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Abstract—The quality of the software's internal structure 

tends to decay due to the adaptation to environmental changes. 

Therefore, it is beneficial to maintain the internal structure of the 

software to benefit future phases of the software life cycle. A 

common correlation exists between decaying internal structures 

and problems like software smell and maintenance costs. 

Refactoring is a process to maintain the internal structure of 

software artifacts based on the smell. Decomposition of classes is 

one of the most common refactoring actions based on Blob smell 

performed at the source code level. Moving the class 

decomposition process to the design artifact seems to affect the 

quality and maintainability of the source code positively. 

Therefore, studying the impact of design-level class 

decomposition on source code quality and software 

maintainability is essential to ascertain the benefits of 

implementing design-level class decomposition. The metrics-

based evaluation shows that the design-level class decomposition 

positively impacts the source code quality and maintainability 

with the rank biserial value is 0.69. 
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I. INTRODUCTION 

Internal structure quality maintenance is an essential task in 
every phase of the software development process. Due to 
software changes, software's internal structure or design tends 
to decay or decrease quality [1]–[3]. Some software is changed 
without using a modern software engineering approach. As a 
result, it may never be well structured and optimized for 
understandability. A software developer often changes the 
software artifact for the short-term goal. The changes are made 
mostly not followed by a comprehensive analysis of the 
existing artifact structure. Sometimes, the changes in one unit 
of software artifact require adjustment at the other unit, so the 
structure is always maintained. It is not uncommon that the 
decaying condition of the software structure will have other 
impacts, such as the immerging of smell on the software 
artifacts. 

Finding and solving the smell problems in the software 
artifact is a software research field that continues growing until 
now [2], [4]–[7]. Many approaches are immersed in detecting 
the smell in the source code artifact [2]. Also, several 
researchers have defined how to solve every type of smell in 
source code without altering the outside behavior, known as 
Refactoring. The smell term was also started to understand at 
the level of design phases (software developing process) [4]–
[6]. Design smell is defined using the knowledge that lies in the 

design artifact, for example, the class diagram or the other 
architectural diagram that expresses the software architecture. 
But it is still a lack of refactoring process at the design-level 
artifact using the terms of design smell due to the abstract 
information in the design artifact [1], [8]. 

A previous study was conducted to do the refactoring 
process at the design artifact. The studies focused on the Blob 
smell that was identified in the class based on the data from the 
class diagram. Class decomposition is the process of 
refactoring to solve the Blob smell in the class diagram. Using 
the threshold-based agglomerative hierarchical clustering 
algorithm that is based on the class diagram metrics the class 
decomposition shows promising results [8]. The class diagram 
metrics, in this case, are     and    , representing syntactic 
and semantic metrics, respectively. Those metrics measure the 
relationship between class elements. Then, the approach was 
enhanced by using the evaluation process to solve the 
misplaced element and unusable class [9]. The research has 
shown promising results and is worth continuing to the other 
pathway solution than the Blob smell. 

Before it is continued to the other pathway refactoring 
solution in the design-level artifact, it is better to know the 
impact of existing approaches to software maintainability. The 
existing refactoring process at the source code level has already 
been proven to have a good impact on software maintainability 
[10], [11]. 

This research examines the impact of design-level class 
decomposition on software maintenance. The decomposition 
process will be carried out using class diagrams. Once the 
decomposition recommendations are generated, it will be 
implemented into the source code. After the code has been 
implemented (class decomposition), several software metrics 
are used to measure the quality of a piece of source code after 
its implementation. Measurement results are compared, before 
and after decomposition, to determine whether there are any 
differences or effects on software maintainability. 

The following section will describe the literature study 
(Section II) and the whole method of the design-level class 
decomposition. The class decomposition process on the class 
diagram is described in Section III. Section IV describes the 
current experiment scenario to know the impact of the design-
level class decomposition on software maintenance. Finally, 
Sections V and VI represent the result of the experiment, the 
analysis using the statistical approach, and the overall 
conclusion of this experiment. 
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II. LITERATURE STUDY 

Maintaining the software's internal structure also benefits 
the future phase of the software life cycle. The software life 
cycle is not only one cycle and finish. Mostly it will continue 
cycling as long as the user and environment need the software. 
During the cycle, the software experiences change due to user 
needs and environmental changes. The changes must be 
applied to the software to prevent the existing software in the 
specific environment. The software changes require costs we 
must pay [12], [13]. Therefore, the software engineer must 
maintain the internal structure to make changes easier and not 
costly. The bad structure makes the artifact difficult to 
understand, change, and maintain. 

