. DrawApplet 75.41 120.47

6. DrawApplication 68.84 122.26

7. ExplorerPopup 62.42 91.33

8. FindDialog 66.81 70.96

9. GenericArgoMenuBar 62.19 89.18

10. GraphLayout 72.14 72.43

11. Import 69.4 81.42

12. MyTokenizer 84.63 98.55

13. NotationSettings 80.38 107.75

14. PathItemPlacement 80.93 98.25

15. PerspectiveConfigurator 63.85 46.43

16. PerspectiveManager 66.65 88.60

17. ProfileConfigurationParser 80.97 83.60

18. ProfileUML 70.41 35.21

19. ProjectBrowser 57.37 105.78

20. SettingsTabProfile 53.51 62.48

21. StandardDrawingView 71.48 110.70

22. TabConstraints 73.45 104.59

23. TabStyle 80.92 124.74

24. TargetManager 71.62 82.97

25. ToDoList 81.37 125.75

26. TodoParser 84.07 92.41

27. UMLActivityDiagram 69.27 101.92

28. UMLAddDialog 83.8 42.25

29. UMLDeploymentDiagram 76.53 113.31

30. UMLStateDiagram 65.81 104.69

31. UMLUseCaseDiagram 84.26 101.36

32. UserDefinedProfile 67.57 98.48

33. WizOperName 77.7 39.25

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

412 | P a g e

www.ijacsa.thesai.org

Fig. 6. Differentiation of MI.

C. Research Limitation

This section explains all things that have a possibility to
threaten the validity of the experiment result. There are two
main limitations to this experiment. First is the dataset used
and the manual process conducted in the experiment.

A limited amount of data in the experiment would be the
main limitation of this research. The study case is taken from
only the two application resources (jHotDraw and jDraw). The
dataset collected from both applications is only 33 instant data.
It is sufficient for the scope of this experiment, but it is
considered better to add the amount of data in the future to
increase the result validity.

The process of class decomposition is done automatically.
But, the implementation of decomposition recommendations to
the source code is done manually based on the location of class
elements.

VI. CONCLUSION

The quality measurement before and after the
decomposition process on the source code is by using two
approaches. First, the source code was measured using the 18
metrics representing coupling, complexity, cohesion, and size.
Those groups of metrics are the type of metrics that are related
to software maintainability based on the existing references.
There is a trend in all metrics types that after decomposition,
the metrics tend to have a lower value than before
decomposition. In all 18 metrics, a lower value represents a
better condition of source code. By implementing design-level
class decomposition on the source code, the source code seems
to be of better quality as measured by the 18 metrics.

The second quality measurement uses MI as one specific
metric to measure the software maintainability of the source
code. The measurement result differentiated before and after
the decomposition process. The Wilcoxon signed-rank analysis

was applied to the result of measurement to get a deep analysis
of the result. A p-value less than 0.05 indicates significant
differential analysis in the first test. According to the current
results, the p-value is 6.02e-04, which is less than 0.05.
Therefore, it is concluded that the MI before and after
decomposition is significantly different. The second indicator
is the median value from the plot. Regardless of the fact that
the median value cannot be used as the primary indicator of
differentiation, it does at least indicate how the spread of data
differs.

According to the results, the median value before and after
decomposition differs in favor of decomposition. After
decomposition, the median has increased by 25.03 compared to
the before data.

The final test is rank biserial. There is a rank biserial value
of 0.69, which can be interpreted as being very large. As a
result, using design-level recommendations on source code
decomposition has a very large, positive, and significant effect
on the MI.

The 18 metrics and MI analysis show the same favorable
result. The use of design-level class decomposition
recommendation is able to increase the source code quality
significantly based on the analysis result.

The shifting refactoring process to the design artifact is still
challenging in the future. This is because so many code smell
types could detect and refactor from the design artifact. This
research only focuses on the Blob smell on the design artifact,
only defining the pathway solution based on the existing Blob
smell in the class diagram. The research will continue to the
other pathway solution than the Blob smell.

This research uses the data collected from the existing
open-source application. The limitation on the number of data
might be lacking in the meter of data validity. Increasing the
number of data is a plan that has been recorded to be carried

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

413 | P a g e

www.ijacsa.thesai.org

out in the future. The complete software documentation will be
interesting data to analyze for future research.