Every effort has been made to maintain the software's 
internal structure's quality, starting from the source code. 
Therefore, shifting from the source code to the design level of 
Refactoring is considered worth doing to increase the quality 
awareness of the design artifact as early as possible. But, 
refactoring activity at a higher level of abstraction has a 
specific problem [1], [8]. The design artifact contains less 
information than the implementation artifact. Therefore, 
excavating or mining the design artifacts and analyzing their 
in-depth information is necessary. 

Generally, design artifacts are only written (text-based) 
with information that is contained within them. However, 
information may sometimes contain hidden meanings that 
require further analysis to be understood. The use of natural 
language processing (NLP) or semantic analysis (SA) is one 
approach that can provide functionality for understanding the 
meaning of information [14]. 

In contrast, source code-level information clearly provides 
complete information about the source code profile [1] for 
example, the number of operands or operators in the source 
code can be measured to determine the complexity of the 
source code by the software engineer. In addition, by reviewing 
the internal source code, the developer will be able to 
understand the relationship between attributes and methods. 
They can review the assigning value statement to determine the 
relationship between the method and attribute. 

On the side of design, a review and assessment of the 
quality of the artifact design can be carried out by utilization of 
NLP and SA. Furthermore, the refactoring activity, such as 
class decomposition, using the design artifact is also possible 
using the NLP and SA analysis [1], [8]. 

Shifting the refactoring activity to the design artifact is 
expected to contribute and positively impact software 
maintenance [11], [15]. There are two fundamental theories of 
the research of design-level software refactoring. First, the 
theories of Software Evolution (specifically in software 
refactoring) [2] and the second is Model-Driven Software 
Engineering (MDSE) [16] Software refactoring preserves the 
quality of the software's internal structure in relation to the 
software evolution, specifically in the case of software 
maintainability. On the other hand, MDSE provides the 
concept that software development is oriented on a model. 
Therefore, the model acts as the core of action and the 
guidance of the implementation phase. In other words, the 
model is the bridge between requirement analysis and 
implementation. The previous research on design-level 
Refactoring aims to combine the theories (Refactoring and 
MDSE) to propose a better approach for refactoring for better 
software quality [1]. It also has the aim to increase the 
awareness of internal quality as soon as possible. The other 
reason for the shift to the design phase is to gain the benefit of 
MDSE. Fig. 1 shows the thinking schema of the approach 
according to the justification or rationale. Furthermore, the 
impact of the Refactoring on the design phase is needed to be 
investigated. 

MDSE uses a software model as the primary artifact of 
software development [16]. Compared to the implementation 
artifact (source code), the software model is closer to the 
problem domain. The model transformation is the main process 
of the MDSE since the MDSE aims to generate the source code 
from the models. On the other hand, there is another approach 
to the development of software called Code-centric 
Development (CcD). A comparison study between MDSE and 
CcD has been done for over a decade. From the review paper 
by Domingo et al., many researchers have been evaluating the 
benefit of the MDSE [17]. Some works said that MDSE 
decreases development time (up to 89%) relative to Code-
centric Development (CcD). The other works suggest that the 
MDSE is suitable for academic exercise. Furthermore, the 
other works assert that MDSE is also suitable for inexperienced 
developers. Finally, Domingo et al., based on their review of 
the MDSE, conclude that the MDSE is suitable for academic 
exercise and inexperienced developers. It would be beneficial 
to move refactoring activities to the design artifact utilizing the 
benefits of MDSE. 

 

Fig. 1. Thinking schema of design-level class decomposition. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 4, 2023 

407 | P a g e  

www.ijacsa.thesai.org 

On the other side of view, the impact of the design-level 
refactoring process on maintenance is questionable and needs 
study. There are several methods to measure software 
maintainability. Software maintainability, the ease with which 
a software system can be understood and modified to 
accommodate bug fixes, new features, and improvements in 
general, plays an important role in software quality. Since it is 
difficult to measure software maintainability without 
measuring the actual maintenance process, researchers and 
practitioners often use product metrics as indicators. Some 
practitioners sometimes face difficulty in finding suitable 
metrics, specifically software maintainability metrics, 
according to the practitioner's scope or subjective. The paper of 
Saraiva et al. has aimed to propose Object-Oriented Software 
Maintainability (OOSM) metrics categorizations. It aims to 
make it easy to find suitable maintainability metrics [18]. 
Maintainability is related to external quality attributes such as 
analyzability, changeability, stability, and testability. All 
external attributes are expressed as maintainability 
characteristics that are "easy to adapt." To achieve this 
maintainability objective, most researchers measure from the 
internal quality attributes at least the system's size, complexity, 
coupling, and cohesion [18]. 

The other metric that points to software maintainability is 
named Maintainability Index (MI) [19]. MI is a software 
metric that is used to measure the level of software, whether it 
is easy or difficult to maintain in the future. The MI is 
calculated by considering the Line of Code (LOC), Cyclomatic 
Complexity, and Halstead Volume (HV). MI is measured using 
the information of software source code. 

III. DESIGN-LEVEL CLASS DECOMPOSITION 

This section describes how the refactoring activity can 
perform in the design-level artifact. This research uses the class 
diagram as the main object in the refactoring process. The 
refactoring activity on the class diagram utilizes the class 
information extracted from the class diagram. One of the 
challenges in this research is using the existing information to 
do the refactoring activity. Fig. 2 explains the proposed design-
level class decomposition approach to solve Blob smell in class 
(class diagram). 

A. Design-Level Information Extraction 

The first task in this approach is to collect or extract 
information from the class diagram. The class diagram is a 
notation-based diagram that is expressed as an image showing 
the software's architecture in case of a class arrangement, and it 
is a static diagram. The information in the class diagram is 
important to collect and analyze to support the process. The 
information extraction needs a specific strategy to make it easy 
to implement. 

The first step in this process is converting the class diagram 
to an XML formatted file. The conversion aims to transform 
the notation based to text-based information. Then, the 
information (text-based) is extracted from the XML syntax to 
get important data for smell detection (the next process). The 
extraction uses a specific search algorithm called Tree-based 
keyword search [20]. 

The candidate data (classes) for smell detection consists of 
seven pieces of information. The data are the number of 
attributes, number of methods, number of relations between 
methods and attributes, number of relations between methods 
and attributes, number of relations between attributes and 
attributes, the capacity of the relationships within the class, and 
the degree of cohesion [21]. The NLP and SA determine the 
relationship between the class elements. In addition, the degree 
of cohesion is calculated based on the relationship between the 
class elements [22]. 

 
Fig. 2. The design-level class decomposition (design-level refactoring). 
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B. Design Smell Detection 

The classification method will be used to detect the smell. 
The experiment used three classifiers: the j48, the Multi-Layer 
Perceptron, and the Naïve Bayes. The experiment uses Weka 
as machine learning software to solve data mining problems 
and run using a basic configuration. Classifiers are used to 
demonstrate that the dataset can be distinguished from bad 
smells (Blob and Feature Envy) [21]. The experiment result 
shows an average accuracy of 80.67% for the Blob smell. The 
accuracy value means that the information data can be utilized 
for the Blob detection process in a class diagram. 

The information (seven pieces of information from the 
class diagram) contained characteristics that led to the 
identification of the Blob smell [21]. Hence, the Blob smell is 
being addressed in the Refactoring. 

C. Design-Level Class Decomposition 

Once the Blob smell is detected, Refactoring must be 
performed to solve the smell. Based on the experiences, the 
Blob smell is solved using the class decomposition or 
extraction. Mostly the research about class decomposition is 
done at the level of source code [2], [23]–[30]. Then based on 
the information in the class diagram [21], the class 
decomposition is done. 

The design-level class decomposition in this research uses 
threshold-based agglomerative hierarchical clustering. It is 
divided into static and dynamic threshold hierarchical 
clustering. Static thresholds differ from dynamic thresholds in 
defining the threshold before decomposing the cluster. In the 
static approach, the threshold value is defined at the beginning 
of the decomposition process (the threshold is defined only 
once). According to the dynamic approach, the threshold is 
calculated at every stage of the decomposition process. In this 
study, Hamdi's algorithm is used, but it is implemented at the 
level of design [29]. Shifting objects to class diagrams requires 
defining new metrics for clustering. Syntax       and 
semantic       aspects of the class element's label are 
considered in the similarity matrix to do the clustering process 
(class decomposition) [8]. The two aspects (syntax and 
semantics) are considered due to the nature of class diagram 
information, which is more abstract than source code 
information. To determine the relationship between class 
elements, it has to determine the closeness meaning of the label 
name between elements. This seems to be the essential 
approach in this process. 