REFERENCES

[1] B. Priyambadha and T. Katayama, “Enhancement of Design Level Class
Decomposition using Evaluation Process,” International Journal of
Advanced Computer Science and Applications, vol. 13, no. 8, pp. 130–
139, 2022, doi: 10.14569/IJACSA.2022.0130816.

[2] M. Fowler et al., Refactoring Improving the Design of Existing Code
Second Edition, Second Ed. United State of America: Pearson Education
- Wesley, 2019.

[3] I. Sommerville, Software Engineering, 9th ed. Harlow, England:
Addison-Wesley Professional, 2010.

[4] K. Alkharabsheh, Y. Crespo, E. Manso, and J. A. Taboada, “Software
Design Smell Detection: a systematic mapping study,” Software Quality
Journal, vol. 27, no. 3, pp. 1069–1148, 2019, doi: 10.1007/s11219-018-
9424-8.

[5] B. K. Sidhu, K. Singh, and N. Sharma, “A Catalogue of Model Smells
and Refactoring Operations for Object-Oriented Software,” Proceedings
of the International Conference on Inventive Communication and
Computational Technologies, ICICCT 2018, pp. 313–319, 2018, doi:
10.1109/ICICCT.2018.8473027.

[6] B. Kaur Sidhu, “Model Smells In Uml Class Diagrams,” International
Journal of Enhanced Research in Management & Computer
Applications, vol. 5, pp. 2319–7471, 2016, Accessed: Apr. 10, 2019.
[Online]. Available:
https://pdfs.semanticscholar.org/bced/a3ff00a0b577007d17abfbb6fd406
058def6.pdf

[7] R. C. Martin, Clean Architecture: A Craftsman’s Guide to Software
Structure and Design. in Robert C. Martin Series. Boston, MA: Prentice
Hall, 2017.

[8] B. Priyambadha and T. Katayama, “Design Level Class Decomposition
using the Threshold-based Hierarchical Agglomerative Clustering,”
International Journal of Advanced Computer Science and Applications,
vol. 13, no. 3, pp. 57–64, 2022, doi: 10.14569/IJACSA.2022.0130310.

[9] B. Priyambadha and T. Katayama, “Enhancement of Design Level Class
Decomposition using Evaluation Process,” International Journal of
Advanced Computer Science and Applications, vol. 13, no. 8, 2022, doi:
10.14569/IJACSA.2022.0130816.

[10] G. Szőke, G. Antal, C. Nagy, R. Ferenc, and T. Gyimóthy, “Empirical
study on refactoring large-scale industrial systems and its effects on
maintainability,” Journal of Systems and Software, vol. 129, pp. 107–
126, 2017, doi: 10.1016/j.jss.2016.08.071.

[11] S. Kaur, A. Kaur, and G. Dhiman, “Deep analysis of quality of primary
studies on assessing the impact of refactoring on software quality,”
Mater Today Proc, no. xxxx, 2021, doi: 10.1016/j.matpr.2020.11.217.

[12] A. Yamashita and L. Moonen, “Exploring the impact of inter-smell
relations on software maintainability: An empirical study,” in
Proceedings - International Conference on Software Engineering, 2013.
doi: 10.1109/ICSE.2013.6606614.

[13] F. Palomba, D. Di Nucci, A. Panichella, R. Oliveto, and A. De Lucia,
“On the diffusion of test smells in automatically generated test code: An
empirical study,” in Proceedings - 9th International Workshop on
Search-Based Software Testing, SBST 2016, 2016. doi:
10.1145/2897010.2897016.

[14] B. Priyambadha, T. Katayama, Y. Kita, H. Yamaba, K. Aburada, and N.
Okazaki, “Utilizing the similarity meaning of label in class cohesion
calculation,” Journal of Robotics, Networking and Artificial Life, vol. 7,
no. 4, pp. 270–274, 2021, doi: 10.2991/jrnal.k.201215.013.

[15] S. Kaur and P. Singh, “How does object-oriented code refactoring
influence software quality? Research landscape and challenges,” Journal
of Systems and Software, vol. 157, p. 110394, Nov. 2019, doi:
10.1016/j.jss.2019.110394.

[16] M. Brambilla, Jordi. Cabot, and Manuel. Wimmer, Model-driven
software engineering in practice. Morgan & Claypool, 2012.

[17] Á. Domingo, J. Echeverría, Ó. Pastor, and C. Cetina, “Evaluating the
Benefits of Model-Driven Development,” Advanced Information

Systems Engineering, no. June 2021, pp. 353–367, 2020, doi:
10.1007/978-3-030-49435-3_22.