The process shows the promising result of decomposition 
(based on the Silhouette value). But, there are still 
shortcomings to solve. Some elements still have a negative 
Silhouette value in the decomposition result. Negative 
Silhouette values indicate that the current element is far from 
other cluster elements or has the wrong placement. 
Additionally, the negative Silhouette elements are considered 
to be the least desirable. 

The results also indicate that some clusters are considered 
unimplementable due to the possibility that they may produce 
objects that cannot collaborate with each other. A cluster with 
only one element, particularly if the element has a private 
modifier, is considered useless. Evaluating the moving 

mechanism of the negative element is considered important as 
an optimization process. The next process is the evaluation 
process to the result of this process. 

D. Optimization of Class Decomposition Result 

The result of the decomposition from the previous process 
has to be optimized to solve the negative element and unusable 
cluster. The elements are evaluated by considering the value of 
Silhouette (    ) and class usability (          ).            
value calculated based on the existence of the public method 
inner the cluster (value one if exists and 0 if not). Then to 
evaluate the cluster and elements, the following formula is 
used [9]. 

                         (1) 

Where   and   are the weight of every factor to adjust 
during the experiment. Threshold-based agglomerative 
hierarchical clustering experiment has been optimized by 
adding an evaluation process. During the evaluation process, a 
specific element with a negative Silhouettes value in each 
cluster is intended to be moved to a better cluster. 

In comparison to the previous approach, the evaluation 
process increases the average Silhouettes of the cluster by 
using   higher or equal to 0.7. There has been an average 
increment of Silhouettes of about 40% [9]. Based on the results 
of the previous approach, the evaluation process is also able to 
solve the unusable cluster. 

Finally, the whole process produces a set of clusters that 
represent the classes as the result of the decomposition. In this 
step, the result is the recommendation to be implemented at the 
source code level. Then, the impact of the decomposition 
implementation on the source code level will be described and 
analyzed in the following section. 

IV. EXPERIMENT SCENARIOS 

Understanding the impact of the refactoring result on the 
software maintainability is essential. The impact of class 
decomposition recommendation result (design-level class 
decomposition) on the quality of source code is the way to 
know how is the performance of the design-level class 
decomposition approach. 

A. Overview of Scenario 

The decomposition of the class on the source code level 
based on the recommendation from class decomposition on the 
design level aims to compare the quality. The source code 
quality before and after implementing the class decomposition 
recommendation will lead us to conclude how the design-level 
decomposition will impact the source code. The quality of code 
is measured using the source code quality metrics. Fig. 3 shows 
how the experiment is held to study the impact of design-level 
class decomposition. The following five internal quality 
attributes are associated with software maintainability: size, 
complexity, coupling, cohesion, and constraints associated with 
software architecture [18]. Four of the internal quality 
attributes are expressed in the 18 metrics. Table I shows the list 
of the 18 metrics used in this experiment to compare the before 
and after decomposition process. The purpose of this 
experiment is not only to compare the quality of source code 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 4, 2023 

409 | P a g e  

www.ijacsa.thesai.org 

based on the 18 metrics but also to compare the MI [19] as the 
final proof of this research. 

 
Fig. 3. The experiment scenario. 

TABLE I.  THE LIST OF THE 18 METRICS 

No. Name Description 

1. CBO Coupling Between Object Classes, the number of coupled 
classes (Coupling) 

2. RFC Response For a Class, the number of methods that can be 

potentially invoked in response to a public message 

received by an object of a particular class (Complexity) 

3. SRFC Simple Response For a Class, the number of methods that 

can be potentially invoked in response to a public message 

received by an object of a particular class (Complexity) 

4. DIT Depth of Inheritance Tree, the position of the class in the 
inheritance tree (Complexity) 

5. NOC Number of Children, the number of direct subclasses of a 

class (Coupling) 

6. WMC Weighted Method Count, The weighted sum of all class' 
methods and represents the McCabe complexity of a class 

(Complexity) 

7. LOC Line Of Code (Complexity, Size) 

8. CMLOC Class-Method Lines of Code, Total number of all 

nonempty, non-commented lines of methods inside a class 
(Complexity, Size) 

9. NOF Number Of Fields, the number of attributes in class 

(Complexity, Size) 

10. NOSF Number of Static Fields, the number of static attributes 
(Complexity, Size) 

11. NOM Number of Methods (Complexity, Size) 

12. NOSM Number of Static Methods (Complexity, Size) 

13. NORM Number of Overridden Methods (Complexity) 

14. LCOM Lack of Cohesion of Methods, measure how methods of a 
class are related to each other (Cohesion) 

15. LCAM Lack of Cohesion Among Methods (1-CAM), CAM 

metric is the measure of cohesion based on parameter 

types of methods (LCAM = 1-CAM) (Cohesion) 

16. LTCC Lack of Tight Class Cohesion, The Lack of Tight Class 

Cohesion metric measures the lack of cohesion between 

the public methods of a class (Cohesion) 

17. ATFD Access to Foreign Data, the number of classes in which the 
attributes are directly or indirectly reachable from the 

investigated class (Coupling) 

18. SI Specialization Index measures subclasses override their 
ancestor's classes (Complexity) 

All the measurement results are collected to be analyzed in 
the following step. For the result of measurement using the 18 
metrics, the data will be recapped and show the trend of 
comparison before and after decomposition. 

Lastly, for measuring MI, statistical analysis is needed to 
determine the impact of the decomposition recommendation on 
the source code quality. 

B. Experiment Data 

TABLE II.  MI CLASSIFICATION 

MI Value Classification 

>85 Highly maintainable 

>65 and ≤85 Moderate maintainable 

≤65 Difficult to maintain 

This experiment used two study cases, jHotDraw and 
AgroUML source code. There are 67 classes identified as Blob 
classes using jDeodorant in both applications. But, after 
measuring the MI, not all classes are considered problematics 
in maintenance. The classification of MI value refers to 
Table II, which explains how the value is classified based on 
maintainability [19] There are only 33 classes that have 
moderate and difficult to maintain. Therefore, only 33 classes 
are used as the object in this experiment. The acquisition of 
data is shown in Fig. 4. 

The Blob classes classified as highly maintainable are not 
used in this experiment because it assumed not to be included 
in problematic classes in the maintainability manner. 

 
Fig. 4. Data acquisition. 

But, it has to solve from the other perspective manner. 

C. Tools 

There are three tools used in this experiment, the 
jDeodorant plugin for Eclipse IDE [31], the CodeMR (Code 
Magnetic Resonance), and the prototype application that 
implements the MI measurement [19]. 

The jDeodorant is used in the data acquisition process to 
select the classes that contain a Blob smell. The CodeMR is the 
application that has the ability to measure the quality of source 
code based on the 18 metrics measurement. CodeMR is a static 
analysis tool for source code. And the last is a custom 
application that can show the value of the Maintainability 
index of source code. CodeMR and the custom application 
used on the before and after decomposition process. The result 
of measurement is recapped and analyzed to know how the 
impact of the usage design-level class decomposition 
recommendation on the source code quality. 
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V. EXPERIMENT RESULT AND DISCUSSION 

The class decomposition recommendation is implemented 
on the source code to get the benefit of it. The result is 
measured using 18 metrics and MI to know how difference 
before and after the decomposition process. 

A. Measurement using the 18 Metrics 

The source code decomposition result is measured using 
the 18 metrics for the first result. The 18 metrics are grouped 
into four metrics based on the metrics type. Every value of 
each metric is calculated by averaging the values of particular 
metrics in every case study. Then, it differentiated before and 
after decomposition. The groups are coupling, complexity, 
cohesion, and size metric. Fig. 5 shows the result of the 
measurement that is described on the line graph. Another 
reason for grouping metrics is that each type of metric has a 
different range of values, so separating each type into groups 
will clarify trends for each type of metric. 

Fig. 5(a) shows the trend of measurement in the type of 
coupling metric. There are three metrics in the category 
coupling metric, CBO, NOC, and ATFD. In this result, CBO 
shows a decrement value from before to after decomposition. 

The other metrics, NOC and ATFD, do not show 
decrement due to the value equality between before and after 
decomposition. 