[18] J. D. A. G. Saraiva, M. S. De França, S. C. B. Soares, F. J. C. L. Filho,
and R. M. C. R. De Souza, “Classifying metrics for assessing Object-
Oriented Software Maintainability: A family of metrics’ catalogs,”
Journal of Systems and Software, vol. 103, pp. 85–101, 2015, doi:
10.1016/j.jss.2015.01.014.

[19] D. Coleman, D. Ash, B. Lowther, and P. Oman, “Using Metrics to
Evaluate Software Svstem Maintainability,” IEEE Computer, vol. 27,
no. 8, pp. 44–49, 1994.

[20] B. Priyambadha and T. Katayama, “Tree-based keyword search
algorithm over the visual paradigm’s class diagram xml to abstracting
class information,” 2020 IEEE 9th Global Conference on Consumer
Electronics, GCCE 2020, pp. 280–284, 2020, doi:
10.1109/GCCE50665.2020.9291865.

[21] B. Priyambadha, T. Katayama, Y. Kita, H. Yamaba, K. Aburada, and N.
Okazaki, “The Seven Information Features of Class for Blob and Feature
Envy Smell Detection in a Class Diagram,” The 2021 International
Conference on Artificial Life and Robotics (ICAROB2021), pp. 348–
351, 2021.

[22] B. Priyambadha, T. Katayama, Y. Kita, K. Aburada, H. Yamaba, and N.
Okazaki, “The Measurement of Class Cohesion using Semantic
Approach,” Proceedings of International Conference on Artificial Life
and Robotics, vol. 25, pp. 759–762, 2020, doi:
10.5954/icarob.2020.os14-4.

[23] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, “A two-step
technique for extract class refactoring,” ASE’10 - Proceedings of the
IEEE/ACM International Conference on Automated Software
Engineering, pp. 151–154, 2010, doi: 10.1145/1858996.1859024.

[24] G. Bavota, A. De Lucia, and R. Oliveto, “Identifying Extract Class
refactoring opportunities using structural and semantic cohesion
measures,” Journal of Systems and Software, vol. 84, no. 3, pp. 397–
414, Mar. 2011, doi: 10.1016/j.jss.2010.11.918.

[25] G. Bavota, “Using structural and semantic information to support
software refactoring,” Proceedings - International Conference on
Software Engineering, pp. 1479–1482, 2012, doi:
10.1109/ICSE.2012.6227057.

[26] G. Bavota, A. de Lucia, A. Marcus, and R. Oliveto, “Automating extract
class refactoring: an improved method and its evaluation,” Empir Softw
Eng, vol. 19, no. 6, pp. 1617–1664, 2014, doi: 10.1007/s10664-013-
9256-x.

[27] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou,
“Identification and application of Extract Class refactorings in object-
oriented systems,” Journal of Systems and Software, vol. 85, no. 10, pp.
2241–2260, 2012, doi: 10.1016/j.jss.2012.04.013.

[28] M. Fokaefs, N. Tsantalis, A. Chatzigeorgiou, and J. Sander,
“Decomposing object-oriented class modules using an agglomerative
clustering technique,” IEEE International Conference on Software
Maintenance, ICSM, pp. 93–101, 2009, doi:
10.1109/ICSM.2009.5306332.

[29] M. Hamdi, R. Pethe, A. S. Chetty, and D. K. Kim, “Threshold-driven
class decomposition,” Proceedings - International Computer Software
and Applications Conference, vol. 1, pp. 884–887, 2019, doi:
10.1109/COMPSAC.2019.00130.

[30] Y. Wang, H. Yu, Z. Zhu, W. Zhang, and Y. Zhao, “Automatic Software
Refactoring via Weighted Clustering in Method-Level Networks,” IEEE
Transactions on Software Engineering, vol. 44, no. 3, pp. 202–236,
2018, doi: 10.1109/TSE.2017.2679752.

[31] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou,
“JDeodorant: identification and application of extract class
refactorings,” in 2011 33rd International Conference on Software
Engineering (ICSE), 2011, pp. 1037–1039. doi:
10.1145/1985793.1985989.

[32] D. C. Funder and D. J. Ozer, “Evaluating Effect Size in Psychological
Research: Sense and Nonsense,” Adv Methods Pract Psychol Sci, vol. 2,
no. 2, pp. 156–168, Jun. 2019, doi: 10.1177/2515245919847202.