Fig. 5(b) shows the group of complexity metrics consisting 
of ten metrics. The metrics are RFC, SRFC, DIT, WMC, SI, 
NOF, NOSF, NOM, NOSM, and NORM. Those metrics 
measure the complexity of source code from several sides. For 
the ten metrics, the graph shows the trend that the values 
decrease after decomposition. Two metrics show the same 
value before and after decomposition. The metrics are SI and 
NORM that has a value of 0 before and after decomposition. 

Fig. 5(c) shows the cohesion metric, consisting of three 
metrics: LCOM, LCAM, and LTCC. All metrics show the 
measurement of a lack of cohesion in the class. Higher values 
show a higher lack of cohesion in the source code. The value of 
those metrics decreases before and after the decomposition 
process. 

Fig. 5(d) shows the size metric, which measures the size of 
the source code. It seems to be the same trend as the other type 
of metrics. The value of LOC and CMLOC, before and after 
decomposition, decreases due to the result of decomposition 
implemented to the source code. 

All metric types show the same trend that, after 
decomposition, tend to be lower value of metrics. The 18 
metrics show the same meaning of the value: the lower value 
means the better condition of the source code. Implementing 
class decomposition on the source code seems to make the 
source code better quality measured by the 18 metrics. 

 

Fig. 5. Result of measurement using the 18 metrics of a) Coupling metrics, b) Complexity metrics, c) Cohesion metrics, and d) Size metrics. 
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B. Statistical Analysis of the Maintainability Index (MI) 

The Maintainability Index (MI) measurement is done using 
the prototype application. The measurement is applied before 
and after the class decomposition process based on the design-
level recommendation. The MI value for the after-
decomposition is calculated by averaging each class's value 
aims to represent one value. Table III shows the result of the 
measurement of MI compared before and after the 
decomposition process. 

In this experiment, the differences between before and after 
are worth calculating to ensure the differences after 
decomposition. The differences calculation uses the statistical 
approach, in this case, Wilcoxon signed-rank. Analysis 
differentiation aims to make sure that there is a difference 
between before and after decomposition. Differentiation can be 
used as a sign that the decomposition process causes an impact 
on the source code in case of maintainability. 

Besides the differences, how strong the effect of the usage 
of design-level decomposition recommendation in the source 
code level decomposition to the value of MI is also important 
to know. The Wilcoxon signed rank is able to inform both the 
differences and the effect size of the approach. 

Based on the result of the Wilcoxon signed rank, there are 
several interpretations based on the test result. Fig. 6 shows the 
first indicator by the p-value of the result. The significant value 
of differential analysis is lower than the 0.05 p-value. The 
current result shows that the p-value is 6.02e-04, lower than 
0.05. So, based on the p-value, the result concluded that the MI 
before and after the decomposition process is significantly 
different. 

The second indicator is the median value from the plot in 
Fig. 6. Even though the median value cannot act as the main 
indicator of differentiation and it shows how the differences in 
spreading data differ. Based on the result, the median values 
before and after decomposition differ in favor. The median of 
after decomposition data is increased by 25.03 to the before. 

This research aims to know how the impact of the 
utilization of design-level class decomposition 
recommendations on the source code level. The p-value and 
median value only show that the data before and after is 
different. It does not show how the impact of the design-level 
class decomposition on the source code quality simultaneously. 
The other value could be used to know how strong the impact 
design-level decomposition is rank biserial, as shown in Fig. 6. 
The rank biserial is used to examine the relationship between 
dichotomous (binary) nominal data and ordinal (ranked) data. 
Before running the statistical analysis, the data measurement of 
MI is calculated to find the data rank based on the differences 
in the value of MI before and after decomposition. It is one of 
the Wilcoxon sign rank method's requirements before shown in 
the plot as shown in Fig. 6. The rank biserial value shown in 
Fig. 6 is 0.69. Therefore, the higher value is better. Based on 
Funder's interpretation [32], 0.69 can be interpreted as very 

large. In other words, the use of design-level decomposition 
recommendation on the source code level decomposition gives 
a very large, positive, and significant effect on the MI. 

TABLE III.  MI BEFORE AND AFTER DECOMPOSITION PROCESS 

Differentiation of MI 

No. Class Name Before After 

1. ArgoEventPump 80.78 99.02  

2. ArgoJFontChooser 82.76 100.13  

3. ArgoParser 84.66 116.53  

4. DetailsPane 80.38 97.84  

5. DrawApplet 75.41 120.47  

6. DrawApplication 68.84 122.26  

7. ExplorerPopup 62.42 91.33  

8. FindDialog 66.81 70.96  

9. GenericArgoMenuBar 62.19 89.18  

10. GraphLayout 72.14 72.43  

11. Import 69.4 81.42  

12. MyTokenizer 84.63 98.55  

13. NotationSettings 80.38 107.75  

14. PathItemPlacement 80.93 98.25  

15. PerspectiveConfigurator 63.85 46.43  

16. PerspectiveManager 66.65 88.60  

17. ProfileConfigurationParser 80.97 83.60  

18. ProfileUML 70.41 35.21  

19. ProjectBrowser 57.37 105.78  

20. SettingsTabProfile 53.51 62.48  

21. StandardDrawingView 71.48 110.70  

22. TabConstraints 73.45 104.59  

23. TabStyle 80.92 124.74  

24. TargetManager 71.62 82.97  

25. ToDoList 81.37 125.75  

26. TodoParser 84.07 92.41  

27. UMLActivityDiagram 69.27 101.92  

28. UMLAddDialog 83.8 42.25  

29. UMLDeploymentDiagram 76.53 113.31  

30. UMLStateDiagram 65.81 104.69  

31. UMLUseCaseDiagram 84.26 101.36  

32. UserDefinedProfile 67.57 98.48  

33. WizOperName 77.7 39.25  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 4, 2023 

412 | P a g e  

www.ijacsa.thesai.org 

Fig. 6. Differentiation of MI. 

C. Research Limitation 

This section explains all things that have a possibility to 
threaten the validity of the experiment result. There are two 
main limitations to this experiment. First is the dataset used 
and the manual process conducted in the experiment. 

A limited amount of data in the experiment would be the 
main limitation of this research. The study case is taken from 
only the two application resources (jHotDraw and jDraw). The 
dataset collected from both applications is only 33 instant data. 
It is sufficient for the scope of this experiment, but it is 
considered better to add the amount of data in the future to 
increase the result validity. 

The process of class decomposition is done automatically. 
But, the implementation of decomposition recommendations to 
the source code is done manually based on the location of class 
elements. 

VI. CONCLUSION 

The quality measurement before and after the 
decomposition process on the source code is by using two 
approaches. First, the source code was measured using the 18 
metrics representing coupling, complexity, cohesion, and size. 
Those groups of metrics are the type of metrics that are related 
to software maintainability based on the existing references. 
There is a trend in all metrics types that after decomposition, 
the metrics tend to have a lower value than before 
decomposition. In all 18 metrics, a lower value represents a 
better condition of source code. By implementing design-level 
class decomposition on the source code, the source code seems 
to be of better quality as measured by the 18 metrics. 

The second quality measurement uses MI as one specific 
metric to measure the software maintainability of the source 
code. The measurement result differentiated before and after 
the decomposition process. The Wilcoxon signed-rank analysis 

was applied to the result of measurement to get a deep analysis 
of the result. A p-value less than 0.05 indicates significant 
differential analysis in the first test. According to the current 
results, the p-value is 6.02e-04, which is less than 0.05. 
Therefore, it is concluded that the MI before and after 
decomposition is significantly different. The second indicator 
is the median value from the plot. Regardless of the fact that 
the median value cannot be used as the primary indicator of 
differentiation, it does at least indicate how the spread of data 
differs. 

According to the results, the median value before and after 
decomposition differs in favor of decomposition. After 
decomposition, the median has increased by 25.03 compared to 
the before data. 

The final test is rank biserial. There is a rank biserial value 
of 0.69, which can be interpreted as being very large. As a 
result, using design-level recommendations on source code 
decomposition has a very large, positive, and significant effect 
on the MI. 

The 18 metrics and MI analysis show the same favorable 
result. The use of design-level class decomposition 
recommendation is able to increase the source code quality 
significantly based on the analysis result. 

The shifting refactoring process to the design artifact is still 
challenging in the future. This is because so many code smell 
types could detect and refactor from the design artifact. This 
research only focuses on the Blob smell on the design artifact, 
only defining the pathway solution based on the existing Blob 
smell in the class diagram. The research will continue to the 
other pathway solution than the Blob smell. 

This research uses the data collected from the existing 
open-source application. The limitation on the number of data 
might be lacking in the meter of data validity. Increasing the 
number of data is a plan that has been recorded to be carried 
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out in the future. The complete software documentation will be 
interesting data to analyze for future research. 
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